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Abstract  15 

Contemporary rates of biodiversity decline emphasize the need for reliable ecological forecasting, but current 16 

methods vary in their ability to predict the declines of real-world populations. Acknowledging that stressors 17 

effects start at the individual level, and that it is the sum of these individual-level effects that drives populations 18 

to collapse, shifts the focus of predictive ecology away from using predominantly abundance data. Doing so 19 

opens new opportunities to develop predictive frameworks that utilize increasingly available multi-dimen-20 

sional data, which have previously been overlooked for ecological forecasting. Here, we propose that stressed 21 

populations will exhibit a predictable sequence of observable changes through time: (i) changes in individuals’ 22 

behaviour will occur as the first sign of increasing stress, followed by (ii) changes in fitness related morpho-23 

logical traits, (iii) shifts in the dynamics (e.g. birth rates) of populations, and finally (iv) abundance declines. 24 

We discuss how monitoring the sequential appearance of these signals may allow us to discern whether a 25 

population is increasingly at risk of collapse, or is adapting in the face of environmental change, providing a 26 

conceptual framework to develop new forecasting methods which combine multidimensional (e.g. behaviour, 27 

morphology, abundance) data. 28 

   29 
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1. INTRODUCTION 30 

Extinction rates over the last century have been estimated to be higher than at any point in recent history, with 31 

human activity identified as the predominant driver of this “sixth mass extinction” (Ceballos et al., 2015). In 32 

addition to its positive effects on human wellbeing and culture (Dereniowska & Meinard, 2021), biodiversity 33 

underpins the stability and resilience of ecological systems on which humanity relies for food, fresh water, and 34 

clean air (Maron et al., 2017). At the root of human-induced extinctions are a suite of stressors - stimuli creating 35 

a physiologically demanding or life-threatening situation for an organism - such as habitat loss, pollution, 36 

overharvesting, and climatic change (Taborsky et al., 2021; Tilman et al., 2017). Such stressors can drive 37 

declines and erode a population’s ability to recover in the face of disturbances, increasing the probability of 38 

population collapse (van de Leemput et al., 2018). Indeed, multi-faceted pressures can be self-reinforcing, 39 

driving rapid collapses – the so-called extinction vortex (Fagan & Holmes, 2005; N. F. Williams et al., 2021). 40 

Consequently, we are at a critical point for ecosystem management where, to preserve biodiversity and eco-41 

system services, we need to reliably detect not only what systems are being most impacted by anthropogenic 42 

stressors, but which are most at risk of collapse (Clements & Ozgul, 2018).  43 

 44 

This need has driven the development of predictive methods that aim to infer the risk of population collapse, 45 

ranging from classical Population Viability Analyses (PVA, Shaffer 1991) to more recently developed Early 46 

Warning Signals (EWS, (Clements & Ozgul, 2018; Scheffer et al., 2009; Shaffer, 1991). However, the diffi-47 

cultly of surveying wild populations, together with economic limitations (T. A. Gardner et al., 2008), often 48 

results in noisy and short time series which can detrimentally affect the accuracy of such predictive tools 49 

(Clements et al., 2015; Coulson et al., 2001; Patterson et al., 2021). Most importantly, these methods have 50 

neglected other potentially powerful diagnostic features that theory and evidence suggest should be impacted 51 

by increasing environmental pressures and thus could act as additional indicators of approaching collapse. In 52 

fact, the final decline of a population to extinction is a manifestation of a host of changes to the structure and 53 

dynamics of that population. Such changes occur first at the individual level, and then – when a high enough 54 

proportion of the population exhibit similar changes – affect the dynamics of that population.  55 

 56 
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An individuals’ physiology is the key mechanism through which organisms detect and respond to environmen-57 

tal change; for example stress hormone production is the initial trigger of phenotypic change (Lawton, 1991). 58 

Whilst using such physiological measures as tools to identify at risk populations certainly has merit (Ames et 59 

al., 2020), collecting data to achieve this requires tracking physiological parameters across multiple individuals 60 

of populations, an intrusive and resource-intensive task. Rather, focusing on the easily detectable downstream 61 

effects of these physiological changes provides individual-based data on the effects of stressors. These down-62 

stream effects could include changes in the behaviour of individuals (Berger-Tal et al., 2011), their morphol-63 

ogies, and/or life history traits (Baruah et al., 2019), alongside traditional abundance-based measures of ex-64 

tinction risk (Dakos et al., 2012). Gathering such multivariate information has historically been highly chal-65 

lenging in the natural world, but recent technological advancements in data-collection methods provide the 66 

opportunity to generate high throughput information on these multiple features of populations with a relatively 67 

low cost-benefit ratio (Thompson, 2013; Ward et al., 2017). However, what is still missing is a conceptual 68 

framework that explicitly shows how such multidimensional data are related to each other, and how they can 69 

be used to holistically understand the mechanisms driving populations to collapse. 70 

 71 

1.1. Conceptual framework 72 

The effect of increasing stressor intensity on a population propagates from the individual to the population 73 

level via a successive series of responses (here referred to as “signals of stress”). We refer to “stress” as the 74 

process whereby an organism reacts to stressors (Taborsky et al. 2021). The individual-level responses neces-75 

sarily take place (and are observable) over smaller time scales than population-level signals; an individuals’ 76 

behaviour or morphology can change during their lifespan, while the effect of stressors on the population 77 

abundance trends will be observable (except in face of an unpredictable extreme mortality event such as a 78 

wildfire) after one or more generations. This individual-to-population approach allows us to use individual 79 

stress responses as early indicators of change in population conditions, and to measure the impacts of the 80 

stressors in multiple dimensions simultaneously. Such an approach expands on recent work in the field of 81 

EWS, which consider abundance based EWS and shifts in the mean body size of the population simultane-82 

ously, leading to an increase of the overall predictive power (Clements et al. 2017, Burant et al. 2021). How-83 

ever, these approaches ignore the fact that such signals are not necessarily expected to change concurrently, 84 
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but rather may occur sequentially as individuals’ plasticity buffer them against negative environmental condi-85 

tions. Considering this temporal aspect in the occurrence of individual-to-population level stress responses 86 

offers the opportunity to develop new forecasting tools which make use of increasingly available data.  87 

 88 

To underpin the future development of forecasting tools, we present a conceptual framework – the “timeline 89 

to collapse” – which outlines a multidimensional approach to predict population decline and extinction. Sup-90 

ported by case studies on the effect of environmental stressors on different features of individuals (see Box1, 91 

2, 3), we show how signals of increasing stress propagate from the individual to populational level and occur 92 

in a predictable temporal sequence (i.e. the timeline to collapse). We discuss how the “timeline” of responses 93 

provides a template to corroborate whether a population is at risk of collapse or is adapting to new conditions; 94 

we explore how this framework can provide novel ways to leverage data to understand how individuals and 95 

populations buffer themselves in the face of environmental change. Finally, we discuss how to implement the 96 

timeline concept to predict the fate of real-world populations.  97 

 98 

2. THE TIMELINE TO COLLAPSE 99 

Individuals in a population, whilst experiencing similar unfavourable abiotic or biotic conditions (e.g. resource 100 

scarcity, pollution), can respond to this pressures in different ways, primarily through shifts in behaviour and/or 101 

morphological and life history traits. Behaviours, by their nature, are plastic and subject to rapid changes in 102 

the face of novel stimuli (Tuomainen & Candolin, 2011). Regardless of whether highly plastic behaviours are 103 

sufficient to maintain fitness in the presence of stressors (Mazza et al., 2020) or prove maladaptive (Hendry et 104 

al., 2008), they represent the earliest easily observable individual-level responses to sub-optimal environmental 105 

conditions (Figure 1B, Box 1). If behavioural shifts cannot maintain optimal conditions for growth and repro-106 

duction, an individual will start to change morphologically as it loses condition (e.g. through decreases in body 107 

mass, Figure 1C) or as it expresses morphological adaptation/defences. Thus, morphological traits (e.g. mass, 108 

antipredatory features, symmetry, Box 2) provide a secondary response to environmental stressors via plastic 109 

or adaptive physiology-driven changes (both intra and inter-generational). As with behavioural changes, mor-110 

phological shifts can buffer an individual against some environmental pressure but cannot do so indefinitely 111 

in the presence continuously changing conditions. Thus, such morphological shifts can be concurrent with or 112 
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followed by decreases in reproduction (i.e. life history traits adjustments) and increases in mortality rates. 113 

Declines in reproductive rates represent some of the last stages of adaptive plasticity in life history, where 114 

resources are reallocated from reproduction to maintain the survival of the individual whilst allowing for the 115 

possible exploitation of improved future conditions (Fleming et al., 2016). Such life history traits modifica-116 

tions, whilst not as readily measurable as morphological or behaviour change, will have significant and detect-117 

able effects on population abundances observable over longer (>1 generation) time frames. These may not 118 

necessarily lead to immediate population declines but can manifest as a loss of resilience potentially triggering 119 

EWS. Indeed, decreases in reproductive success and increases in mortality may induce population abundance 120 

declines and subsequent rebounds (e.g. due to density dependant reproduction, Figure 1D). If these changes 121 

drive the system toward a tipping point (Mallela & Hastings, 2021), this phase of the timeline may result in a 122 

significant temporal trend in one or more statistical moments of population abundance (Dakos et al., 2012), 123 

with indicators such as variance, autocorrelation, density ratio, and skewness acting as warning signals of 124 

collapse (Clements & Ozgul, 2018). Such EWS have been criticised because of their high false positive rates 125 

(Burthe et al., 2016), but observing them in the context of the timeline to collapse – i.e. after having already 126 

detected changes in behaviours and traits – provides additional evidence to suggest such signals are true posi-127 

tives. In fact, these slowly occurring life history changes inducing EWS represents the ultimate signals a pop-128 

ulation may show before a continuous decline in abundance. If environmental stressors still increase after these 129 

signals – and if individuals cannot move\migrate – the populations death rate will increase and abundance will 130 

continuously decline (Figure 1D). At this point, a population may be “committed to extinction”, where genetic 131 

factors (e.g. inbreeding, Vucetich & Waite 1999) and demographic constraints (e.g. Allee effect (Kramer & 132 

Drake, 2010) may mutually reinforce one another to rapidly propel it to extinction (Fagan & Holmes, 2005). 133 

 134 

We define the “timeline to collapse” such temporal sequence of observable signals, starting with rapid behav-135 

ioural responses to stressors, followed by morphological shifts, changes in life history that shapes abundance 136 

dynamics, and then by continuous declines in the abundance of a population until extinction (Figure 1). 137 

 138 

This temporal pattern of signals will necessarily develop at time scales relevant to the study organism, i.e. 139 

lifespans and generations rather than absolute time periods. For small invertebrates, behavioural shifts may be 140 
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observable over hours (e.g., Daphnia depth shifts, Oram & Spitze 2013), while changes in abundance may 141 

happen over days. For larger vertebrates, shifts in morphology may take place over months (e.g., Steller sea 142 

lions weight loss, Trites & Donnelly 2003) whilst EWS occurrence and subsequent abundance declines may 143 

occur over years. Regardless of the direction of the shifts and the stressor’s nature, we expect the temporal 144 

sequence in the typology of signals (behavioural, morphological, abundance; Figure 1) to remain broadly con-145 

sistent. 146 

 147 

2.1.  Framework boundaries and scope 148 

The timeline to collapse concept builds upon work in a number of different research areas, including behav-149 

ioural ecology, physiology and predictive ecology, and the recent suite of work on EWS (Baruah et al., 2019; 150 

Clements et al., 2017). However, whilst EWS are a feature of the framework, we do not propose to apply 151 

critical slowing down theory to all signals of stress in the timeline, nor to try predicting when shifts in behav-152 

iour, traits, or measures of population variability will occur. Rather, our focus is describing the succession in 153 

time of different responses and how together these might be used to infer approaching population collapse. We 154 

consider the timeline to collapse as a framework aiming to (i) to holistically consider multiple, often over-155 

looked, types of data as tools for predictive ecology, and (ii) discriminate populations tending toward extinc-156 

tion from those simply adapting in the face of change. In fact, analysing both behaviour and morphology offers 157 

the opportunity to discern between a population where behavioural plasticity is sufficient to lessen the effects 158 

of stressors (maintain fitness) from a population where behavioural plasticity alone is insufficient to maintain 159 

fitness, leading to changes in morphological traits and the subsequent timeline steps (Figure 1). It is the tem-160 

poral sequence of signals across all facets which together represent a comprehensive signature of the effects 161 

of increasing stressors intensity on a population, and thus whether collapse is approaching. 162 

 163 

2.2. Framework details 164 

The timeline to collapse concept assumes continuously increasing stressor intensity – be that biotic or abiotic 165 

– taking place over multiple generations (Figure 1A) such that a population is able to respond, rather than 166 

sudden step-shifts in a stressor which may eradicate a population in the absence of any indicators (Clements 167 

& Ozgul, 2018). When visualising the timeline, we identify the time points when the population’s average 168 
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values of a given behaviour or trait change significantly from the values observed under stable conditions (TBs 169 

and TMs points, Figure 1), and the time points when the plastic limits of change in the behaviour and morphol-170 

ogy are reached (TBe and TMe, Figure 1). Although such points may visually resemble “tipping points”, applying 171 

EWS theory to anticipate them is inappropriate, as there is currently no theory which suggests that behavioural 172 

or trait metrics (which are not expected to pass through a tipping point) should show the critical slowing down 173 

phenomenon required for EWS to be present (Dakos et al., 2018).  174 

 175 

Nevertheless, a stress induced increase in the variance of these metrics - among individuals and through time 176 

- may be expected, together with changes in the mean. When stressor intensity starts to increase, individual 177 

responses will vary based on, for example, personality and past experience for behaviours (Dingemanse et al., 178 

2010), or genetic pre-disposition for more or less plasticity in morphological traits (e.g. due to intrinsic inter-179 

individual variability, Tanner & Dowd 2019). Such differential personality-and-physiology-based stress re-180 

sponses would lead to an increase in the variability around mean changes in behaviours or morphologies (Fig-181 

ure 1). However, selection will over time homogenize these around the new (optimum) behaviour/trait values 182 

that allow individuals to survive, or around the physiological limits (i.e. low variance around the new mean of 183 

individuals, Figure 1). Although such patterns in the variance provide additional metrics to monitor (Patrick et 184 

al., 2021), they are less likely to contain information about the risk of population collapse; rather, we propose 185 

such information lays in the temporal sequence of the different signals. 186 

 187 

Whilst the initiation time points of behavioural, morphological, and abundance shifts (TBs, TMs and TAs, Figure 188 

1) are expected to be sequential, the time intervals over which such shifts occur (IB, IM and IA, Figure 1) may 189 

overlap. Indeed, changing a behaviour above a given threshold may require the use of energy reserves which 190 

triggers changes in morphological traits. For example, for a seabird population (Figure 1), increasing foraging 191 

distance may be the first response to decreasing food availability. Acquisition of additional resources derived 192 

from flying further distances to feed may be sufficient to compensate for this additional effort outside the 193 

breeding season. However, if the food is needed to feed chicks (Fayet et al. 2021), some of these resources 194 

will be allocated to the offspring and the individual will either i) fail to fully replenish their energy stores (e.g. 195 

start to lose weight) or ii) decrease feeding rate to offspring to ensure they have the energy needed to cope with 196 
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the extended foraging distance (Fayet et al., 2021). This will result in observing flight distance increasing 197 

together with declines in the body weight of adults (overlap among IB and IM, Figure 1), offspring, or both. 198 

However, in other scenarios we may observe a clear temporal distinction between signals time intervals (i.e. 199 

no overlap among IB and IM). For instance, in the presence of an invasive predator, a prey can go through an 200 

initial fast and discrete behavioural change (e.g., a shift in microhabitat use, Pierce 1988), followed by a me-201 

dium speed response (e.g., change in body size due to different conditions in the new microhabitat, (Leibold 202 

& Tessier, 1991)), without any overlap between these two signals. 203 

 204 

3. ECOLOGICAL INSIGHTS  205 

Whilst the temporal order of signals provides information on a population’s future, post hoc analysis of be-206 

havioural and morphological shifts offer a means to characterise the stress responses of populations. We sug-207 

gest that the change in the mean values of behaviours or morphological traits between pre-stress (stable) con-208 

ditions and the onset of the next signal of stress (e.g. from when behaviours start to change to when body traits 209 

start to change) represents an “intrinsic stressor buffering capacity”: a measure of the ability of a behaviour or 210 

trait’s plasticity to ameliorate stress pressure. Defining Bs and Ms as the mean values of a monitored behav-211 

ioural metric and morphological trait during stable conditions, and Bx and Mx their respective values at the 212 

onset of the next buffering signal/level (Figure 1, Point 1 and 2) we could extract quantifiable ranges of vari-213 

ation (ΔB for behaviour and ΔM for morphological trait, Figure 1).  214 

 215 

From this framework, ΔB and ΔM could be calculated for traits that can undergo continuous shifts and com-216 

pared among different species and populations. For instance, nematodes and rotifers show extreme plasticity 217 

in morphology (reductions of up to one-third of original body size (Rebecchi et al., 2020)) to cope with long 218 

periods of environmental pressure (e.g. exsiccation of habitat). The resulting high value of ΔM would reflect 219 

the large amount of pressure they can buffer by changing morphology before the eventual occurrence of abun-220 

dance signals in the population. In contrast, e.g. amphibian species with limited drought resistance would dis-221 

play much lower ΔM in comparison. Such plasticity proxies may be compared among different species to 222 

indicate which biological/ecological traits (group living vs solitary animals, bigger vs smaller dimensions, 223 

specialist vs generalist etc.) lead to species more resistant to stressors. Additionally, average ΔB and ΔM may 224 
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vary among populations of the same species, due to difference in biogeographic history and genetic structure 225 

(e.g. allelic heterozygosity (Hansson & Westerberg, 2002)), which may provide information on how such fac-226 

tors shape capacity to cope with stress. Such changes will likely occur in multiple behaviours or traits simul-227 

taneously in order to cope with increasingly stressful conditions, and thus measuring behaviours or traits in 228 

multiple dimensions (e.g. social interactions, distance foraging occurs over, time spent inside burrow, etc.) 229 

would allow plasticity in multi-dimensions to be quantified, and tools such as those employed in the analysis 230 

of functional diversity could be readily applied to these data (Mammola et al., 2021). 231 

 232 

4. KEY QUESTIONS  233 

The timeline to collapse provides a conceptual framework to synthesize multiple types of data to help infer the 234 

future dynamics of ecological systems. However, applying this to real-world populations requires identifying 235 

appropriate data to monitor (behaviours, traits, abundances), measuring baselines against which change can be 236 

quantified, and developing statistical tools to holistically consider these data simultaneously to provide robust 237 

detections of increasing stress and possible forecasting techniques. Below we consider some of the key ques-238 

tions required to turn the conceptual timeline framework into an appliable pipeline for monitoring and conser-239 

vation management. 240 

 241 

4.1. How to select and acquire the data that are more indicative of stress? 242 

Some behaviours and morphological signals may provide general indicators of increasing stressors’ intensity 243 

(e.g. increased dispersal for vagile species), but selecting signals which are relevant to the taxa of interest 244 

remains key (McClanahan et al., 2020). Expert knowledge can aid in this (Reside et al., 2019), identifying 245 

behaviours and traits that are most likely to change given the nature of the stressor or, when the identity of the 246 

stressors is unknown, can provide general indicators of an individual’s condition. Ideally, behaviours and mor-247 

phology measure that are easily collectable thought automated and non-invasive means are to be preferable. 248 

Many cutting-edge data collection tools can get frequent measures of such multivariate data needed to build 249 

accurate timeseries. For example, GPS tracking, biologging, acoustic monitoring, and photographic analysis 250 

are now able to extract data on behaviours and morphological traits, providing invaluable information even 251 
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from a subset of the population, (Desjonquères et al., 2020; Sequeira et al., 2021; Shimada et al., 2021; H. J. 252 

Williams et al., 2020, (Supplementary Material Table S1)). 253 

 254 

4.2.  How can we define baselines? 255 

A quantitative and/or qualitative definition of “normal” values for the identified behavioural, morphological, 256 

and abundance indicators is needed to pinpoint the moment in time when stress responses start (TBs, TMs, TAs, 257 

Figure 1). Defining such values in wild populations ideally requires long term monitoring data (Wauchope et 258 

al., 2021) on the multiple facets of a population under non-stressed conditions. Alternatively, a comparative 259 

approach between populations experiencing different levels of stressors intensity could provide baseline values 260 

such as along a stress gradient (Ingram et al., 2021) – a space-for-time substitution (Keith et al. 2018, Fayet et 261 

al. 2021). Nevertheless, populations in different conditions - that suit a space-for-time substitution - as well as 262 

long-term monitoring data are rare and could be case-specific. In such situations, can ecological theory help 263 

us to set more general baseline expectations? Possible approaches could lie within, for example, Dynamic 264 

Energy Budget models (Baas et al. 2018). Such models can be parameterized with standard life-cycle data – 265 

obtainable over short periods of time (e.g. body length, growth rate, maximum reproduction rate, etc.) - to 266 

derive quantitative parameters describing the studied organism’s energetics. Doing this with data from popu-267 

lations in stable conditions could represent a viable baseline distribution from which one can compare observed 268 

changes in energetics parameters (Lika et al., 2011). Likewise, mechanistic trait-driver models derived by 269 

Metabolic Scaling Theory can link the traits frequency distributions to individual performance and growth 270 

rates predictions. One could try to calculate the traits distribution characteristics of a population in non-stressed 271 

condition (e.g. constant positive growth rate) to build a baseline, whereby a variation in such traits distribution 272 

(e.g. individuals starting to lose biomass) could be used to predict individual performance and how this will 273 

scale up to influence demography of populations (Enquist et al., 2015).  274 

 275 

4.3. How can we handle the multivariate data to better forecast populations future? 276 

Regardless of how a baseline is defined, the big challenge ahead in the timeline application is understanding 277 

how to compare multivariate estimates to observed changes in behaviours, traits, and abundances and how to 278 

use these signals to improve population collapse forecasting. Using normalisation and summation of multiple 279 
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signals to improve predictive power has previously been done (e.g. combining morphology data with abun-280 

dance EWS (Clements et al., 2017; Drake & Griffen, 2010)), but it might not be scalable to the full timeline 281 

data pool given the long-time interval that can separate behavioural signals from abundance EWS. New ap-282 

proaches may lie within the more recent multivariate time series modelling (Wei, 2018) that could allow one 283 

to fit the timeline data (i.e. parallel time series of behaviour, traits, and abundance) while taking into account 284 

the inter-dependencies between them (e.g. how behaviour can influence morphology and vice versa). For in-285 

stance, Multivariate Autoregressive State Space models (Holmes et al., 2012) can use information on historical 286 

trajectories of multiple variables to forecast future values while accounting for multiple sources of uncertainty 287 

(Zhu et al., 2018). Alternatively, deep learning networks such as recurrent neural and temporal convolutional 288 

neural networks (Bury et al., 2021; Lai et al., 2018; Lara-Benítez et al., 2021) could provide an obvious but 289 

more powerful approach to forecast future trends or changes in such variables (Guo et al., 2020), though these 290 

tools will require large amounts of data to train the models, which are only feasibly collected through auto-291 

mated means. 292 

 293 

5. CAVEATS 294 

The timeline to collapse concept necessarily makes assumptions about how stressors will impact populations. 295 

The main assumption is that stressors will increase over time (Figure 1), allowing populations to respond 296 

gradually to increases in environmental pressure. However, as with EWS and PVA, sudden and/or catastrophic 297 

“pulse” disturbances (drought, storms, fires etc.) may lead to significant changes in the abundance or distribu-298 

tion of a population without any warning. Moreover, even in cases of the assumed “ramped” disturbance, the 299 

mutable nature of biological systems may create situations where the sequence of signals may be different (e.g. 300 

body traits shift occurs first, triggering then behavioural shift (Burant et al., 2021). Fully applying the frame-301 

work requires studying species that show plastic and quantifiable behaviours and morphological traits, where 302 

gathering data is easy at the individual level, and thus it may not be fully applicable to sessile organisms (e.g. 303 

Anthozoa), obligate parasite species, or plants and fungi. Nevertheless, we believe that in such cases a partial 304 

application of the timeline concept (e.g., monitoring morphological traits and abundance data) will improve 305 

the predictive horizon of eventual collapses compared to considering only abundance. Finally, although in this 306 

piece we decided to focus on more immediately observable traits shifts, we acknowledge that for animal taxa 307 
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that undergo seasonal activity cycles, as well as for non-animal species, changes in phenology can be consid-308 

ered as other potential signals to include in the timeline framework. Phenological shifts are well known to be 309 

induced by e.g. climate change (Menzel et al., 2020; Samplonius et al., 2018) but are often observed over long 310 

time periods (e.g. birds earlier arrival to breeding sites occurred over 20 years (Koleček et al., 2020).  311 

 312 

6. CONCLUSION and Future directions 313 

Considering how anthropogenic stressors impact populations via changes in individual-level features provides 314 

a key step forward in predicting population extinction. Doing so has allowed us to develop a conceptual frame-315 

work where the temporal aspect of stress signals can act as a corroborative tool to infer risk of population 316 

collapse. The next steps to assessing the potential of this framework is to obtain complete and accurate datasets 317 

covering the full suite of timeline components (see Box 3) for populations driven to collapse by increasing 318 

stress. A post hoc analysis of the multivariate dynamics of such collapses would guide in understanding the 319 

best approaches to use to forecast future ones. Experimental data from study models (e.g. micro-mesocosms 320 

populations (Altermatt et al., 2015; Beermann et al., 2018; Clements & Ozgul, 2016)) would be of invaluable 321 

help in this, whereby one could implement different disturbance scenarios (Jacquet & Altermatt, 2020) while 322 

accurately collecting the multidimensional data. Nevertheless, the literature groundings of the timeline idea 323 

already provide a conceptual model for the development of monitoring programs covering a broader spectrum 324 

of data than is typically considered by resource managers. Such a holistic view of how the behaviours, mor-325 

phological features, and dynamics of populations change as they become increasingly stressed offers hope of 326 

a step-shift in the accuracy of methods to predict population declines, helping in the urgent fight against bio-327 

diversity loss. 328 

 329 

Acknowledgements 330 

FC, DZC and CC are supported by NERC grant NE/T006579/1. All the Experimental Ecology and Conserva-331 

tion Lab (Duncan, Pol, Marc, Ellie) is gratefully acknowledged for the help in writing this piece.    332 



 

14 
 

References 333 

 334 

Altermatt, F., Fronhofer, E. A., Garnier, A., Giometto, A., Hammes, F., Klecka, J., Legrand, 335 

D., Mächler, E., Massie, T. M., Pennekamp, F., Plebani, M., Pontarp, M., Schtickzelle, 336 

N., Thuillier, V., & Petchey, O. L. (2015). Big answers from small worlds: A user’s 337 

guide for protist microcosms as a model system in ecology and evolution. Methods 338 

in Ecology and Evolution, 6(2), 218–231. https://doi.org/10.1111/2041-210X.12312 339 

Ames, E. M., Gade, M. R., Nieman, C. L., Wright, J. R., Tonra, C. M., Marroquin, C. M., 340 

Tutterow, A. M., & Gray, S. M. (2020). Striving for population-level conservation: In-341 

tegrating physiology across the biological hierarchy. Conservation Physiology, 8(1), 342 

coaa019. https://doi.org/10.1093/conphys/coaa019 343 

Baruah, G., Clements, C. F., Guillaume, F., & Ozgul, A. (2019). When Do Shifts in Trait 344 

Dynamics Precede Population Declines? The American Naturalist, 193(5), 633–644. 345 

https://doi.org/10.1086/702849 346 

Beermann, A. J., Elbrecht, V., Karnatz, S., Ma, L., Matthaei, C. D., Piggott, J. J., & Leese, 347 

F. (2018). Multiple-stressor effects on stream macroinvertebrate communities: A 348 

mesocosm experiment manipulating salinity, fine sediment and flow velocity. Science 349 

of The Total Environment, 610–611, 961–971. https://doi.org/10.1016/j.sci-350 

totenv.2017.08.084 351 

Berger-Tal, O., Polak, T., Oron, A., Lubin, Y., Kotler, B. P., & Saltz, D. (2011). Integrating 352 

animal behavior and conservation biology: A conceptual framework. Behavioral Ecol-353 

ogy, 22(2), 236–239. https://doi.org/10.1093/beheco/arq224 354 

Bjorndal, K. A., Bolten, A. B., Chaloupka, M., Saba, V. S., Bellini, C., Marcovaldi, M. A. G., 355 

Santos, A. J. B., Bortolon, L. F. W., Meylan, A. B., Meylan, P. A., Gray, J., Hardy, R., 356 

Brost, B., Bresette, M., Gorham, J. C., Connett, S., Crouchley, B. V. S., Dawson, M., 357 

Hayes, D., … Kenyon, L. (2017). Ecological regime shift drives declining growth rates 358 



 

15 
 

of sea turtles throughout the West Atlantic. Global Change Biology, 23(11), 4556–359 

4568. https://doi.org/10.1111/gcb.13712 360 

Boggs, C. L., & Ross, C. L. (1993). The Effect of Adult Food Limitation on Life History Traits 361 

in Speyeria Mormonia (Lepidoptera: Nymphalidae). Ecology, 74(2), 433–441. 362 

https://doi.org/10.2307/1939305 363 

Burant, J. B., Park, C., Betini, G. S., & Norris, D. R. (2021). Early warning indicators of 364 

population collapse in a seasonal environment. Journal of Animal Ecology, 90(6), 365 

1538–1549. https://doi.org/10.1111/1365-2656.13474 366 

Burthe, S. J., Henrys, P. A., Mackay, E. B., Spears, B. M., Campbell, R., Carvalho, L., Dud-367 

ley, B., Gunn, I. D. M., Johns, D. G., Maberly, S. C., May, L., Newell, M. A., Wanless, 368 

S., Winfield, I. J., Thackeray, S. J., & Daunt, F. (2016). Do early warning indicators 369 

consistently predict nonlinear change in long-term ecological data? Journal of Applied 370 

Ecology, 53(3), 666–676. https://doi.org/10.1111/1365-2664.12519 371 

Bury, T. M., Sujith, R. I., Pavithran, I., Scheffer, M., Lenton, T. M., Anand, M., & Bauch, C. 372 

T. (2021). Deep learning for early warning signals of tipping points. Proceedings of 373 

the National Academy of Sciences, 118(39), e2106140118. 374 

https://doi.org/10.1073/pnas.2106140118 375 

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. 376 

(2015). Accelerated modern human–induced species losses: Entering the sixth mass 377 

extinction. Science Advances, 1(5), e1400253. https://doi.org/10.1126/sci-378 

adv.1400253 379 

Clements, C. F., Blanchard, J. L., Nash, K. L., Hindell, M. A., & Ozgul, A. (2017). Body size 380 

shifts and early warning signals precede the historic collapse of whale stocks. Nature 381 

Ecology & Evolution, 1(7), 0188. https://doi.org/10.1038/s41559-017-0188 382 



 

16 
 

Clements, C. F., Drake, J. M., Griffiths, J. I., & Ozgul, A. (2015). Factors Influencing the 383 

Detectability of Early Warning Signals of Population Collapse. The American Natu-384 

ralist, 186(1), 50–58. https://doi.org/10.1086/681573 385 

Clements, C. F., & Ozgul, A. (2016a). Including trait-based early warning signals helps pre-386 

dict population collapse. Nature Communications, 7(1), 10984. 387 

https://doi.org/10.1038/ncomms10984 388 

Clements, C. F., & Ozgul, A. (2016b). Including trait-based early warning signals helps pre-389 

dict population collapse. Nature Communications, 7(1), 10984. 390 

https://doi.org/10.1038/ncomms10984 391 

Clements, C. F., & Ozgul, A. (2018). Indicators of transitions in biological systems. Ecology 392 

Letters, 21(6), 905–919. https://doi.org/10.1111/ele.12948 393 

Coulson, T., Mace, G. M., Hudson, E., & Possingham, H. (2001). The use and abuse of 394 

population viability analysis. Trends in Ecology & Evolution, 16(5), 219–221. 395 

https://doi.org/10.1016/S0169-5347(01)02137-1 396 

Couvillon, M. J., Schürch, R., & Ratnieks, F. L. W. (2014). Waggle Dance Distances as 397 

Integrative Indicators of Seasonal Foraging Challenges. PLOS ONE, 9(4), e93495. 398 

https://doi.org/10.1371/journal.pone.0093495 399 

Dakos, V., Carpenter, S. R., Brock, W. A., Ellison, A. M., Guttal, V., Ives, A. R., Kéfi, S., 400 

Livina, V., Seekell, D. A., Nes, E. H. van, & Scheffer, M. (2012). Methods for Detecting 401 

Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Eco-402 

logical Data. PLOS ONE, 7(7), e41010. https://doi.org/10.1371/jour-403 

nal.pone.0041010 404 

Dakos, V., Matthews, B., Hendry, A., Levine, J., Loeuille, N., Norberg, J., Nosil, P., Scheffer, 405 

M., & Meester, L. D. (2018). Ecosystem tipping points in an evolving world [Preprint]. 406 

Ecology. https://doi.org/10.1101/447227 407 



 

17 
 

Dereniowska, M., & Meinard, Y. (2021). The unknownness of biodiversity: Its value and eth-408 

ical significance for conservation action. Biological Conservation, 260, 109199. 409 

https://doi.org/10.1016/j.biocon.2021.109199 410 

Desjonquères, C., Gifford, T., & Linke, S. (2020). Passive acoustic monitoring as a potential 411 

tool to survey animal and ecosystem processes in freshwater environments. Fresh-412 

water Biology, 65(1), 7–19. https://doi.org/10.1111/fwb.13356 413 

Dingemanse, N. J., Kazem, A. J. N., Réale, D., & Wright, J. (2010). Behavioural reaction 414 

norms: Animal personality meets individual plasticity. Trends in Ecology & Evolution, 415 

25(2), 81–89. https://doi.org/10.1016/j.tree.2009.07.013 416 

Drake, J. M., & Griffen, B. D. (2010). Early warning signals of extinction in deteriorating 417 

environments. Nature, 467(7314), 456–459. https://doi.org/10.1038/nature09389 418 

Enquist, B. J., Norberg, J., Bonser, S. P., Violle, C., Webb, C. T., Henderson, A., Sloat, L. 419 

L., & Savage, V. M. (2015). Chapter Nine - Scaling from Traits to Ecosystems: De-420 

veloping a General Trait Driver Theory via Integrating Trait-Based and Metabolic 421 

Scaling Theories. In S. Pawar, G. Woodward, & A. I. Dell (Eds.), Advances in Eco-422 

logical Research (Vol. 52, pp. 249–318). Academic Press. 423 

https://doi.org/10.1016/bs.aecr.2015.02.001 424 

Eshun-Wilson, F., Wolf, R., Andersen, T., Hessen, D. O., & Sperfeld, E. (2020). UV radiation 425 

affects antipredatory defense traits in Daphnia pulex. Ecology and Evolution, 10(24), 426 

14082–14097. https://doi.org/10.1002/ece3.6999 427 

Fagan, W. F., & Holmes, E. E. (2005). Quantifying the extinction vortex. Ecology Letters, 428 

0(0), 051109031307004. https://doi.org/10.1111/j.1461-0248.2005.00845.x 429 

Fayet, A. L., Clucas, G. V., Anker‐Nilssen, T., Syposz, M., & Hansen, E. S. (2021). Local 430 

prey shortages drive foraging costs and breeding success in a declining seabird, the 431 

Atlantic puffin. Journal of Animal Ecology, 1365-2656.13442. 432 

https://doi.org/10.1111/1365-2656.13442 433 



 

18 
 

Fleming, A. H., Clark, C. T., Calambokidis, J., & Barlow, J. (2016). Humpback whale diets 434 

respond to variance in ocean climate and ecosystem conditions in the California Cur-435 

rent. Global Change Biology, 22(3), 1214–1224. https://doi.org/10.1111/gcb.13171 436 

Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T., & Gaitán-Espitia, J. D. (2019). Beyond 437 

buying time: The role of plasticity in phenotypic adaptation to rapid environmental 438 

change. Philosophical Transactions of the Royal Society B: Biological Sciences, 439 

374(1768), 20180174. https://doi.org/10.1098/rstb.2018.0174 440 

Fulton, G. R. (2017). The Bramble Cay melomys: The first mammalian extinction due to 441 

human-induced climate change. Pacific Conservation Biology, 23(1), 1. 442 

https://doi.org/10.1071/PCv23n1_ED 443 

Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining 444 

body size: A third universal response to warming? Trends in Ecology & Evolution, 445 

26(6), 285–291. https://doi.org/10.1016/j.tree.2011.03.005 446 

Gardner, T. A., Barlow, J., Araujo, I. S., Ávila-Pires, T. C., Bonaldo, A. B., Costa, J. E., 447 

Esposito, M. C., Ferreira, L. V., Hawes, J., Hernandez, M. I. M., Hoogmoed, M. S., 448 

Leite, R. N., Lo-Man-Hung, N. F., Malcolm, J. R., Martins, M. B., Mestre, L. A. M., 449 

Miranda-Santos, R., Overal, W. L., Parry, L., … Peres, C. A. (2008). The cost-effec-450 

tiveness of biodiversity surveys in tropical forests. Ecology Letters, 11(2), 139–150. 451 

https://doi.org/10.1111/j.1461-0248.2007.01133.x 452 

Gauzens, B., Rosenbaum, B., Kalinkat, G., Boy, T., Jochum, M., Kortsch, S., O’Gorman, E. 453 

J., & Brose, U. (2021). Adaptive foraging behaviour increases vulnerability to climate 454 

change. BioRxiv, 2021.05.05.442768. https://doi.org/10.1101/2021.05.05.442768 455 

Gavrilchuk, K., Lesage, V., Ramp, C., Sears, R., Bérubé, M., Bearhop, S., & Beauplet, G. 456 

(2014). Trophic niche partitioning among sympatric baleen whale species following 457 

the collapse of groundfish stocks in the Northwest Atlantic. Marine Ecology Progress 458 

Series, 497, 285–301. https://doi.org/10.3354/meps10578 459 



 

19 
 

Greggor, A. L., Berger-Tal, O., Blumstein, D. T., Angeloni, L., Bessa-Gomes, C., Blackwell, 460 

B. F., St Clair, C. C., Crooks, K., de Silva, S., Fernández-Juricic, E., Goldenberg, S. 461 

Z., Mesnick, S. L., Owen, M., Price, C. J., Saltz, D., Schell, C. J., Suarez, A. V., 462 

Swaisgood, R. R., Winchell, C. S., & Sutherland, W. J. (2016). Research Priorities 463 

from Animal Behaviour for Maximising Conservation Progress. Trends in Ecology & 464 

Evolution, 31(12), 953–964. https://doi.org/10.1016/j.tree.2016.09.001 465 

Guo, Q., Jin, S., Li, M., Yang, Q., Xu, K., Ju, Y., Zhang, J., Xuan, J., Liu, J., Su, Y., Xu, Q., 466 

& Liu, Y. (2020). Application of deep learning in ecological resource research: Theo-467 

ries, methods, and challenges. Science China Earth Sciences, 63(10), 1457–1474. 468 

https://doi.org/10.1007/s11430-019-9584-9 469 

Hamilton, C. D., Lydersen, C., Ims, R. A., & Kovacs, K. M. (2015). Predictions replaced by 470 

facts: A keystone species’ behavioural responses to declining arctic sea-ice. Biology 471 

Letters, 11(11), 20150803. https://doi.org/10.1098/rsbl.2015.0803 472 

Hansson, B., & Westerberg, L. (2002). On the correlation between heterozygosity and fit-473 

ness in natural populations. Molecular Ecology, 11(12), 2467–2474. 474 

https://doi.org/10.1046/j.1365-294X.2002.01644.x 475 

Hendry, A. P., Farrugia, T. J., & Kinnison, M. T. (2008). Human influences on rates of phe-476 

notypic change in wild animal populations. Molecular Ecology, 17(1), 20–29. 477 

https://doi.org/10.1111/j.1365-294X.2007.03428.x 478 

Hertel, A. G., Leclerc, M., Warren, D., Pelletier, F., Zedrosser, A., & Mueller, T. (2019). Don’t 479 

poke the bear: Using tracking data to quantify behavioural syndromes in elusive wild-480 

life. Animal Behaviour, 147, 91–104. https://doi.org/10.1016/j.anbehav.2018.11.008 481 

Holmes, E., E., Ward, E., J., & Wills, K. (2012). MARSS: Multivariate Autoregressive State-482 

space Models for Analyzing Time-series Data. The R Journal, 4(1), 11. 483 

https://doi.org/10.32614/RJ-2012-002 484 



 

20 
 

Holt, R. E., & Jørgensen, C. (2015). Climate change in fish: Effects of respiratory constraints 485 

on optimal life history and behaviour. Biology Letters, 11(2), 20141032. 486 

https://doi.org/10.1098/rsbl.2014.1032 487 

Ingram, D. J., Ferreira, G. B., Jones, K. E., & Mace, G. M. (2021). Targeting Conservation 488 

Actions at Species Threat Response Thresholds. Trends in Ecology & Evolution, 489 

36(3), 216–226. https://doi.org/10.1016/j.tree.2020.11.004 490 

Jacquet, C., & Altermatt, F. (2020). The ghost of disturbance past: Long-term effects of pulse 491 

disturbances on community biomass and composition. Proceedings of the Royal So-492 

ciety B: Biological Sciences, 287(1930), 20200678. 493 

https://doi.org/10.1098/rspb.2020.0678 494 

Keith, S. A., Baird, A. H., Hobbs, J.-P. A., Woolsey, E. S., Hoey, A. S., Fadli, N., & Sanders, 495 

N. J. (2018). Synchronous behavioural shifts in reef fishes linked to mass coral 496 

bleaching. Nature Climate Change, 8(11), 986–991. https://doi.org/10.1038/s41558-497 

018-0314-7 498 

Koleček, J., Adamík, P., & Reif, J. (2020). Shifts in migration phenology under climate 499 

change: Temperature vs. abundance effects in birds. Climatic Change, 159(2), 177–500 

194. https://doi.org/10.1007/s10584-020-02668-8 501 

Kramer, A. M., & Drake, J. M. (2010). Experimental demonstration of population extinction 502 

due to a predator-driven Allee effect. Journal of Animal Ecology, 79(3), 633–639. 503 

https://doi.org/10.1111/j.1365-2656.2009.01657.x 504 

Kunc, H. P., & Schmidt, R. (2021). Species sensitivities to a global pollutant: A meta-analysis 505 

on acoustic signals in response to anthropogenic noise. Global Change Biology, 506 

27(3), 675–688. https://doi.org/10.1111/gcb.15428 507 

Lai, G., Chang, W.-C., Yang, Y., & Liu, H. (2018). Modeling Long- and Short-Term Temporal 508 

Patterns with Deep Neural Networks. The 41st International ACM SIGIR Conference 509 



 

21 
 

on Research & Development in Information Retrieval, 95–104. 510 

https://doi.org/10.1145/3209978.3210006 511 

Lara-Benítez, P., Carranza-García, M., & Riquelme, J. C. (2021). An Experimental Review 512 

on Deep Learning Architectures for Time Series Forecasting. International Journal of 513 

Neural Systems, 31(03), 2130001. https://doi.org/10.1142/S0129065721300011 514 

Lawton, J. H. (1991). From Physiology to Population Dynamics and Communities. Func-515 

tional Ecology, 5(2), 155–161. https://doi.org/10.2307/2389253 516 

Leary, R. F., & Allendorf, F. W. (1989). FluctuatinAgsymmetarsyanIndicator ofStressI:mpli-517 

catiofnosr ConservatiBoniology. 4(7), 4. 518 

Leibold, M., & Tessier, A. J. (1991). Contrasting patterns of body size for Daphnia species 519 

that segregate by habitat. Oecologia, 86(3), 342–348. 520 

https://doi.org/10.1007/BF00317599 521 

Lenda, M., Witek, M., Skórka, P., Moroń, D., & Woyciechowski, M. (2013). Invasive alien 522 

plants affect grassland ant communities, colony size and foraging behaviour. Biolo-523 

gical Invasions, 15(11), 2403–2414. https://doi.org/10.1007/s10530-013-0461-8 524 

Lika, K., Kearney, M. R., Freitas, V., van der Veer, H. W., van der Meer, J., Wijsman, J. W. 525 

M., Pecquerie, L., & Kooijman, S. A. L. M. (2011). The “covariation method” for esti-526 

mating the parameters of the standard Dynamic Energy Budget model I: Philosophy 527 

and approach. Journal of Sea Research, 66(4), 270–277. 528 

https://doi.org/10.1016/j.seares.2011.07.010 529 

Lomolino, M. V., & Perault, D. R. (2007). Body Size Variation of Mammals in a Fragmented, 530 

Temperate Rainforest. Conservation Biology, 21(4), 1059–1069. 531 

https://doi.org/10.1111/j.1523-1739.2007.00727.x 532 

Mallela, A., & Hastings, A. (2021). The Role of Stochasticity in Noise-Induced Tipping Point 533 

Cascades: A Master Equation Approach. Bulletin of Mathematical Biology, 83(5), 53. 534 

https://doi.org/10.1007/s11538-021-00889-1 535 



 

22 
 

Mammola, S., Carmona, C. P., Guillerme, T., & Cardoso, P. (2021). Concepts and applica-536 

tions in functional diversity. Functional Ecology, 35(9), 1869–1885. 537 

https://doi.org/10.1111/1365-2435.13882 538 

Maron, M., Mitchell, M. G. E., Runting, R. K., Rhodes, J. R., Mace, G. M., Keith, D. A., & 539 

Watson, J. E. M. (2017). Towards a Threat Assessment Framework for Ecosystem 540 

Services. Trends in Ecology & Evolution, 32(4), 240–248. 541 

https://doi.org/10.1016/j.tree.2016.12.011 542 

Mazza, V., Dammhahn, M., Lösche, E., & Eccard, J. A. (2020). Small mammals in the big 543 

city: Behavioural adjustments of non-commensal rodents to urban environments. 544 

Global Change Biology, 26(11), 6326–6337. https://doi.org/10.1111/gcb.15304 545 

McClanahan, T. R., </b><b>, Darling, E. S., Maina, J. M., Muthiga, N. A., D’ agata, S., 546 

Leblond, J., Arthur, R., Jupiter, S. D., Wilson, S. K., Mangubhai, S., Ussi, A. M., Guil-547 

laume, M. M. M., Humphries, A. T., Patankar, V., Shedrawi, G., Pagu, J., & 548 

Grimsditch19</b>, G. (2020). Highly variable taxa-specific coral bleaching responses 549 

to thermal stresses. Marine Ecology Progress Series, 648, 135–151. 550 

https://doi.org/10.3354/meps13402 551 

McMahan, M. D., & Grabowski, J. H. (2019). Nonconsumptive effects of a range-expanding 552 

predator on juvenile lobster (Homarus americanus) population dynamics. Ecosphere, 553 

10(10), e02867. https://doi.org/10.1002/ecs2.2867 554 

Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R., & Estrella, N. (2020). 555 

Climate change fingerprints in recent European plant phenology. Global Change Bi-556 

ology, 26(4), 2599–2612. https://doi.org/10.1111/gcb.15000 557 

Obbard, M. E., Stapleton, S., Szor, G., Middel, K. R., Jutras, C., & Dyck, M. (2018). Re-558 

assessing abundance of Southern Hudson Bay polar bears by aerial survey: Effects 559 

of climate change at the southern edge of the range. Arctic Science, 4(4), 634–655. 560 

https://doi.org/10.1139/as-2018-0004 561 



 

23 
 

Oram, E., & Spitze, K. (2013). Depth selection by Daphnia pulex in response to Chaoborus 562 

kairomone. Freshwater Biology, 58(2), 409–415. https://doi.org/10.1111/fwb.12069 563 

Ortega, Z., Mencía, A., & Pérez-Mellado, V. (2017). Rapid acquisition of antipredatory re-564 

sponses to new predators by an insular lizard. Behavioral Ecology and Sociobiology, 565 

71(1), 1. https://doi.org/10.1007/s00265-016-2246-4 566 

Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A., & Weimerskirch, H. (2021). 567 

Albatrosses respond adaptively to climate variability by changing variance in a forag-568 

ing trait. Global Change Biology, 27(19), 4564–4574. 569 

https://doi.org/10.1111/gcb.15735 570 

Patterson, A. C., Strang, A. G., & Abbott, K. C. (2021). When and Where We Can Expect to 571 

See Early Warning Signals in Multispecies Systems Approaching Tipping Points: In-572 

sights from Theory. The American Naturalist, E000–E000. 573 

https://doi.org/10.1086/714275 574 

Pellegrini, A. Y., Romeu, B., Ingram, S. N., & Daura-Jorge, F. G. (2021). Boat disturbance 575 

affects the acoustic behaviour of dolphins engaged in a rare foraging cooperation 576 

with fishers. Animal Conservation, 24(4), 613–625. https://doi.org/10.1111/acv.12667 577 

Pierce, C. L. (1988). Predator avoidance, microhabitat shift, and risk-sensitive foraging in 578 

larval dragonflies. Oecologia, 77(1), 81–90. https://doi.org/10.1007/BF00380929 579 

Pigeon, G., Ezard, T. H. G., Festa-Bianchet, M., Coltman, D. W., & Pelletier, F. (2017). Fluc-580 

tuating effects of genetic and plastic changes in body mass on population dynamics 581 

in a large herbivore. Ecology, 98(9), 2456–2467. https://doi.org/10.1002/ecy.1940 582 

Rebecchi, L., Boschetti, C., & Nelson, D. R. (2020). Extreme-tolerance mechanisms in mei-583 

ofaunal organisms: A case study with tardigrades, rotifers and nematodes. Hydrobi-584 

ologia, 847(12), 2779–2799. https://doi.org/10.1007/s10750-019-04144-6 585 

Reside, A. E., Critchell, K., Crayn, D. M., Goosem, M., Goosem, S., Hoskin, C. J., Sydes, 586 

T., Vanderduys, E. P., & Pressey, R. L. (2019). Beyond the model: Expert knowledge 587 



 

24 
 

improves predictions of species’ fates under climate change. Ecological Applications, 588 

29(1), e01824. https://doi.org/10.1002/eap.1824 589 

Rode, K. D., Amstrup, S. C., & Regehr, E. V. (2010). Reduced body size and cub recruitment 590 

in polar bears associated with sea ice decline. Ecological Applications, 20(3), 768–591 

782. https://doi.org/10.1890/08-1036.1 592 

Samplonius, J. M., Bartošová, L., Burgess, M. D., Bushuev, A. V., Eeva, T., Ivankina, E. V., 593 

Kerimov, A. B., Krams, I., Laaksonen, T., Mägi, M., Mänd, R., Potti, J., Török, J., 594 

Trnka, M., Visser, M. E., Zang, H., & Both, C. (2018). Phenological sensitivity to cli-595 

mate change is higher in resident than in migrant bird populations among European 596 

cavity breeders. Global Change Biology, 24(8), 3780–3790. 597 

https://doi.org/10.1111/gcb.14160 598 

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, 599 

H., van Nes, E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for 600 

critical transitions. Nature, 461(7260), 53–59. https://doi.org/10.1038/nature08227 601 

Sequeira, A. M. M., O’Toole, M., Keates, T. R., McDonnell, L. H., Braun, C. D., Hoenner, X., 602 

Jaine, F. R. A., Jonsen, I. D., Newman, P., Pye, J., Bograd, S. J., Hays, G. C., Hazen, 603 

E. L., Holland, M., Tsontos, V. M., Blight, C., Cagnacci, F., Davidson, S. C., Dettki, 604 

H., … Weise, M. (2021). A standardisation framework for bio-logging data to advance 605 

ecological research and conservation. Methods in Ecology and Evolution, 12(6), 996–606 

1007. https://doi.org/10.1111/2041-210X.13593 607 

Shaffer, M. L. (1991). Population Viability Analysis. In Challenges in the Conservation of 608 

Biological Resources. Routledge. 609 

Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to 610 

climate change. Nature Climate Change, 1(8), 401–406. https://doi.org/10.1038/ncli-611 

mate1259 612 



 

25 
 

Shimada, T., Thums, M., Hamann, M., Limpus, C. J., Hays, G. C., FitzSimmons, N. N., Wil-613 

dermann, N. E., Duarte, C. M., & Meekan, M. G. (2021). Optimising sample sizes for 614 

animal distribution analysis using tracking data. Methods in Ecology and Evolution, 615 

12(2), 288–297. https://doi.org/10.1111/2041-210X.13506 616 

Singh, R., Prathibha, P., & Jain, M. (2020). Effect of temperature on life-history traits and 617 

mating calls of a field cricket, Acanthogryllus asiaticus. Journal of Thermal Biology, 618 

93, 102740. https://doi.org/10.1016/j.jtherbio.2020.102740 619 

Spanbauer, T. L., Allen, C. R., Angeler, D. G., Eason, T., Fritz, S. C., Garmestani, A. S., 620 

Nash, K. L., Stone, J. R., Stow, C. A., & Sundstrom, S. M. (2016). Body size distribu-621 

tions signal a regime shift in a lake ecosystem. Proceedings of the Royal Society B: 622 

Biological Sciences, 283(1833), 20160249. https://doi.org/10.1098/rspb.2016.0249 623 

Stirling, I., & Derocher, A. E. (2012). Effects of climate warming on polar bears: A review of 624 

the evidence. Global Change Biology, 18(9), 2694–2706. 625 

https://doi.org/10.1111/j.1365-2486.2012.02753.x 626 

Taborsky, B., English, S., Fawcett, T. W., Kuijper, B., Leimar, O., McNamara, J. M., Ruus-627 

kanen, S., & Sandi, C. (2021). Towards an Evolutionary Theory of Stress Responses. 628 

Trends in Ecology & Evolution, 36(1), 39–48. 629 

https://doi.org/10.1016/j.tree.2020.09.003 630 

Tanner, R. L., & Dowd, W. W. (2019). Inter-individual physiological variation in responses to 631 

environmental variation and environmental change: Integrating across traits and time. 632 

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiol-633 

ogy, 238, 110577. https://doi.org/10.1016/j.cbpa.2019.110577 634 

Thompson, W. (2013). Sampling Rare or Elusive Species: Concepts, Designs, and Tech-635 

niques for Estimating Population Parameters. Island Press. 636 

Thoral, E., Queiros, Q., Roussel, D., Dutto, G., Gasset, E., McKenzie, D. J., Romestaing, 637 

C., Fromentin, J.-M., Saraux, C., & Teulier, L. (2021). Changes in foraging mode 638 



 

26 
 

caused by a decline in prey size have major bioenergetic consequences for a small 639 

pelagic fish. Journal of Animal Ecology, 90(10), 2289–2301. 640 

https://doi.org/10.1111/1365-2656.13535 641 

Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future 642 

threats to biodiversity and pathways to their prevention. Nature, 546(7656), 73–81. 643 

https://doi.org/10.1038/nature22900 644 

Tini, M., Bardiani, M., Chiari, S., Campanaro, A., Maurizi, E., Toni, I., Mason, F., Audisio, P. 645 

A., & Carpaneto, G. M. (2018). Use of space and dispersal ability of a flagship saprox-646 

ylic insect: A telemetric study of the stag beetle (Lucanus cervus) in a relict lowland 647 

forest. Insect Conservation and Diversity, 11(1), 116–129. 648 

https://doi.org/10.1111/icad.12260 649 

Trites, A. W., & Donnelly, C. P. (2003). The decline of Steller sea lions Eumetopias jubatus 650 

in Alaska: A review of the nutritional stress hypothesis. Mammal Review, 33(1), 3–651 

28. https://doi.org/10.1046/j.1365-2907.2003.00009.x 652 

Tuomainen, U., & Candolin, U. (2011). Behavioural responses to human-induced environ-653 

mental change. Biological Reviews, 86(3), 640–657. https://doi.org/10.1111/j.1469-654 

185X.2010.00164.x 655 

van de Leemput, I. A., Dakos, V., Scheffer, M., & van Nes, E. H. (2018). Slow Recovery 656 

from Local Disturbances as an Indicator for Loss of Ecosystem Resilience. Ecosys-657 

tems, 21(1), 141–152. https://doi.org/10.1007/s10021-017-0154-8 658 

Vilhunen, S., Hirvonen, H., & Laakkonen, M. V.-M. (2005). Less is more: Social learning of 659 

predator recognition requires a low demonstrator to observer ratio in Arctic charr 660 

(Salvelinus alpinus). Behavioral Ecology and Sociobiology, 57(3), 275–282. 661 

https://doi.org/10.1007/s00265-004-0846-x 662 



 

27 
 

Vucetich, J. A., & Waite, T. A. (1999). Erosion of Heterozygosity in Fluctuating Populations. 663 

Conservation Biology, 13(4), 860–868. https://doi.org/10.1046/j.1523-664 

1739.1999.98268.x 665 

Ward, R. J., Griffiths, R. A., Wilkinson, J. W., & Cornish, N. (2017). Optimising monitoring 666 

efforts for secretive snakes: A comparison of occupancy and N-mixture models for 667 

assessment of population status. Scientific Reports, 7(1), 18074. 668 

https://doi.org/10.1038/s41598-017-18343-5 669 

Wauchope, H. S., Amano, T., Geldmann, J., Johnston, A., Simmons, B. I., Sutherland, W. 670 

J., & Jones, J. P. G. (2021). Evaluating Impact Using Time-Series Data. Trends in 671 

Ecology & Evolution, 36(3), 196–205. https://doi.org/10.1016/j.tree.2020.11.001 672 

Wei, W. W. S. (2018). Multivariate Time Series Analysis and Applications. John Wiley & 673 

Sons. 674 

Williams, H. J., Taylor, L. A., Benhamou, S., Bijleveld, A. I., Clay, T. A., Grissac, S. de, 675 

Demšar, U., English, H. M., Franconi, N., Gómez-Laich, A., Griffiths, R. C., Kay, W. 676 

P., Morales, J. M., Potts, J. R., Rogerson, K. F., Rutz, C., Spelt, A., Trevail, A. M., 677 

Wilson, R. P., & Börger, L. (2020). Optimizing the use of biologgers for movement 678 

ecology research. Journal of Animal Ecology, 89(1), 186–206. 679 

https://doi.org/10.1111/1365-2656.13094 680 

Williams, N. F., McRae, L., Freeman, R., Capdevila, P., & Clements, C. F. (2021). Scaling 681 

the extinction vortex: Body size as a predictor of population dynamics close to extinc-682 

tion events. Ecology and Evolution, 11(11), 7069–7079. 683 

https://doi.org/10.1002/ece3.7555 684 

Zhang, H., Hollander, J., & Hansson, L.-A. (2017). Bi-directional plasticity: Rotifer prey adjust 685 

spine length to different predator regimes. Scientific Reports, 7(1), 10254. 686 

https://doi.org/10.1038/s41598-017-08772-7 687 



 

28 
 

Zhu, M., Yamakawa, T., & Sakai, T. (2018). Combined use of trawl fishery and research 688 

vessel survey data in a multivariate autoregressive state-space (MARSS) model to 689 

improve the accuracy of abundance index estimates. Fisheries Science, 84(3), 437–690 

451. https://doi.org/10.1007/s12562-018-1190-9 691 

  692 



 

29 
 

Figure captions: 693 

 694 

Figure 1. Theoretical example of a timeline to collapse. We posit a population of seabirds inhabiting an area 695 

where prey resources (e.g. fish stocks) begin a continuous decline (A). The curves in panels B and C represent 696 

respectively the average values of a behavioural and morphological trait calculated from a pool of individuals 697 

in the population through time, and the coloured shaded areas show the variance around the mean. The red 698 

curve in panel D shows the abundance of the population. First a shift is observed in the behaviour (time point 699 

TBs), where the average foraging distance increases (together with the variance) compared to the average meas-700 

ured during stable conditions Bs (B). The foraging distance increase until it reaches a physiological limit (time 701 

point TBe), defining the time interval IB where a continuous change is observable. After, or during IB, we ob-702 

serve a decrease in average body size (with increase in the variance) compared to that measured during stable 703 

conditions Ms (C), at time TMs. The body size will change until its physiological limit (TMe), defining the time 704 

interval where such continuous change is observable (IM). Later, the abundance trend of population will show 705 

alterations in the pre-decline indicators such as Early Warning Signals, that will start to be observable at time 706 

point TAs, and will last until TAe, defining the time interval IA. Subsequently, the continuous decreases to ex-707 

tinction (D) will begin at time point TEs, and will end with the extinction of the population at time TEe, lasting 708 

the time interval IE. The first occurrence of the signals projected on the lower Time axes shows the sequence 709 

in the category of observable signals of stress starting at the individuals’ level (B, C) and propagating to the 710 

population level (D), defining the Timeline to Collapse. The small black dotted lines project the starting point 711 

of the shifts in morphological traits and abundance dynamics on the behaviour (point 1) and morphological 712 

trait (point 2) curves. Projected on the vertical axis, those points identify Bx and Mx: the values of behavioural 713 

and morphological metrics at the time of the onset of the next signal along the timeline. The interval of change 714 

(brackets) from the average values defines the intrinsic stress buffering capacities of that behaviour (ΔB) and 715 

morphological trait (ΔM). 716 
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Figure 1. 721 
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BOX 1. Overview of behavioural signals  724 

Behavioural changes are amongst the most rapid changes that individuals can perform to cope with sub-optimal 725 

conditions (Greggor et al., 2016). Broadly, behaviours comprise movement and habitat use, foraging activities, 726 

reproductive and social behaviours (Berger-Tal et al., 2011). All these categories of behaviour can be modified 727 

by stressors; many studies show variation in e.g. foraging activity and dispersal of individuals in response to 728 

declining resource availability (Couvillon et al., 2014; Fayet et al., 2021), climatic change (Gauzens et al., 729 

2021; Hamilton et al., 2015; Holt & Jørgensen, 2015), and invasive species (Lenda et al., 2013). Indeed, 730 

changes in the movement patterns can be amongst the first observable signals of increasing stress, as individ-731 

uals seek to minimise the impacts of, say, declining food availability by moving to new foraging areas or by 732 

reducing activity levels (depressing metabolism, Trites & Donnelly 2003). For instance, on Svalbard (Nor-733 

way), a population of ringed seals suffered a major reduction in sea-ice level resulting in fewer areas where 734 

the seals could feed intensively. Subsequent monitoring of movement patterns showed that seals swam greater 735 

distances and dived for longer periods (Box 1 Figure A, bars indicate standard error; data adapted from Ham-736 

ilton et al. 2015). Spatial movement constitutes perhaps the most easily observed and measurable signal of 737 

increasing stress for vagile species, as data can often be captured remotely e.g. via GPS tracking or remote 738 

camera monitoring, techniques which bridge taxa (vertebrate and invertebrates, Hertel et al. 2019, Tini et al. 739 

2018) and realms (marine and terrestrial , Shimada et al. 2021).  740 

 741 

 742 

 743 

In addition to movement patterns, individuals may react to stressors by altering rates of intra - and - interspe-744 

cific interactions, including effects observed in social and communicative behaviours (Kunc & Schmidt, 745 
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2021). Resource scarcity may lead individuals to allocate energy to essential activities (e.g. foraging), de-746 

creasing actions not linked to survival, such as the engagement in territorial defence. Such a response was 747 

seen in multiple species of central Indo-Pacific corallivorous butterfly fishes (Chetodon spp., Keith et al. 748 

2018) in the aftermath of a bleaching event in 2016 which led to a reduction in corals. Observations sug-749 

gested that the probability of both heterospecific and conspecific aggressive encounters decreased signifi-750 

cantly (Box 1 Figure B, Bars are 95% confidence intervals; data adapted from Keith et al. 2018) as nutri-751 

tional deficits increased the relative energetic cost of resource defence behaviour (Keith et al. 2018). Simi-752 

larly, acoustically active insects and amphibians may change the acoustic properties of the mating signals in 753 

response to temperature change (Singh et al. 2020). Moreover, anthropogenic noise can induce reductions in 754 

whistles and echolocation click rates of social cetaceans (Pellegrini et al., 2021). 755 

The direction of change in behavioural metrics (foraging distance, prevalence of an interaction type, duration 756 

in time of given actions etc.) will vary depending on a species’ environmental tolerance, trophic level, and 757 

stressor type. Whilst a lack of resources may trigger increases in movement, the arrival of an invasive predator 758 

may induce a prey species to reduce movement (to reduce encounter rates) or to shift microhabitat use toward 759 

a more shelter-oriented strategy (McMahan & Grabowski 2019). Environmental stressors may also increase 760 

the variance in behavioural metrics, e.g. poor environmental conditions enhanced the variability of foraging 761 

trip duration in young albatrosses (Patrick et al., 2021). Previous experience may also play a critical role in 762 

determining an individual’s response to stressors. For instance, compared to naïve individuals, fishes with 763 

previous experience of predation events showed stronger antipredator behaviours (e.g. decreasing swimming 764 

activity) when they were represented with the chemical cues of the predator (Vilhunen et al., 2005). Likewise, 765 

the evolutionary history of a population can shape an individuals’ capacity to react to environmental pressure; 766 

lizard species performed antipredatory behaviours in response to a new predatory snake if the lizards evolved 767 

with other snake species which share similar predatory features (shape, chemical cues etc.) with the introduced 768 

predator (Ortega et al., 2017). Consequently, a population’s ecological and biogeographical history must be 769 

considered when identifying behavioural signals of stress.  770 
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 BOX 2. Overview of morphological signals  772 

To mitigate the effects of increasing stressors intensity individuals can respond to maximize survival and re-773 

productive output through changes in morphological and fitness-related life history traits (Fox et al., 2019). 774 

Such changes are driven by hormone responses, metabolic adjustments and resource re-allocation, and can 775 

include reductions in body mass, decreases in growth, shifts in reproductive schedules, and antipredatory mor-776 

phological trait expression. Here we focus on morphological shifts as they are more easily observable and 777 

measurable compared to fitness related life history traits. For example, morphological features can be measured 778 

remotely through photographic analysis, while measuring reproductive outputs or patterns of sexual maturity 779 

requires strict monitoring with particular time periods (e.g. breeding seasons). 780 

Environmental stressors substantially affect morphological trait distributions, both prior to or concurrent with 781 

shifts in the demography and dynamics of a population (Baruah et al., 2019; Pigeon et al., 2017). The reduction 782 

in body size due to sub-optimal food consumption is a general response to resources scarcity (Trites & Don-783 

nelly 2003). In numerous taxa, body size reduction is also directly and indirectly induced by climatic change 784 

and habitat fragmentation (J. L. Gardner et al., 2011; Lomolino & Perault, 2007; Sheridan & Bickford, 2011; 785 

Thoral et al., 2021). For instance, a population of polar bears from the Western Hudson Bay (Canada) was 786 

monitored between 1979-2004 during a period where sea-ice cover showed an overall trend toward earlier sea-787 

ice breakup induced by climate change (Stirling & Derocher, 2012). The study found significant declines in 788 

mean adult female polar bear mass during this period (Box 2 Figure A, bars indicate standard error, dashed 789 

line indicates fit of linear regression [r=-0.549, p<0.01]; data adapted from Stirling & Derocher, 2012) which 790 

strongly correlated with the progressively earlier dates of sea ice breakup. The pattern was likely driven by 791 

changes in their hunting behaviour as bears prematurely abandoned seals hunting zones and were forced to 792 

fast for progressively longer periods.  793 
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 795 

 796 

Body size is a key trait that directly affects thermoregulation and rates of energy intake and utilization (J. L. 797 

Gardner et al., 2011), and has recently been suggested as a possible measure of population stability (Clements 798 

& Ozgul, 2016b). In fact, changes in body size of diatoms algae preceded a regime shift in a lake ecosystem 799 

(Spanbauer et al., 2016), and experimental populations exhibit the same pattern, showing that – when resources 800 

decrease – declines in average body size precede declines in population size (Baruah et al., 2019). In situations 801 

where longitudinal measures of body size/mass are available, change in individual growth rates could be used 802 

as a potentially more accurate stress signal, since growth rate will respond more rapidly compared to measures 803 

of mean body size. Indeed, Bjorndal et al. (2017) reported a decrease in the growth rate of individuals of three 804 

sea turtle species in response to climatic stressors and anthropogenic degradation of their foraging areas.  805 

Reductions in size is the most likely outcome of stress, although some stressors may lead to other patterns of 806 

change. For instance, environmental pressures can lead to a decrease in defensive morphological traits: e.g. 807 

UV light exposure in pregnant individuals of a freshwater cladoceran induced the reduction of antipredator 808 

spines in their offspring, and subsequently increased predation risk for new-borns (Eshun-Wilson et al., 2020). 809 

Conversely, the novel pressure that an invasive predator puts on a native population can trigger increases in 810 

predator induced-defences (Zhang et al. 2017). Chemical pollutants can affect body symmetry, with pesticides 811 

used in hazelnut orchards leading to increased fluctuating asymmetry in morphological traits linked to intra-812 

specific interactions (i.e. femoral pores, Box 2 Figure B, bars indicate standard error, data adapted from Sim-813 

bula et al. 2021) in lacertids. Indeed, increasing fluctuating asymmetry has been suggested as an indicator of 814 
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loss of genetic variation prior to extinction (Leary & Allendorf, 1989). This suite of responses, including (but 815 

not limited to) declining body mass/size, expression of chemical induced antipredatory features, and asym-816 

metry in meristic features will generally occur over (relative to the organism’s lifespan) longer time periods 817 

than rapid behavioural changes, but may still occur within the life span of an individual (i.e. ≤1 generation), 818 

or across multiple sequential generations (e.g. Clements et al. 2017).  819 

 820 
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BOX 3. Timeline fragments 822 

In the timeline framework we highlighted the individual’s and population’s facets (behaviour, morphology and 823 

abundance) where stress induced change is more likely to occur and easier to measure in a monitoring per-824 

spective. This of course is a simplification of the whole spectrum (Box 3 Figure, horizontal axis) of stress 825 

responses – and thus potential signals – that can happen at the individuals and at the population level. In fact, 826 

when a high proportion of a population is similarly stressed, individual-level effects (behavioural and morpho-827 

logical changes) can propagate to alter the structure and dynamics of a population through changes in rates of 828 

birth, death, immigration, and emigration; all life history traits that can be altered before any abundance based 829 

Early Warning Signal (EWS) become detectable. Examples of phenotypic changes that shape an individual’s 830 

life history traits (e.g. fecundity (Boggs & Ross, 1993)) with subsequent effects on fitness and population 831 

dynamics are numerous in the literature, and we can consider them as partial timeline to collapse where just 832 

some of expected signals where analysed or where the stressors are not increased enough yet. For instance, a 833 

study on the Gulf of St. Lawrence’s (Québec, Canada) humpback whale population found a shift in diet (i.e. a 834 

behavioural change, Box 3 Figure A) caused by a decrease in resources (Gavrilchuk et al., 2014); years later, 835 

another study on the same population showed a subsequent decline in calving rates (e.g. life history adjustment, 836 

potentially leading to abundance EWS Box 3 Figure A). The author postulated that this signal could indicate 837 

that the population trends can be affected in the near future by the environmental change (Kershaw et al. 2021), 838 

i.e. possibly entering the EWS phase of the timeline.  839 

Similarly, climatic change has impacted many polar bear populations particularly due to reduction in sea-ice 840 

availability. A study in the southern Beaufort Sea of Alaska population found first a body condition reduction 841 

(i.e. a morphological signal) and subsequently a decrease of reproductive rates and cubs survival (Rode et al., 842 

2010) (Box 3 Figure B). The authors state that the low duration of the hunting ground (sea-ice platforms) 843 

induced a change in the feeding activity of the bears that triggered the loss of condition. Such change in be-844 

haviour, although postulated to happen, was not monitored for this population, otherwise this could have rep-845 

resented an almost complete timeline to collapse example. In fact, the abundance of the same population was 846 

monitored in a more recent paper that found a slight decrease compared to previous years estimates(Obbard et 847 

al., 2018). The decrease could indicate that the population is showing higher variance in the abundance 848 
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estimates, and could be prone to show EWS of collapse, if recurrent monitoring would be carried on and if sea 849 

ice keeps reducing.  850 

Another example of partial timeline where EWS were detectable was given in the paper by Clements et. al 851 

(Clements et al., 2017) where the historical collapse of, among others species, sperm whale populations was 852 

found to be preceded by a change in body size and subsequent EWS (Box 3 Figure C). Finally, modern litera-853 

ture gives us also unfortunate examples of collapse until extinction due to anthropogenic stressors that were 854 

recorded in recent times; the population of the Bramble Cay melomys was declared extinct in 2016, after a 855 

continuous decline in the abundance estimates was observed in the scattered monitoring activities (Fulton, 856 

2017). The oceanic inundation rate increase due to climate change is hypothesized to have driven a strong 857 

habitat and resource reduction responsible for the Bramble Cay melomys decline. Likely, with monitoring 858 

programs, some change in the movement pattern and in the condition of individuals would have been observed 859 

before the ultimate collapse of this small rodents population. Despite such richness of partial examples, a 860 

complete timeline to collapse is still to be observed; not surprisingly given the complexity of collecting and 861 

analyse such multivariate data on a stressed population. Nevertheless, the current technological advancement 862 

now allow us to collect such different kind of data in an automated way that suites the drawing of the timeline 863 

to collapse.  864 
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