# Eco-evolutionary contributions to community trait change in floating aquatic plants

Mark Davidson Jewell<sup>1</sup> and Graham  $Bell^1$ 

 $^{1}$ Affiliation not available

July 14, 2022

Mark Davidson Jewell<sup>1\*</sup> and Graham  $\mathrm{Bell}^{1,2}$ 

<sup>1</sup>Department of Biology, McGill University; 1205 ave Docteur Penfield, Montreal, Quebec H3A 1B1, Canada.

<sup>2</sup>Redpath Museum, McGill University; 859 Sherbrooke St West, Montreal, Quebec H3A 0C4, Canada.

\*Corresponding author: mark.jewell@mail.mcgill.ca

# ABSTRACT:

An entire community of organisms may become modified when its environment changes. These modifications can happen through physiological process (plasticity), evolutionary processes (adaptation) or shifts in species composition (sorting). The outcome of these three sources of change constitutes the community's phenotypic response, but how they combine to drive community trait dynamics is not currently well understood. We have conducted a community selection experiment in which communities of short-lived floating aquatic plants were grown in a range of stressful conditions, and measured changes in their body size. Determinants of phenotypic change were assessed with a full community reciprocal transplant which led to estimates of the contributions of plasticity, adaptation, and sorting. Species were modified during the experiment by both plasticity and adaptation, but in either case the magnitude and direction of change differed among species. Sorting and adaptation were of equal magnitude, but tended to act in opposite directions: in conditions where species with large fronds prevailed, each species evolved smaller fronds, and vice versa. We conclude that community trait dynamics cannot be understood simply by extrapolating the adaptive response of any single species to the whole community.

Keywords: Community trait dynamics, eco-evolutionary dynamics, eco-evolutionary partition, reciprocal transplant, trait change, species sorting, adaptation, phenotypic plasticity, Lemnaceae, duckweed

# **INTRODUCTION:**

A community of organisms that experiences prolonged exposure to a new environment may become altered in response to the new conditions. The community response is characterized by a shift in mean phenotype for a trait common to all species. Such a shift in community mean phenotype may be due to three distinct kinds of process: the physiological response of individuals to a change in the conditions of growth (plasticity), the demographic response of the community through shifts in the relative abundance of species (sorting), and the genetic evolutionary response of each species (adaptation) (Fig. 1). Plasticity, sorting and adaptation, as well as their interactions, may all contribute to any phenotypic change in a multi-species community, and acting collectively they drive community trait dynamics (Guimarães et al. 2017, van Moorsel et al. 2019, Hall et al. 2020).

|                    |                                                                                        | Community trait change                                                                                                                                         |                                                                                                                                                             |
|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level of change    | Interspecific trait<br>change                                                          | Intraspecific tr                                                                                                                                               | ait change                                                                                                                                                  |
| Type of<br>process | Ecological                                                                             | Physiological                                                                                                                                                  | Evolutionary                                                                                                                                                |
| Process            | Sorting                                                                                | Plasticity                                                                                                                                                     | Adaptation                                                                                                                                                  |
|                    | Change in community<br>composition through<br>shifts in species<br>relative abundances | Environmentally induced<br>phenotypic change of individuals<br>due to physiological modification<br>during development or over the<br>course of their lifetime | Phenotypic change within<br>species attributable to<br>shifts in genotype<br>frequencies, where genetic<br>variation may be either<br>pre-existing or novel |

# Fig. 1. Constituent processes of community trait change.

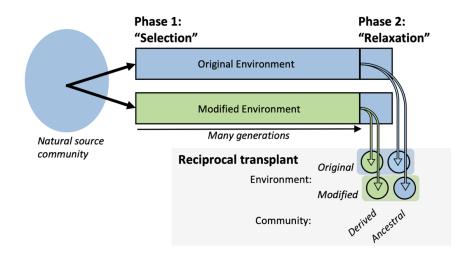
Historically, ecological and evolutionary processes have been studied in isolation (Slobodkin 1961), but it is increasingly clear that they have the potential to occur on overlapping timescales and can feed back on each other (Thompson 1998, Hendry and Kinnison 1999, Kinnison and Hendry 2001, Hairston et al. 2005, Saccheri and Hanski 2006). For example, ecological change including changes in community composition will often shape the selection environment which drives rapid evolution (Hendry and Kinnison 1999, Reznick and Ghalambor 2001, Carroll et al. 2007) and rapid evolutionary change can feed back to influence ecological parameters like population dynamics (Turcotte et al. 2011) and community structure (Johnson et al. 2009, Hart et al. 2019). The evolution of increased phenotypic plasticity may further alter demographics by promoting persistence in stressful environments (Ghalambor et al. 2007) and either inhibit or promote further evolutionary change by modifying phenotypic variation and its link to genetic variation (Ghalambor et al. 2007, Schlichting and Wund 2014). These findings have stimulated research in the growing field of ecoevolutionary dynamics (Fussmann et al. 2007, Urban et al. 2008, Pelletier et al. 2009, Post and Palkovacs 2009, Schoener 2011), which has as a central goal to understand the relative contributions and interactions of ecological, physiological, and evolutionary processes to community change (Schoener 2011).

Growing interest in the importance of evolutionary change over ecologically relevant timescales has led to the development of partitioning metrics to separate evolutionary from non-evolutionary processes in affecting different properties of populations, communities and ecosystems (Hairston et al. 2005, Ellner et al. 2011, Merilä and Hendry 2014, van Benthem et al. 2017, De Meester et al. 2019). Focusing on community mean phenotype, sometimes referred to as functional identity, is of particular interest given its inclusion of both genetic and non-genetic determinants, its response to environmental change (Garnier et al. 2004, Guittar et al. 2016, Bjorkman et al. 2018), and its direct link to determining ecosystem processes (Grime 1998, Garnier et al. 2004, Mokany et al. 2008).

Estimating the contributions of plasticity, sorting and adaptation to community change is not a straightforward task (van Benthem et al. 2017). Community trait change can be easily partitioned into inter- and intra-specific components, but the intra-specific component may combine both non-genetic and genetic change (Fig. 1). Separating plasticity from adaptation either requires detailed genetic information about the populations, or trait data from large-scale transplant experiments that measure lineage trait expression across environments. A variety of analytical procedures have been used to partition overall community phenotypic change into components that represent these processes (Collins and Gardner 2009, Govaert et al. 2016, van Benthem et al. 2017, Govaert 2018). Collins & Gardner (2009) adapted the Price equation (Price 1970, 1972) to partition community phenotypic change into that between species, between lineages and within lineages. First designed to measure evolutionary change within a population from one generation to the next, the Price equation is readily extended to measure change within multi-species communities over longer time scales and has been used to describe changes in toxin resistance within microbial communities, and carbon uptake by marine phytoplankton in high-CO<sub>2</sub> environments (Collins and Gardner 2009). However, this method requires detailed data on the dynamics of different lineages within species, which is often difficult to obtain if lineages are indistinguishable from one another. Furthermore, Govaert et al. (2016) pointed out that the Price equation approach cannot determine the cause of phenotypic change within lineages, lumping together both non-genetic change due to phenotypic plasticity and genetic change due the introduction of novel genetic variation via mutation, immigration, or horizontal gene transfer.

The most rigorous method to distinguish between phenotypic plasticity and evolutionary change is with the use of a classical reciprocal transplant experiment, where populations from two environments are cultured in both their 'home' and 'away' environments (Miller and Fowler 1993, Kawecki and Ebert 2004). Fitness and/or phenotype are then measured on the second or third generation of growth in the transplanted environment, minimizing maternal effects and allowing plastic physiological change to be fully expressed, but before shifts in genotype frequencies become relevant. This reaction norm approach has been used to identify local adaptation (Kawecki and Ebert 2004, Hargreaves et al. 2020) and to partition observed differences in traits between populations into contributions from plasticity and evolutionary processes (Govaert et al. 2016, Stoks et al. 2016). Although reciprocal transplants are usually done with a single species, the concept can be extended to a whole community (Govaert et al. 2016). Despite being proposed more than 5 years ago, a multi-generational community reciprocal transplant has to our knowledge yet to be carried out. Here we describe a community selection experiment where whole communities are exposed to modified environments and whose effects are assessed using a full community reciprocal transplant assay.

## Floating aquatic plant communities


We assembled experimental communities of four species of floating aquatic plants: the angiosperms *Lemna minor* (here designated Lm), *Spirodela polyrhiza* (Sp) and *Wolffia columbiana* (Wc), and the liverwort *Ricciocarpus natans* (Rn). These are small, morphologically simplified plants that generally consist of no more than a flattened leaf-like frond that may bear one or more submerged roots. The plants reproduce vegetatively in most conditions by releasing a daughter frond every few days from a meristem on the lower surface of the parental frond in the case of the three angiosperms, and by fragmentation in the case of the liverwort. Because they are widespread and abundant, are easily maintained and manipulated in the laboratory or outdoors, and possess highly reduced morphology and simplified physiology, they are being increasingly used as a tractable model system in ecology and evolution (Laird and Barks 2018, Hart et al. 2019, Vu et al. 2019). They are particularly well suited for a community selection experiment since their small size allows for large populations and high replication, and their rapid reproduction permits more than a dozen generations within a single season.

We use community mean frond area as our measure of phenotype since it is a simple and easily measurable trait common to all four species that has ecological relevance, and one that should respond to environmental conditions via physiological, ecological and evolutionary processes. The frond is essentially a photosynthetic sheet whose area may fluctuate to balance light capture and photosynthesis (growth) with the production of daughter fronds (reproduction) (Vasseur et al. 1995). Average frond area varies widely among the four species (Rn has fronds roughly twice as big as Sp, 5x bigger than Lm, and 66x bigger than Wc), and therefore shifts in species composition in a community will greatly change mean frond area as well as the total number of individuals in the community.

Optimal leaf size in plants depends on the interaction of temperature, light, water and nutrient availability and influences fitness through its effect on total light capture and photosynthesis, thermoregulation and transpiration (Parkhurst and Loucks 1972, Anten et al. 1995, Hirose et al. 1997). In land plants, low irradiance tends to lead to the production of larger leaves. This is the case for shade versus sun leaves of the same plant (Rozendaal et al. 2006), mean leaf size for plants within species along environmental gradients (Petritan et al. 2009, Kichenin et al. 2013), and among species adapted to different environments (Hamann 1979, Ackerly and Reich 1999). In species consisting of only a single leaf or frond, this standard physiological response should be compounded since it will also capture shifts in biomass allocation away from roots and into shoots when light is limiting, (Brouwer 1962; Poorter & Nagel 2000). This is the case for Lm whose root:frond area ratio shifts in response to both light and nutrient availability (Cedergreen and Madsen 2002). In addition to these ecological and plastic responses, there is evidence that frond size in Lm has a genetic basis (Vasseur and Aarssen 1992, Vasseur et al. 1995), and that populations in the field sustain a surprisingly large amount of genetic variation (Vasseur et al. 1993, Cole and Voskuil 1996). Furthermore, frond (or more generally leaf) area has been identified as both a response and effect trait due to its correlations with both environmental variables and rates of photosynthesis and growth (Lavorel and Garnier 2002). That variation in mean frond area can be influenced by several processes, respond to multiple environmental variables, and affect community and ecosystem properties, justifies its use as a focal trait in our community selection experiment.

## Design of a community selection experiment

A community selection experiment begins with a source community of several species, collected from its natural environment. The community should ideally be well-adapted to its environment and in a state of evolutionary and ecological equilibrium. The experiment is conducted in two phases. Phase 1 is the selection phase, in which communities are cultured in modified environmental conditions. Phase 2 is the relaxation phase, in which the original conditions are restored to all communities (Fig. 2). In Phase 1, a sample of the ancestral source community is transferred to a modified environment and propagated for several or many generations, leading to a derived community. At the same time, a replicate sample is maintained in the original environment, so that it retains the attributes of the ancestral community. The average value of a character may become modified in the derived community relative to the ancestral community. The processes responsible for this modification are evaluated by a reciprocal transplant assay at the end of the selection phase. To perform this assay, samples from both the ancestral and derived communities are transplanted into both the original and modified environments. After a lag of two or three generations, to allow any carry-over or maternal effects to decay, the phenotypes of all species from the community are scored. The results of the assay can then be used to partition the contributions of sorting, plasticity and adaptation, and their interactions, to overall phenotypic change.



#### Fig. 2. The design of a basic community selection experiment.

The results of the reciprocal transplant assay can be compared with data from the experiment itself. First, measurements at the beginning of Phase 1 correspond with the ancestral community in the original environment and express the initial state of any given character. Secondly, the equivalent measurements at the end of Phase 1 correspond to the derived community in the modified environment, and express the combined effects of plasticity, sorting and adaptation. Thirdly, any change that has occurred in the modified environment by the end of the second generation in Phase 1 can be confidently attributed to plasticity, because there has not yet been enough time for sorting or adaptation to cause substantial change. Hence, phenotypes at this point are expected to be similar to those expressed by the ancestral community in the modified environment in the

reciprocal transplant assay. Finally, Phase 2 corresponds to the derived community cultured in the original environment, where any persistent change must be attributed to sorting or adaptation. This approach is less rigorous, because it compares the state of the same communities at different times, but it will highlight any unexpected, and potentially questionable, outcome of the reciprocal transplant assay.

In this report, we describe the outcome of a community selection experiment using four species of floating aquatic plants, and measure how mean frond area responds to changes in light and nutrient availability. The objective of our experiment was to monitor phenotypic change in a whole community over several generations and then evaluate the contributions of plasticity, sorting and adaptation.

# MATERIALS AND METHODS:

### Source community

The source plant community was isolated from a eutrophic pond adjacent to fallowed agricultural fields on McGill University's Macdonald campus, Quebec, Canada (45° 42' N, 73° 94' W). The pond sustains a diverse community of floating macrophytes consisting of three species of duckweed (Lm, Sp and Wc) and one liverwort (Rn). In June of 2018, we took large samples consisting of hundreds of thousands of individuals, taken from 10 microsites around the pond to ensure that our samples were representative of the pond's overall intraspecific genetic diversity. Samples were then combined, thoroughly mixed, and then sorted into the constituent species which would be used to inoculate the experimental communities.

## Experimental design

Our community selection experiment consisted of propagating samples isolated from the source community in outdoor mesocosms under a range of environmental conditions. Whereas the simplified description of a general community selection experiment outlined above involves propagating the ancestral community in both original and modified environmental conditions, here we use eight distinct modified conditions in addition to the original environment, essentially running eight separate community selection experiments, allowing us to generalise our results.

The experiment was conducted at the LEAP research facility at McGill's Gault Nature Reserve in Quebec, Canada (45° 32' N, 73° 08' W) (Fugère et al. 2020). 18 180L mesocosms were filled with water piped from Lac Hertel, a pristine mesotrophic lake on the reserve, 1km upstream of the experiment. The water was sieved to remove fish and tadpoles but contained intact communities of zooplankton and phytoplankton. Mesocosms were then seeded with identical mixtures of the four species of macrophytes isolated from the source community and left to settle for one week. The four species were added in equal abundances by wet mass, 35g per species per mesocosm (which translates to roughly 23,000 individuals for Lm, 5,400 for Sp, 87,500 for Wc, and 4,000 for Rn in each mesocosm). A factorial gradient of light and nutrients was then applied to the mesocosms with three levels of each factor. This gives two replicate mesocosms for each of nine unique sets of environmental conditions. The mesocosms were arranged in a split-plot design with nutrient level and replicate randomly positioned within each light level. Light (% shading) and nutrients (dissolved Nitrogen and Phosphorus, DN and DP) were measured at the site of the source community at the time of sampling and the experimental treatment levels were determined so that the intermediate treatment (medium light, medium nutrients) mimicked these conditions. We refer to this treatment level as the "original" environment and the other eight as "modified" environments. The gradient in light availability was established with the use of varying layers of 50% shade cloth, quadrupling between levels (Low= 3%, Medium = 12%, High = 50%, in reference to an unshaded site). The nutrient gradient was established by the addition of inorganic nitrates and phosphates (KNO<sub>3</sub> and H<sub>2</sub>KPO<sub>4</sub>), maintaining a constant ratio of DN and DP. The natural water from Lac Hertel served as the low nutrient level (DN=200  $\mu$ gL<sup>-1</sup>, DP=10  $\mu$ gL<sup>-1</sup>), nutrients were quadrupled for the medium level (DN=800  $\mu$ gL<sup>-1</sup>, DP=40  $\mu$ gL<sup>-1</sup>), and quadrupled again for the high level (DN=3200  $\mu$ gL<sup>-1</sup>, DP=160  $\mu$ gL<sup>-1</sup>). DN and DP were measured in all mesocosms every two weeks and topped off to maintain the treatment nutrient levels throughout the experiment. Nutrient samples were analysed for DN with a continuous flow analyser (OI Analytical Flow Solution 3100 (C)) using an alkaline persulfate digestion method, coupled with a cadmium reactor, following a standard protocol (Patton and J.R. 2003) and for DP using a standard protocol (Wetzel and Likens 2000). All samples were analysed at the GRIL- Universite du Quebec a Montreal (UQAM) analytical laboratory.

The experiment was conducted in two phases: Phase 1 which applied the nine treatment combinations of light and nutrients to the mesocosms over 12 weeks ("Selection phase", Fig. 3a), and Phase 2 where all mesocosms were reverted to the original (intermediate) conditions for an additional two weeks ("Relaxation", Fig. 3c). Communities were randomly sampled every two weeks to measure frond area and estimate the relative abundance of each species. Communities were first mixed to eliminate spatial aggregation, then sampled by taking three blind scoops using a small net (diameter = 3cm) which yielded hundreds of individuals. From this sample, individuals were sorted by species and exhaustively counted to obtain species relative abundances. Phenotypes were then measured for ten individuals of each species. In the case that samples included fewer than ten individuals for a rare species, we continued to blindly sample, and sort out the species until we obtained sufficient material. The ten were selected again by blindly scooping into each species-specific sample, this time using a bacterial loop which isolates a single individual at a time. These ten individuals of each species were then photographed and analyzed in imageJ to obtain frond area. To minimize variation due to frond age, only mature individuals were included, using only those that already had a daughter frond budding from them. From estimates of species' mean frond area and relative abundances we calculated community mean frond area for each mesocosm as  $\sum_{i=1}^{s} (FA_i \times p_i)$ , where  $FA_i$  is mean frond area for species i and  $p_i$  is the proportion of species i in the community.

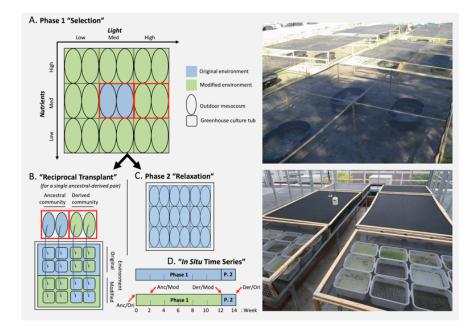



Fig. 3. Experimental design. A) 18 mesocosms with identical initial species compositions were subjected to a crossed gradient of light and nutrients. Two replicate mesocosms were kept in each of eight unique modified environments as well as the original environment (medium light-medium nutrients) which was designed to mimic the environmental conditions of the natural source community from which the plants were collected. After 12 weeks of growth (Phase 1), phenotypic change was assessed using both a reciprocal transplant trial and an in situ time series. B) At the end of Phase 1 samples were taken from all mesocosms to inoculate a reciprocal transplant trial in a research greenhouse. Communities from the original environment are referred to as ancestral and communities from modified environments are referred to as derived. Only one ancestral-derived pair is shown here. C) Phase 2 consisted of returning all mesocosms to the original environmental conditions for an additional two weeks. D) Using both Phase 1 and Phase 2 measurements, we can obtain an in situ time series with an identical structure as the reciprocal transplant data to use as an independent

#### Reciprocal transplant trial

At the end of Phase 1, we used a reciprocal transplant trial to assess the consequences of 12 weeks of growth in modified environments on community mean phenotype. At this point we refer to communities grown in Phase 1 modified environments as "derived", and communities grown in the Phase 1 original environment as "ancestral". By assaying all communities, both ancestral and derived, in both original and modified environments, we were able to quantify the contributions of plasticity, sorting and adaptation to overall community change.

Random samples (5% of the mesocosm surface) were taken from each mesocosm at the end of Phase 1 and used to inoculate the reciprocal transplant, located in a research greenhouse in McGill University's Phytotron. For each of the eight derived communities, a pair-wise reciprocal transplant assay was conducted with the ancestral community, assaying both communities in both modified and original environments. Each of the eight derived-ancestral pairs resulted in 16 growth assays – two replicate mesocosms per community, each assayed in two environments, replicated twice (Fig. 3b).

These assay environments were assembled in the greenhouse in 10L tubs filled with natural water and plankton communities from Lac Hertel, the same as in Phase 1. Nutrient and shading treatments were applied in the same way as for Phase 1. The mesocosm samples were used to inoculate the assay tubs at half of the density as that in the mesocosms at the end of Phase 1 to allow for rapid population growth. After two weeks (roughly one to two generations), we measured frond area on 10 randomly sampled individuals of each species. Total number of fronds of all species in all assays were counted at the beginning and end of the reciprocal transplant to obtain the average number of generations.

#### In situ time series

Phase 2 of the experiment consisted of reverting all mesocosms to the original environmental conditions for an additional two weeks. At week 12, after samples had been taken from the mesocosms to be used in the reciprocal transplant trial, the mesocosms were all reverted to medium light and nutrient levels (Fig. 3c). Light levels were obtained by adding or removing shade cloth. Since during Phase 1, dissolved nutrient levels of all mesocosms consistently dropped below the medium treatment level by the end of each two-week period, Phase 2 levels could be obtained by modifying the final bi-weekly nutrient addition.

The objective of Phase 2 was to obtain a second set of measurements *in situ* to compare with the reciprocal transplant. As for the reciprocal transplant, phenotypes were obtained for both the ancestral and derived communities in both original and modified environments. Measurements of the ancestral community in the original environment were obtained from the week 1 readings at the beginning of Phase 1; measurements of the ancestral community in the modified environments were obtained from the week 11 readings at the end of Phase 1; measurements of the ancestral community in the modified environments were obtained from the week 11 readings at the end of Phase 1; measurements of the ancestral community in the modified environments were obtained from week 3 readings, two weeks (roughly one to two generations) after treatments were first applied; and measurements of the derived communities in the original environment were obtained at the end of Phase 2, two weeks (roughly one to two generations) after all mesocosms were reverted to the original environmental conditions. We refer to this heterogeneous set of measurements as the "*in situ*time series" (Fig. 3d) which serves as a check on the more rigorous reciprocal transplant assay and a separate source of evidence.

## Statistical Analysis

At the end of Phase 1, we used a simple 1-way Anova to evaluate if community mean frond area had significantly diverged among the 9 environments. Environment was the fixed factor, and given that there were only two mesocosms per level of environment, mesocosm represents the error variance. To help visualise shifts in species relative abundances over Phase 1, we calculated competition coefficients for each species in each environment using abundance at the final Phase 1 time point. These were calculated based on the classical method for selection coefficients (Bell 2008, p.62) when measuring competition between genotypes

or species, extended to full communities. The competition coefficient of species 1,  $c_1$ , is given by

$$c_{1} = \frac{r_{1} - r_{2}}{r_{2}} ln(2) = \frac{1}{g} ln \left( \frac{\frac{f_{1 \ final}}{f_{2 \ final}}}{\frac{f_{1 \ initial}}{f_{2 \ initial}}} \right)$$

where r is the growth rate in doublings per day of either the focal species (1) or the total community (2), g is the number of generations of the total community,  $f_1$  is the relative frequency of the focal species, and  $f_2 = 1 - f_1$  is the relative frequency of all other species bar the focal species.

Although we aimed to replicate the treatment environmental conditions in the reciprocal transplant, given that it took place in smaller volume tubs in a greenhouse as opposed to outdoor mesocosms, other aspects of the environment may have differed that could have affected plant growth. We therefore calculated standardized deviations in mean frond area to compare Phase 2 phenotypes with those from the reciprocal transplant (derived communities in original environment) for all communities. For each species, the deviation in mean frond area from the overall mean was calculated for each treatment combination and standardized by dividing it by the overall mean. These standardized deviations are independent of size and allow the species to be combined in the same analysis. They were calculated separately for the Phase 2 and the reciprocal transplant communities and then compared using linear regression, calculating the coefficient of correlation.

### Eco-Evo Anova

The outcome of the community selection experiment was evaluated with a reciprocal transplant consisting of assaying the two community types (ancestral and derived) in each of two environments (original and modified) at the end of which phenotypes were scored on a random sample of individuals from each assay. The phenotype Y of any individual is assumed to be governed by the additive effects of i<sup>th</sup>Environment E, the j<sup>th</sup> Community C, and the k<sup>th</sup> Species S, plus their interactions, plus error.

$$Y_{ijkl} = constant + E_i + C_j + S_k + (EC)_{ij} + (ES)_{ik} + (CS)_{ik} + (ECS)_{ijk} + e_{ijkl}$$

The contribution of any source of variation can then be estimated by a three-way factorial Anova. This will enable the contribution of physiological, ecological and evolutionary processes leading to the overall response to be evaluated (Table 1). There are two complications, however. First, the number of individuals may differ among species, giving rise to an unbalanced data structure. Secondly, the relative abundance of the species may differ between communities, giving rise to an unbalanced and disproportional data structure. If these were merely nuisances, the analysis could be rescued by some statistical procedure such as resampling. In fact, both are essential features of the data, representing the ecological structure of the community and how it is altered by exposure to a novel environment.

Such a preliminary three-way Anova would give a rough idea of the structure of the data, but is inadequate given the difficulties we have pointed out. For a more detailed analysis, the three-way classification is broken up into three two-way analyses: 1. The Community-Environment analysis is straightforward because the data structure is balanced. 2. The Species-Environment structure is unbalanced but proportional, because the species have the same abundances in the two assay environments. 3. The Species-Community analysis is more difficult when the species composition of the ancestral and derived communities differ, because the data are then both unbalanced and disproportionate. This inflates the differences between the Community means because of the difference in frequency of the species, and leads to an underestimate of the Species x Community interaction, which may even yield a negative Sum of Squares (SS). One way out of this difficulty is to use an appropriate uniform weighting for each species, which yields an unbiassed estimate of the Species x Community term (see Snedecor & Cochran 1967 section 16.6 p 484; the analysis of unbalanced data is reviewed by Hector et al. 2010). The effect of this procedure, however, is to remove the effect of the change in species composition, whereas we wish to retain it. This can be done by using this adjusted Species x Community SS, from which the effect of any shift in species composition has been removed, while partitioning

the Community SS into additive components that represent ecological and evolutionary processes. The mean phenotypes for the two communities are:  $Ancestral: Y_{anc} = \frac{\sum (n_{i,anc} Y_{i,anc})}{\sum n_i}$   $Derived: Y_{der} = \frac{\sum (n_{i,der} Y_{i,der})}{\sum n_i}$ where the abundance of the i<sup>th</sup> species is n<sub>i</sub> and its mean phenotype in the j<sup>th</sup> community is Y<sub>ij</sub>. Hence the

where the abundance of the  $i^{th}$  species is  $n_i$  and its mean phenotype in the  $j^{th}$  community is  $Y_{ij}$ . Hence the difference in mean phenotype is:

$$N(Y_{der} - Y_{anc}) = \sum (n_{i, der} Y_{i, der} - n_{i, anc} Y_{i, anc}) = \sum Y_{i, der} \Delta n_i + \sum n_{i, anc} \Delta Y_{i, der}$$

where  $N = \Sigma n_i$ ,  $\Delta n_i = (n_{i,der} - n_{i,anc})$ , and  $\Delta Y_i = (Y_{i,der} - Y_{i,anc})$ . The first term on the right-hand side is the ecological effect, generated by a shift in species composition, and the second term is the evolutionary effect, generated by a change in species mean phenotype independently of assay environment. The parallel to the Price decomposition of phenotypic change is clear (Price 1970, Collins and Gardner 2009). The first term is a covariance: the change in species abundance  $\Delta n_i$  is caused by differences in growth rate, with  $\frac{1}{2} \text{ EN } (\Sigma Y_{i,der} \Delta n_i)/(S-1) = \text{Cov}(Y_{i,der}, \Delta n_i)$ . The second term is the weighted change in mean species phenotype, caused in this case by natural selection (or some other evolutionary process); any physiological change (plasticity) is captured by the Environment main effect. The overall unadjusted Community SS is equal to  $\frac{1}{2} \text{ EN } (Y_{der} - Y_{anc})^2$ , so this can be partitioned into three components:

$$Community \ Ecology \ : Eco = \ \frac{1}{2} EN \left( \sum Y_{i,der} \ \Delta n_i \right)^2$$
$$Community \ Evolution \ : Evo = \ \frac{1}{2} EN \left( \sum n_{i,anc} \ \Delta Y_i \right)^2$$
$$Community \ Interaction \ : Eco \ \times Evo = EN \ \left( \sum Y_{i,der} \ \Delta n_i \right) \left( \sum n_{i,anc} \ \Delta Y_i \right)$$

The Community Ecology term expresses the contribution of shifts in the relative abundance of species (sorting) to the Community SS. The Community Evolution term expresses the contribution of any consistent shift in mean species phenotype. The third term, the Eco x Evo interaction, is a sum of products that is positive if abundance and phenotype score change in the same direction, and negative otherwise. It represents a covariance that might be substantial if, for example, those species that have adapted more successfully (through an increase or decrease of phenotype score) have thereby increased in frequency in the community. These three terms do not lead straightforwardly to estimates of variance components, but a rough measure of the relative contribution of ecological and evolutionary effects can be calculated by neglecting the covariance-like interaction term, expressing the other two as fractions of their total, and multiplying this fraction by the Community variance component.

The Species x Community interaction expresses how the overall phenotypic difference between communities varies among species, independently of environment. The highest-order interaction of Species x Community x Environment expresses variation among species in the extent of specific adaptation to environment, and is estimated by difference.

In practice, any real experiment may differ from this ideal model. The sample of species taken from each Community may not be proportional to its relative abundance, for example because it is desired to measure equal numbers of individuals from each species, or because some species have become so rare that only very few individuals are available for measurement. We have mitigated these shortcomings by randomly resampling (with replacement) a fixed number of individuals from each species in proportion to its known relative abundance and analysing this random sample. The values of parameters (such as SS and variance components) are then estimated as averages over a large number of independent resamples.

Our community selection experiment used eight distinct modified environments and as such, we analysed each ancestral-modified pair separately. Since the ancestral communities assayed in the original environment are identical for each pair-wise transplant, the same assays were used for all pairings. Given that these analyses are not independent, we obtained estimates of the overall contributions of plasticity, sorting and adaptation to variance by taking the averages of all pair-wise reciprocal transplants. The same Eco-Evo Anova was used to analyse the *in situ* time series data whose results we then compared with those of the reciprocal transplant as a separate source of evidence.

|                          | C 11         | A C          | . 1        | , , ,               | . ,            |
|--------------------------|--------------|--------------|------------|---------------------|----------------|
| Table 1. Interpretation  | of three-man | Anova of a   | reciprocal | transplant          | erneriment     |
| 1 word 1. Interpretation | of innee way | 111000a 0j a | reciprocai | <i>in anoptanti</i> | caper interio. |

| Source                     | Factors                                   | df             | Interpretation                                                                                                                                                                                                                                                                                          |
|----------------------------|-------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environment E <sub>i</sub> | Fixed: 2 states, Original<br>and Modified | 1              | Physiological plasticity:<br>variation in average<br>individual phenotype<br>between environments<br>(overall reaction norm).                                                                                                                                                                           |
| Community C <sub>j</sub>   | Fixed: 2 states, Ancestral<br>and Derived | 1              | Eco-evolutionary<br>dynamics: variation in<br>average phenotypes of<br>communities caused by<br>evolution (natural<br>selection within species<br>causing change in species<br>mean phenotype) or<br>species sorting (selection<br>among species causing<br>shift in community<br>composition) or both. |
| Species S <sub>k</sub>     | Random: S species                         | $\mathrm{S}-1$ | Ecological statics:<br>variation among average<br>phenotypes of species<br>attributable to ancestry.                                                                                                                                                                                                    |

| Source                                  | Factors                  | df             | Interpretation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|--------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Env x Com (EC) <sub>ij</sub>            | First-order interaction  | 1              | The plastic response<br>become altered in th<br>Derived community,<br>perhaps by selection<br>This represents spec<br>adaptation if the<br>character measured<br>fitness and is greater<br>the Ancestral/Origin<br>and Derived/Modified<br>than in the converse<br>combinations. Speci<br>sorting is not respon<br>because species<br>composition is balar<br>between one set of<br>community-environm<br>combinations<br>(Ancestral/Original<br>Derived/Modified) a<br>the other<br>(Ancestral/Modified |
| Env x Spe $(ES)_{ik}$                   | First-order interaction  | $\mathrm{S}-1$ | Derived/Original).<br>Variation in degree a<br>direction of plasticity<br>among species (varia<br>among species' react                                                                                                                                                                                                                                                                                                                                                                                   |
| Com x Spe $(CS)_{jk}$                   | First-order interaction  | $\mathrm{S}-1$ | norms).<br>Variation of species<br>phenotype between<br>communities, caused<br>natural selection (no<br>species sorting) vary                                                                                                                                                                                                                                                                                                                                                                            |
| Env x Com x Spe<br>(ECS) <sub>ijk</sub> | Second-order interaction | S-1            | among species.<br>Variation in the extension<br>specific adaptation<br>among species;<br>equivalently, the<br>modification of the<br>plastic response variation<br>among species.                                                                                                                                                                                                                                                                                                                        |
| Residual e <sub>ijkl</sub>              | ' Error '                | 4(N-S)         | Idiosyncratic variatie<br>among N individuals<br>per sample                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total                                   |                          | 4N - 1         | per sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

composition is balanced between one set of community-environment

(Ancestral/Original plus Derived/Modified) and

(Ancestral/Modified plus Derived/Original). Variation in degree and direction of plasticity among species (variation among species' reaction

Variation of species mean phenotype between communities, caused by natural selection (not species sorting) varying

Variation in the extent of specific adaptation among species; equivalently, the modification of the plastic response varies

The plastic response has become altered in the Derived community, perhaps by selection. This represents specific adaptation if the character measured is fitness and is greater in the Ancestral/Original and Derived/Modified than in the converse combinations. Species sorting is not responsible all mesocosms due to transfer shock but recovered in following few weeks. After five weeks' growth all communities had expanded to cover the entire surface of each mesocosm, and further expansion involved overgrowth and the death of senescent individuals. There were strong and consistent changes in community mean frond area, which, as an average over all environmental treatments, fell by about 20%, and by the end of Phase 1, differed significantly between communities (Fig. 4) (ANOVA,  $F_{(1.16)} = 89.6$ , p < 0.0001).

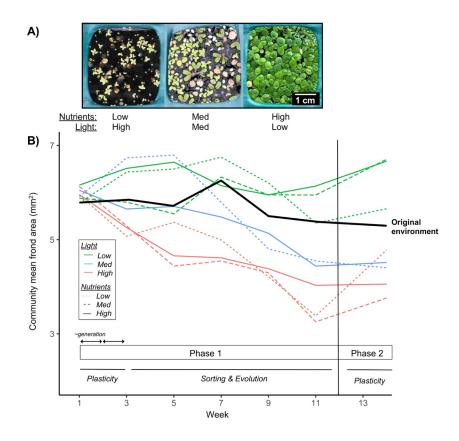



Fig. 4. A) Photos of three communities at the end of Phase 1. B) Community mean phenotype dynamics over 12 weeks of growth in modified environments (Phase 1), followed by an additional two weeks after a reversion to the original environmental conditions (Phase 2). Each line is one of 9 unique environments: 8 modified environments and 1 original environment (medium light-medium nutrients), and the average of two replicate mesocosms. For each mesocosm, community mean frond area is calculated as a species' mean frond area weighted by its relative abundance in the community, summed across all species in the community. Variation in community mean frond area at week 1 is due to idiosyncratic senescence resulting from transfer stress during the 1-week settling time between the initial transfer of plants to the mesocosms (week 0), and when treatments were first applied (week 1).

These differences in community mean frond area were due to both shifts in species relative abundances and phenotypic change within species. By the end of Phase 1, there were large differences between environments in species competitive abilities (Fig. 5). Generally, Lm was the most competitive in all environments and dominated most communities, Rn was most competitive in high light and low nutrient conditions, and Wc in high nutrient conditions, although there were strong interactive effects between light and nutrients making generalisations difficult (Fig. 5). Mean phenotypes shifted consistently for all species over Phase 1, with frond area increasing with increasing nutrient availability and decreasing light (Fig. 6).

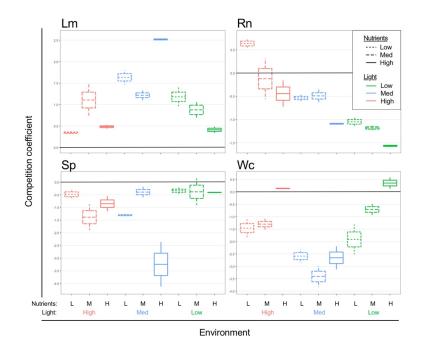



Fig. 5. Competition coefficients after 12 weeks of growth in the original and the eight modified environmental conditions. The horizontal line at 0 indicates no change in relative abundance over Phase 1. (Lm=L. minor, Rn = R. natans, Sp = S. polyrhiza, Wc = W. columbiana.)

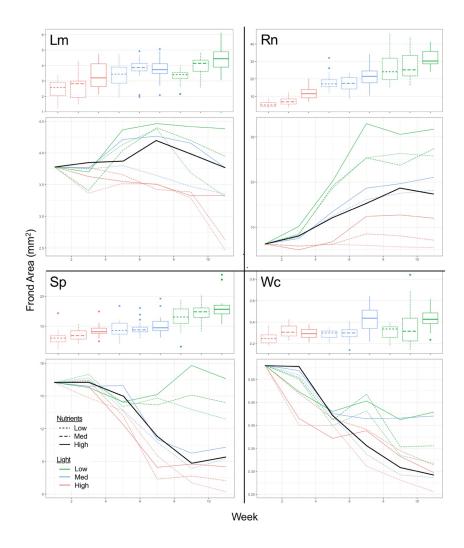



Fig. 6. Changes in frond area of the four species over 12 weeks of growth in the original and the eight modified environments (Phase 1) due to the combined effects of phenotypic plasticity and evolution. Lines are the average of two replicate mesocosms each from which 10 individuals of each species were sampled. The original environment is denoted with a bold black line. Box plots show final differences in frond area among the nine environments for each species at the end of Phase 1 (week 11 measurements only). (Lm=L. minor, Rn = R. natans, Sp = S. polyrhiza, Wc = W. columbiana.)

For both the reciprocal transplant and the *in situ* time series, the overall phenotypic variance among plants is generated by three factors: Species (the four species composing each community), Environment (Original vs Modified) and Community (Ancestral vs Derived). The interpretation of these factors and their interactions is shown in Table 1. The Species effect is the extent to which the evolved differences among species are maintained when the conditions of life change. The main effect of Environment reflects the plastic modification of the phenotype of an individual by the conditions it experiences during its lifetime. The Community term expresses both ecological and evolutionary change and is partitioned into these two components and their interaction.

We used the Eco-Evo Anova to estimate the contributions of each source of variation to overall phenotypic variance for each community. This produces a separate set of estimates for each of the two replicate meso-

cosms in each of the eight modified environments (Table S1). Although the reciprocal transplant and *in situ* time series data are arguably independent, the set of 16 estimates within each are not since the ancestral community assayed in the original environment was identical for each ancestral-derived pairing. For this reason, for both the data sets, we calculated the average contributions of each source of variation to overall phenotypic change across all eight modified environments (Fig. 7).

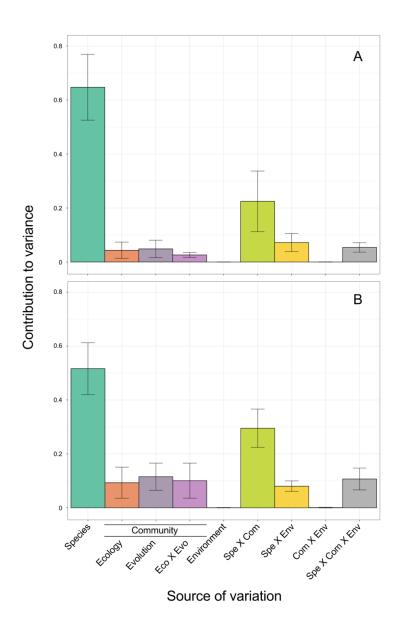



Fig. 7. Contributions of all sources other than residual variance to overall variation in community mean frond area for the (A) reciprocal transplant trial, and (B) in situ time series. Contributions are the result of averaging estimates for two replicate mesocosms for each of eight modified environments. The community term is partitioned into variation due to ecology, evolution and their interaction. Error bars are 95% confidence intervals and show the variation in contributions among the eight modified environments.

To further compare these two sources of evidence, the reciprocal transplant and the *in situ* time series, we calculated standardised deviations in species mean frond area as a way to compare phenotypic variation among environments for each species in the outdoor mesocosms with those of the greenhouse tubs in the reciprocal transplant. These standardized deviations comparing phenotypes in Phase 2 and the reciprocal transplant (derived communities in original environment) are highly correlated ( $r^2 = 0.80$ ) with a regression coefficient (b = 0.91) which overlaps unity (95% C.I. 0.75, 1.08). We conclude that the phenotypes expressed during Phase 2 in the outdoor mesocosms were consistent with those in greenhouse conditions of growth.

## **DISCUSSION:**

In our community selection experiment, we found that community mean frond area responded strongly to changes in both light and nutrients (Fig. 4), driven by both inter- and intra-specific trait change. The primary source of variation in frond area is attributed to Species. The pronounced initial morphological differences between the four species largely persist when light and nutrients are manipulated, so that the Species term accounts for about half of the overall variance among individuals (excluding residual variance) (Fig. 7). Interactions between Species and both Environment and Community are also prominent. For example, there is a general tendency for fronds to become larger at low light levels and high nutrient levels, due to both plasticity and adaptation. This parallels the normal plastic response to light and nutrients of herbaceous terrestrial plants grown from seed (Meziane and Shipley 1999, 2001) and confirms that our observations are consistent with these well-established ecophysiological generalizations. However, different species do not invariably respond to the same extent. For example, Lm and Wc show this expected plastic response to nutrients at low and high light levels, but not at intermediate light, whereas Rn shows this plastic response at medium and high light levels, but not under low light (Fig. S1 & S2). Likewise, Rn and Sp had strong, but opposite plastic responses — whereas frond area increased in low light and low nutrient environments for Sp, it decreased for Rn (Fig. S1 & S2). These Species x Environment interactions were so strong that the overall contribution of plasticity was negligible. Similar interactions have been reported for terrestrial plants (Meziane and Shipley 1999). Likewise, there was considerable variation among species in the extent to which frond size shifted due to adaptation. Whereas all species evolved larger fronds in low light and smaller fronds in high light, the evolutionary response to nutrients was extremely variable resulting in a strong Species x Community interaction (Fig. S1 & S2).

It was more surprising to find that the Community term, expressing both sorting (ecology) and adaptation (evolution), accounted for about one-quarter of the variance, with roughly equal contributions from each (Fig. 7). This result is in line with other studies that have found the rate and effect size of evolution to be of comparable magnitude to that of ecological processes in determining community structure and dynamics (Hairston et al. 2005, Palkovacs et al. 2009, Bassar et al. 2010, Pantel et al. 2015) and further emphasizes the importance of including the possibility of rapid evolution when considering how communities respond to environmental change (Fugère et al. 2020). The interaction between Ecology and Evolution terms was both strong and unexpected. If selection within species (Evolution, representing adaptation) and selection between species (Ecology, representing sorting) act in the same direction, then fronds will evolve to become larger (or smaller) in all species, while larger (or smaller) species become more abundant. We found instead that sorting and adaptation tended to act in opposite directions (Fig. 8); in communities where species evolved smaller fronds, the larger species had a competitive advantage and increased in relative abundance, and vice versa. This response was largely dependent on community productivity — in increasingly stressful environmental conditions (high light and/or low nutrients) that resulted in lower overall community productivity, fronds of all species evolved to become smaller, whereas the larger species (Rn and Sp) outcompeted the smaller species (Lm and Wc). Likewise, in beneficial environmental conditions (low light and/or high nutrients) that resulted in higher overall community productivity, species tended to evolve larger fronds, but the smaller species (lamely Wc) had a competitive advantage. Possible explanations as to why selection may not act in the same direction within and among species include the presence of inter-specific allelopathic interactions, which have been identified for several species of duckweed (Wolek 1974, Jang et al. 2007, Bich and Kato-Noguchi 2012), or other species interactions resulting in negative-frequency dependence (Armitage and Jones 2019). Alternatively, within species selection may have altered frond area due to an environmentally

induced covariance between phenotype and fitness (Rausher 1992), although the reciprocal transplant should theoretically disentangle this covariance by separating the genetic from plastic sources of frond size. Finally, it is possible that less stressful environments (low light, high nutrients) resulted in selection favouring an increase in frond size indirectly by acting on a genetically linked trait, and at the same time enabling the relative proliferation of the smaller species with higher potential growth rates.

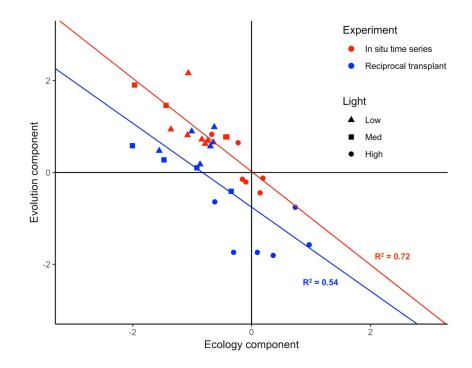



Fig. 8. Correlation between the contributions of species sorting (ecological component) and adaption (evolution component) to variation in phenotype for the reciprocal transplant and general reversion experiments. Each point is a single mesocosm.

Any real experiment will deviate from the ideal community selection experiment as outlined in the introduction. For example, it is unlikely that the source community is in a static state of ecological and evolutionary equilibrium, and therefore the community mean phenotype of the ancestral community in the original environment will undoubtedly change over the course of Phase 1 through seasonal species turnover, ongoing response to variables like day length and temperature, or imperfect replication of the source community's environmental conditions. This was the case for our experiment where mean frond area changed for three of the four species over the course of Phase 1 in the original environment (Fig. 6). In addition, we began Phase 1 with equal relative abundances of all species in each community and not with those of the source community, potentially throwing communities out of equilibrium, which further explains shifts in the community mean frond area over Phase 1 due to sorting. The reciprocal transplant and subsequent partition of variance into its components is based on a comparison between all communities at the end of Phase 1 and therefore does not incorporate any potential change in the ancestral community, but instead attributes variation in phenotype among communities accumulated over the course of Phase 1 to plasticity, sorting and adaptation. Reassuringly, the strikingly similar results between our reciprocal transplant (that discounts change in the ancestral community over Phase 1) and the *in situ* time series, indicates that the change in frond area in the ancestral communities was insignificant compared to the differences between ancestral and derived communities. Both tests produced extremely similar results, both in terms of the relative contributions to variance (Fig. 7), and the negative eco-evo relationship (Fig. 8). These results are further strengthened by the tight correlation of standardized deviations in frond area comparing phase 2 with the reciprocal transplant, despite obvious environmental differences between the source community, our outdoor mesocosms and greenhouse culture tubs.

The agency responsible for evolutionary change in our experiment is uncertain. Epigenetic changes might be transmitted over several generations because reproduction was exclusively vegetative (Verhoeven and Preite 2014). This would mimic genetic change and over the long-term lead to selection for adaptive plasticity. However, the main effect of Environment is very small, and we have shown that evolved phenotypes were conserved during the transition from Phase 1 to Phase 2, and from Phase 1 to the reciprocal transplant experiment. Alternatively, this evolutionary change could be caused by strong natural selection acting on genetic variation. This would require a large amount of pre-existing genetic variation in the populations given the short time span of the experiment. It could be assumed that populations of such fast growing, asexual species would be made up of only a small number of clones, especially in colder climates where populations likely go through an annual genetic bottleneck in the winter. There is however considerable evidence that duckweed populations maintain a surprisingly high level of within site genetic diversity. In L. minor, the most studied of the four species, allozymic and microsatellite sequence analysis of field populations showed in all cases a high degree of within population genetic diversity (Vasseur et al. 1993, Cole and Voskuil 1996, El-Kholy et al. 2015). The most extensive survey (Vasseur et al., 1993) found on average 20 genotypes per site based on 18 loci, 13 of which were polymorphic. Furthermore, Ziegler et al. (2015) concluded from a common garden growth experiment using 39 clones of duckweed from 13 species that the majority of variation in growth rate was attributed to variation among ecotypes/clones and not species. This mirrors our own ongoing work using common garden growth assays where we find greater variation in fitness among individuals of Lm within sites than among sites (unpublished). Given this likely high degree of genetic variation within species in our source community, we conclude that strong natural selection acting on standing genetic variation, and not epigenetic change, is likely to have been the process responsible for phenotypic modification (van Moorsel et al. 2019). In similar work using two of the same species (Lm and Sp), Hart et al. (2019), also found that genotypic evolution over 10-15 generations resulted in phenotypic changes which altered competitive hierarchies and therefore community dynamics. Given the enormous population sizes and short generation times of such floating aquatic plants, it is perhaps not surprising that evolutionary processes should play an important role in structuring their communities.

Our experiment has shown how the average phenotype of a community may become modified over the course of several generations by sorting, plasticity, and adaptation. The overall community response, however, could not be reliably predicted from the response of any given species due to a negative correlation between the ecological and evolutionary effects on phenotypic change. Likewise, considering rapid evolutionary change is essential when predicting community trait dynamics in response to environmental change. These results are in line with other recent studies that have demonstrated the importance of rapid evolution in structuring communities in ways which can alter eco-physiological responses and mediate species interactions (Becks et al. 2012, Pantel et al. 2015, Stoks et al. 2016, Hart et al. 2019, Fugère et al. 2020). We conclude that community trait dynamics cannot be understood simply by extrapolating the adaptive response of any single species to the whole community.

Acknowledgments: We thank Elizabeth Hirsch, who helped with data collection. This experiment was supported by a Discovery Grant from the Natural Science and Engineering Research Council of Canada to GB and an Alexander Graham Bell Canada Graduate Scholarship from the Natural Science and Engineering Research Council of Canada to MDJ.

Authors' contributions: MDJ performed the experiment and contributed to the analysis. GB conceived the study and developed the analytical procedure. The manuscript was prepared jointly by MDJ and GB.

Competing interests: The authors declare no competing interests.

**Data availability:** Raw data from which all figures were generated will be stored in the Dryad repository before publication of the article.

# LITERATURE CITED

Ackerly, D. D., and P. B. Reich. 1999. Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts. American Journal of Botany 86:1272–1281.

Anten, N. P. R., F. Schieving, E. Medina, M. J. A. Werger, and P. Schuffelen. 1995. Optimal leaf area indices in C3 and C4 mono- and dicotyledonous species at low and high nitrogen availability. Physiologia Plantarum 95:541–550.

Armitage, D. W., and S. E. Jones. 2019. Negative frequency-dependent growth underlies the stable coexistence of two cosmopolitan aquatic plants. Ecology 100:1–12.

Bassar, R. D., M. C. Marshall, A. Lopez-Sepulcre, E. Zandona, S. K. Auer, J. Travis, C. M. Pringle, A. S. Flecker, S. A. Thomas, D. F. Fraser, and D. N. Reznick. 2010. Local adaptation in Trinidadian guppies alters ecosystem processes. Proceedings of the National Academy of Sciences of the United States of America 107:3616–3621.

Becks, L., S. P. Ellner, L. E. Jones, and N. G. Hairston. 2012. The functional genomics of an eco-evolutionary feedback loop: Linking gene expression, trait evolution, and community dynamics. Ecology Letters 15:492–501.

Bell, G. 2008. Selection: the Mechanism of Evolution. Oxford University Press, USA.

van Benthem, K. J., M. Bruijning, T. Bonnet, E. Jongejans, E. Postma, and A. Ozgul. 2017. Disentangling evolutionary, plastic and demographic processes underlying trait dynamics: a review of four frameworks. Methods in Ecology and Evolution 8:75–85.

Bich, T. T. N., and H. Kato-Noguchi. 2012. Allelopathic potential of two aquatic plants, duckweed (Lemna minor L.) and water lettuce (Pistia stratiotes L.), on terrestrial plant species. Aquatic Botany 103:30–36.

Bjorkman, A. D., I. H. Myers-Smith, S. C. Elmendorf, S. Normand, et al. 2018. Plant functional trait change across a warming tundra biome. Nature 562:57–62.

Carroll, S. P., A. P. Hendry, D. N. Reznick, and C. W. Fox. 2007. Evolution on ecological time-scales. Functional Ecology 21:387–393.

Cedergreen, N., and T. V. Madsen. 2002. Nitrogen uptake by the floating macrophyte Lemna minor. New Phytologist 155:285–292.

Cole, C. T., and M. I. Voskuil. 1996. Population genetic structure in duckweed 230:222–230.

Collins, S., and A. Gardner. 2009. Integrating physiological, ecological and evolutionary change: A Price equation approach. Ecology Letters 12:744–757.

El-Kholy, A. S., M. S. Youssef, and E. M. Eid. 2015. Genetic diversity of L. gibba L. and L. minor L. populations in Nile Delta based on biochemical and ISSR markers. Egyptian Journal of Experimental Biology 11:11–19.

Ellner, S. P., M. A. Geber, and N. G. Hairston. 2011. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecology Letters 14:603–614.

Fugere, V., M. P. Hebert, N. B. da Costa, C. C. Y. Xu, R. D. H. Barrett, B. E. Beisner, G. Bell, G. F. Fussmann, B. J. Shapiro, V. Yargeau, and A. Gonzalez. 2020. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology and Evolution 4:578–588.

Fussmann, G. F., M. Loreau, and P. A. Abrams. 2007. Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology 21:465–477.

Garnier, E., J. Cortez, G. Billes, M. L. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry, A. Bellmann, C. Neill, and J. P. Toussaint. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637.

Ghalambor, C. K., J. K. McKay, S. P. Carroll, and D. N. Reznick. 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21:394–407.

Govaert, L. 2018. Eco-evolutionary partitioning metrics: A practical guide for biologists. Belgian Journal of Zoology 148:167–202.

Govaert, L., J. H. Pantel, and L. De Meester. 2016. Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecology letters 19:839–853.

Grime, J. P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86:902–910.

Guimaraes, P. R., M. M. Pires, P. Jordano, J. Bascompte, and J. N. Thompson. 2017. Indirect effects drive coevolution in mutualistic networks. Nature 550:511–514.

Guittar, J., D. Goldberg, K. Klanderud, R. J. Telford, and V. Vandvik. 2016. Can trait patterns along gradients predict plant community responses to climate changeas? Ecology 97:2791–2801.

Hairston, N. G., S. P. Ellner, M. A. Geber, T. Yoshida, and J. A. Fox. 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters 8:1114–1127.

Hall, A. R., B. Ashby, J. Bascompte, and K. C. King. 2020. Measuring coevolutionary dynamics in speciesrich communities. Trends in Ecology and Evolution 35:539–550.

Hamann, O. 1979. On Climatic Conditions , Vegetation Types , and Leaf Size in the Galapagos Islands. Biotropica 11:101–122.

Hargreaves, A. L., R. M. Germain, M. Bontrager, J. Persi, and A. L. Angert. 2020. Local adaptation to biotic interactions: A meta-analysis across latitudes. American Naturalist 195:395–411.

Hart, S. P., M. M. Turcotte, and J. M. Levine. 2019. Effects of rapid evolution on species coexistence. Proceedings of the National Academy of Sciences of the United States of America 116:2112–2117.

Hector, A., S. von Felten, and B. Schmid. 2010. Analysis of variance with unbalanced data: An update for ecology & evolution. Journal of Animal Ecology 79:308–316.

Hendry, A. P., and M. T. Kinnison. 1999. Perspective: The pace of modern life: Measuring rates of contemporary microevolution. Evolution 53:1637–1653.

Hirose, T., D. D. Ackerly, M. B. Traw, D. Ramseier, and F. A. Bazzaz. 1997. CO2 Elevation, Canopy Photosynthesis, and Optimal Leaf Area Index. Ecology 78:2339–2350.

Jang, M. H., K. Ha, and N. Takamura. 2007. Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon 49:727–733.

Johnson, M. T. J., M. Vellend, and J. R. Stinchcombe. 2009. Evolution in plant populations as a driver of ecological changes in arthropod communities. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1593–1605.

Kawecki, T. J., and D. Ebert. 2004. Conceptual issues in local adaptation. Ecology Letters 7:1225–1241.

Kichenin, E., D. A. Wardle, D. A. Peltzer, C. W. Morse, and G. T. Freschet. 2013. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology 27:1254–1261.

Kinnison, M. T., and A. P. Hendry. 2001. The pace of modern life II: From rates of contemporary microevolution to pattern and process:145–164. Laird, R. A., and P. M. Barks. 2018. Skimming the surface: duckweed as a model system in ecology and evolution. American Journal of Botany 105:1962–1966.

Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology 16:545–556.

De Meester, L., K. I. Brans, L. Govaert, C. Souffreau, S. Mukherjee, H. Vanvelk, K. Korzeniowski, L. Kilsdonk, E. Decaestecker, R. Stoks, and M. C. Urban. 2019. Analysing eco-evolutionary dynamics—The challenging complexity of the real world. Functional Ecology 33:43–59.

Merila, J., and A. P. Hendry. 2014. Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evolutionary Applications 7:1–14.

Meziane, D., and B. Shipley. 1999. Interacting determinants of specific leaf area in 22 herbaceous species: Effects of irradiance and nutrient availability. Plant, Cell and Environment 22:447–459.

Meziane, D., and B. Shipley. 2001. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Annals of Botany 88:915–927.

Miller, R. E., and N. L. Fowler. 1993. Variation in Reaction Norms among Populations of the Grass Bouteloua rigidiseta. Evolution 47:1446–1455.

Mokany, K., J. Ash, and S. Roxburgh. 2008. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology 96:884–893.

van Moorsel, S. J., M. W. Schmid, N. C. A. M. Wagemaker, T. van Gurp, B. Schmid, and P. Vergeer. 2019. Evidence for rapid evolution in a grassland biodiversity experiment. Molecular Ecology 28:4097–4117.

Palkovacs, E. P., M. C. Marshall, B. A. Lamphere, B. R. Lynch, D. J. Weese, D. F. Fraser, D. N. Reznick, C. M. Pringle, and M. T. Kinnison. 2009. Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1617–1628.

Pantel, J. H., C. Duvivier, and L. De Meester. 2015. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecology Letters 18:992–1000.

Parkhurst, D. F., and O. L. Loucks. 1972. Optimal Leaf Size in Relation to Environment. Journal of Ecology 60:505–537.

Patton, C. J., and K. J.R. 2003. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory – Evaluation of alakaline persulfate digestion as an alternative to Kjedahl digestion for determination of total and dissolved nitrogen and phosphorus.

Pelletier, F., D. Garant, and A. P. Hendry. 2009. Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1483–1489.

Petritan, A. M., B. von Lupke, and I. C. Petritan. 2009. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings. European Journal of Forest Research 128:61–74.

Post, D. M., and E. P. Palkovacs. 2009. Eco-evolutionary feedbacks in community and ecosystem ecology: Interactions between the ecological theatre and the evolutionary play.

Price, G. R. 1970. Selection and Covariance. Nature 227:520–521.

Price, G. R. 1972. Fisher's 'fundamental theorem' made clear. annals of human genetics 36:129-140.

Rausher, M. D. 1992. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46:616–626.

Reznick, D. N., and C. K. Ghalambor. 2001. The population ecology of contemporary adaptations: What empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198.

Rozendaal, D. M. A., V. H. Hurtado, and L. Poorter. 2006. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Functional Ecology 20:207–216.

Saccheri, I., and I. Hanski. 2006. Natural selection and population dynamics. Trends in Ecology and Evolution 21:341–347.

Schlichting, C. D., and M. A. Wund. 2014. Phenotypic plasticity and epigenetic marking: An assessment of evidence for genetic accommodation. Evolution 68:656–672.

Schoener, T. W. 2011. The Newest Synthesis : Understanding Ecological Dynamics. Science 331:426–429.

Slobodkin, L. B. 1961. Growth and Regulation of Animal Populations. Holt, Rinehart and Winston, New York, NY.

Snedecor, G. W., and W. G. Cochran. 1967. Statistical methods. Sixth edition. the Iowa state University.

Stoks, R., L. Govaert, K. Pauwels, B. Jansen, and L. De Meester. 2016. Resurrecting complexity: The interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecology Letters 19:180–190.

Thompson, J. N. 1998. Rapid evolution as an ecological process. Trends in Ecology and Evolution 13:329–332.

Turcotte, M. M., D. N. Reznick, and J. D. Hare. 2011. The impact of rapid evolution on population dynamics in the wild: Experimental test of eco-evolutionary dynamics. Ecology Letters 14:1084–1092.

Urban, M. C., M. A. Leibold, P. Amarasekare, L. De Meester, et al. 2008. The evolutionary ecology of metacommunities. Trends in Ecology and Evolution 23:311–317.

Vasseur, L., and L. W. Aarssen. 1992. Phenotypic plasticity in Lemna minor (Lemnaceae). Plant Systematics and Evolution 180:205–219.

Vasseur, L., L. W. Aarssen, and T. Bennett. 1993. Allozymic Variation in Local Apomictic Populations of Lemna minor (Lemnaceae). American Journal of Botany 80:974.

Vasseur, L., D. L. Irwin, and L. W. Aarssen. 1995. Size versus number of offspring as predictors of success under competition in Lemna minor (Lemnaceae). Annales Botanici Fennici 32:169–178.

Verhoeven, K. J. F., and V. Preite. 2014. Epigenetic variation in asexually reproducing organisms. Evolution 68:644–655.

Vu, G. T. H., H. X. Cao, P. Fourounjian, and W. Wang. 2019. Future Prospects of Duckweed Research and Applications. Pages 179–185 The Duckweed Genomes. Springer Nature Switzerland.

Wetzel, R. G., and G. E. Likens. 2000. Limnological Analyses. Third edition. Springer Press.

Wolek, J. 1974. A preliminary investigation on interactions (competition, allelopathy) between some species of Lemna, Spirodela, and Wolffia. Ber. Geobot. Inst. ETH. Stift. 42:140–162.

Ziegler, P., K. Adelmann, S. Zimmer, C. Schmidt, and K. J. Appenroth. 2015. Relative in vitro growth rates of duckweeds (Lemnaceae) - the most rapidly growing higher plants. Plant Biology 17:33–41.

# SUPPLEMENTARY MATERIALS

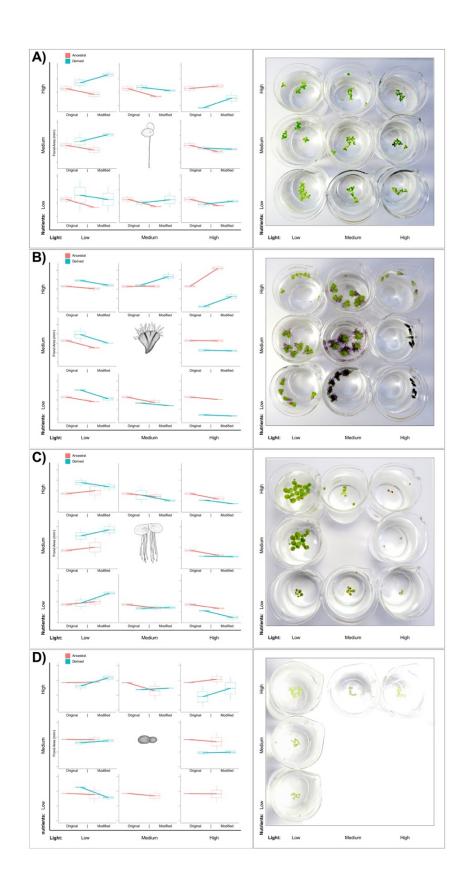



Fig. S1. Phenotypic consequences of 12 weeks of growth in modified environments (Phase 1), assessed with a reciprocal transplant experiment for A) Lemna minor, B) Ricciocarpous natans, C)Spirodela polyrhiza , and D) Wolffia columbiana. Community type can be either Ancestral or Derived, assay environment can be either Original or Modified. The Original environment is characterised by the medium light – medium nutrients combination. Each small panel is a reciprocal transplant for a single Ancestral-Derived pair, one for each of the eight unique Derived communities. Each of these is the result of 16 culture tub assays, (two replicate assay tubs  $\times$  two replicate mesocosms per community  $\times$  four community-environment combinations). Box plot means are the result of 10 individual plants per culture tub,  $\times$  two replicate culture tubs,  $\times$  two replicate mesocosms = 40 measurements. Box plots whiskers represent the variation among the two independent replicate mesocosms. Since the reciprocal transplant was done with the entire intact community, and not with each species separately, the four large panels are not independent. Difference in frond area between assay environments indicates a plastic response whereas differences between community type indicates evolution. Difference in slope between community types indicates evolved differences in the plastic response. The absence of data indicates local extinction of that species in the community. Photographs were taken of individuals from the derived community in the modified environment at the end of the reciprocal transplant.

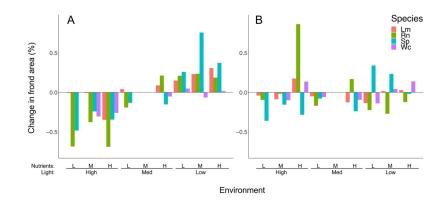



Fig. S2. – Components of intra-specific trait change revealed by the reciprocal transplant. A) Change in frond area due to adaptation. B) Change in frond area due to plasticity. Change in frond area is quantified separately for each species in each ancestral-derived pair (for a single modified environment). Change in frond area due to adaptation is calculated as the difference among mean frond area of the derived and ancestral populations across both assay environments, and standardised by dividing by that of the ancestral population, ((derived – ancestral)/ ancestral). Change in frond area due to plasticity is calculated as the difference among mean frond area of populations assayed in the original and modified assay environments across ancestral and derived populations, and standardised by dividing by that in the original assay environment, [(modified – original)/ original].

Table S1 – Partition of Variance in community mean frond area for the reciprocal transplant and the In situ time series. Negative variance components are set to 0.

| Trans-        | Trans-                 | Trans-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trans-                                                                                                                                                                                                                                                                      | callecipro<br>Trans-                                                                                                                                                                                                                                                                             | Trans-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|---------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------|
|               |                        | plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| Envi-         | Envi-                  | Envi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Envi-                                                                                                                                                                                                                                                                       | Envi-                                                                                                                                                                                                                                                                                            | Envi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| ron-          | ron-                   | ron-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ron-                                                                                                                                                                                                                                                                        | ron-                                                                                                                                                                                                                                                                                             | ron-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| ment:         | ment:                  | ment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ment:                                                                                                                                                                                                                                                                       | ment:                                                                                                                                                                                                                                                                                            | ment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               | -                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               | -                      | – Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| -             | -                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Replica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | teReplica                                             | teReplica                                             | teReplica                                             | teReplica                                             | teReplica                                             | teRepl           |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                     | -                                                     | -                                                     | -                                                     | -                                                     | meso             |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | cosn             |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | 2                |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | Vari             |
| ai            | ui                     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MS                                                                                                                                                                                                                                                                          | MS                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CÆH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ai                                                    | ככ                                                    | ככ                                                    | 1013                                                  | 1013                                                  | Con              |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | po-              |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | nent             |
| $\mathcal{Q}$ | 3                      | 6761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 995 <i>1</i>                                                                                                                                                                                                                                                                | 995 <i>1</i>                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                     | 1.272                                                 | 1.272                                                 | 11.21                                                 | 11.21                                                 | 2.53             |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | $\frac{2.00}{0}$ |
| lilla y       | T                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ţ                                                     |                                                       |                                                       |                                                       |                                                       | 0.06             |
| m             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | 1.67             |
| <u>911</u>    |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | -                                                     | -                                                     | -                                                     |                                                       | 0                |
|               |                        | -<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>208                                                                                                                                                                                                                                                                    | -<br>208                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | -<br>199                                              | -<br>199                                              | -<br>199                                              |                                                       | U                |
|               |                        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 120                                                   | 120                                                   | 120                                                   | 120                                                   |                  |
| mbnt          | 1                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                          | 17                                                                                                                                                                                                                                                                                               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                     | 97                                                    | 97                                                    | 97                                                    | 97                                                    |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       | 5.34             |
| 5             | 5                      | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113                                                                                                                                                                                                                                                                         | 113                                                                                                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                     | 5100                                                  | 5100                                                  | 100                                                   | 100                                                   | 0.04             |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| 2             | 2                      | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                                               | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                     | 199                                                   | 190                                                   | 16                                                    | 46                                                    | 0.31             |
| 5             | 5                      | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                     | 100                                                   | 100                                                   | 40                                                    | 40                                                    | 0.01             |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| 1             | 1                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                     | 10                                                    | 10                                                    | 10                                                    | 10                                                    | 0                |
| 1             | 1                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                     | 45                                                    | 45                                                    | 45                                                    | 45                                                    | 0                |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| 3             | 3                      | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                     | 172                                                   | 172                                                   | 57                                                    | 57                                                    | 0.38             |
| 0             | 0                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                     | 114                                                   | 112                                                   | 01                                                    | 01                                                    | 0.00             |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
|               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |                  |
| 384           | 384                    | 1739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                | 4.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 384                                                   | 1337                                                  | 1337                                                  | 3                                                     | 3                                                     | 3.48             |
| r             | plant<br>Envi-<br>ron- | plantplantEnvi-Envi-ron-ron-ment:ment:1,1,HighHighLightLight- Low- LowNutri-Nutri-entsentsRepli-Repli-catecatemeso-meso-cosm: $cosm:$ 11dfdf $3$ $3$ $j$ <td>plantplantplantplantEnvi-Envi-Envi-ron-ron-ron-ment:ment:ment:1,1,1,HighHighHighLightLightLightLightLightLightLightLightLightLightLightLight- Low- Low- LowNutri-Nutri-Nutri-entsentsentsRepli-Repli-Repli-catecatecatemeso-meso-meso-111dfdfSS336761nify154101261331671115</td> <td>plantplantplantplantplantEnvi-Envi-Envi-Envi-ron-ron-ron-ron-ment:ment:ment:ment:1,1,1,1,HighHighHighHighLightLightLightLight- Low- Low- Low- LowNutri-Nutri-Nutri-entsentsentsentsentsentsRepli-Repli-Repli-catecatecatecatecosm:cosm:111dfdfSSMS3367612254mity154541110111101a3333167331675611</td> <td>plantplantplantplantplantplantplantEnvi-Envi-Envi-Envi-Envi-Envi-ron-ron-ron-ron-ron-ron-ment:ment:ment:ment:ment:ment:1,1,1,1,1,1,HighHighHighHighHighLightLightLightLightLightLightLight- Low- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-entsentsentsentsentsRepli-Repli-Repli-Repli-Repli-catecatecatecatecatemeso-meso-meso-meso-meso-11111dfdfSSMSMS<math>3</math><math>3</math><math>6761</math><math>2254</math><math>2254</math>nity1<math>54</math><math>54</math><math>54</math>nity1<math>54</math><math>54</math><math>54</math>nity1<math>47</math><math>47</math><math>47</math><math>3</math><math>3</math><math>167</math><math>56</math><math>56</math>1115<math>15</math><math>15</math></td> <td>plantplantplantplantplantplantplantplantEnvi-Envi-Envi-Envi-Envi-Envi-ron-ron-ron-ron-ron-ron-ment:ment:ment:ment:ment:ment:1,1,1,1,1,1,HighHighHighHighHighHighLightLightLightLightLightLight- Low- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-atecatecatecatecatecatecatecatecatecatemeso-meso-meso-meso-meso-11111dfdfSSMSMSatinty154540nify154540anify14747473325027197195.123316756560.361115150</td> <td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td> <td></td> | plantplantplantplantEnvi-Envi-Envi-ron-ron-ron-ment:ment:ment:1,1,1,HighHighHighLightLightLightLightLightLightLightLightLightLightLightLight- Low- Low- LowNutri-Nutri-Nutri-entsentsentsRepli-Repli-Repli-catecatecatemeso-meso-meso-111dfdfSS336761nify154101261331671115 | plantplantplantplantplantEnvi-Envi-Envi-Envi-ron-ron-ron-ron-ment:ment:ment:ment:1,1,1,1,HighHighHighHighLightLightLightLight- Low- Low- Low- LowNutri-Nutri-Nutri-entsentsentsentsentsentsRepli-Repli-Repli-catecatecatecatecosm:cosm:111dfdfSSMS3367612254mity154541110111101a3333167331675611 | plantplantplantplantplantplantplantEnvi-Envi-Envi-Envi-Envi-Envi-ron-ron-ron-ron-ron-ron-ment:ment:ment:ment:ment:ment:1,1,1,1,1,1,HighHighHighHighHighLightLightLightLightLightLightLight- Low- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-entsentsentsentsentsRepli-Repli-Repli-Repli-Repli-catecatecatecatecatemeso-meso-meso-meso-meso-11111dfdfSSMSMS $3$ $3$ $6761$ $2254$ $2254$ nity1 $54$ $54$ $54$ nity1 $54$ $54$ $54$ nity1 $47$ $47$ $47$ $3$ $3$ $167$ $56$ $56$ 1115 $15$ $15$ | plantplantplantplantplantplantplantplantEnvi-Envi-Envi-Envi-Envi-Envi-ron-ron-ron-ron-ron-ron-ment:ment:ment:ment:ment:ment:1,1,1,1,1,1,HighHighHighHighHighHighLightLightLightLightLightLight- Low- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-Repli-atecatecatecatecatecatecatecatecatecatemeso-meso-meso-meso-meso-11111dfdfSSMSMSatinty154540nify154540anify14747473325027197195.123316756560.361115150 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                  |

| Trans-        | affeciproc<br>Trans- | Trans-        | Trans-        | Trans-        | Trans-        | Trans-        |             |            |                        |               |               |               |               |
|---------------|----------------------|---------------|---------------|---------------|---------------|---------------|-------------|------------|------------------------|---------------|---------------|---------------|---------------|
| plant         | plant                | plant         | plant         | plant         | plant         | plant         |             |            |                        |               |               |               |               |
| Envi-         | Envi-                | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         |             |            |                        |               |               |               |               |
| ron-          | ron-                 | ron-          | ron-          | ron-          | ron-          | ron-          |             |            |                        |               |               |               |               |
| ment:         | ment:                | ment:         | ment:         | ment:         | ment:         | ment:         |             |            |                        |               |               |               |               |
| l,            | 1,                   | 1,            | 1,            | 1,            | 1,            | 1,            |             |            |                        |               |               |               |               |
| High          | High                 | High          | High          | High          | High          | High          |             |            |                        |               |               |               |               |
| Light         | Light                | Light         | Light         | Light         | Light         | Light         |             |            |                        |               |               |               |               |
| - Low         | – Low                | - Low         | – Low         | – Low         | – Low         | -Low          |             |            |                        |               |               |               |               |
| Nutri-        | Nutri-               | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        |             |            |                        |               |               |               |               |
| ents<br>Popli | ents<br>Dopli        | ents<br>Popli | ents<br>Dopli | ents<br>Dopli | ents<br>Dopli | ents<br>Dopli |             |            |                        |               |               |               |               |
| Repli-        | Repli-               | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Deplicat    | -Deplicat  | -Dopligat              | -Doplicat     | -Dopligat     | -Dopliga      | Dor           |
| cate          | cate                 | cate          | cate          | cate          | cate          | cate          | -           | -          | -                      | eReplicat     | -             | -             | -             |
| meso-         | meso-                | meso-         | meso-         | meso-         | meso-         | meso-         | meso-       | meso-      | meso-                  | meso-         | meso-         | meso-         | mes           |
| cosm:<br>1    | cosm:<br>1           | cosm:<br>1    | cosm:         | cosm:<br>1    | cosm:<br>1    | cosm:<br>1    | cosm:<br>2  | cosm:<br>2 | cosm:<br>2             | cosm:<br>2    | cosm:<br>2    | cosm:<br>2    | cosr<br>2     |
|               |                      |               | 1             |               |               |               |             |            |                        |               |               |               |               |
|               | aleciproc            |               |               |               |               |               |             |            |                        |               |               |               | atRej         |
| Trans-        | Trans-               | Trans-        | Trans-        | Trans-        | Trans-        | Trans-        | Trans-      | meso-      | meso-                  | meso-         | meso-         | meso-         | me            |
| plant         | plant                | plant         | plant         | plant         | plant         | plant         | plant       | cosm:      | cosm:                  | cosm:         | cosm:         | cosm:         | cos           |
| Envi-         | Envi-                | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-       | <b>2</b>   | <b>2</b>               | <b>2</b>      | <b>2</b>      | <b>2</b>      | <b>2</b>      |
| con-          | ron-                 | ron-          | ron-          | ron-          | ron-          | ron-          | ron-        |            |                        |               |               |               |               |
| ment:         | ment:                | ment:         | ment:         | ment:         | ment:         | ment:         | ment:       |            |                        |               |               |               |               |
| 2,            | 2,                   | 2,            | 2,            | 2,            | 2,            | 2,            | 2,          |            |                        |               |               |               |               |
| High          | High                 | High<br>Linkt | High          | High          | High          | High          | High        |            |                        |               |               |               |               |
| Light         | Light                | Light         | Light         | Light         | Light         | Light         | Light       |            |                        |               |               |               |               |
| -<br>Modium   | –<br>Medium          | -<br>Modium   | -<br>Modium   | -<br>Modium   | -<br>Modium   | -<br>Modium   | -<br>Modium |            |                        |               |               |               |               |
| Nutri-        | Nutri-               | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-      |            |                        |               |               |               |               |
| ents          | ents                 | ents          | ents          | ents          | ents          | ents          | ents        |            |                        |               |               |               |               |
| Repli-        | Repli-               | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli-      |            |                        |               |               |               |               |
| cate          | cate                 | cate          | cate          | cate          | cate          | cate          | cate        |            |                        |               |               |               |               |
| meso-         | meso-                | meso-         | meso-         | meso-         | meso-         | meso-         | meso-       |            |                        |               |               |               |               |
| cosm:         | cosm:                | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:       |            |                        |               |               |               |               |
| 1             | 1                    | 1             | 1             | 1             | 1             | 1             | 1           |            |                        |               |               |               |               |
| Source        | df                   | SS            | SS            | MS            |               | Wariand       | -           | edf        | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$ | $\mathbf{SS}$ | $\mathbf{MS}$ | $\mathbf{MS}$ |
|               |                      |               |               |               | Com-          | Com-          | Com-        |            |                        |               |               |               |               |
|               |                      |               |               |               | po-           | po-           | po-         |            |                        |               |               |               |               |
|               |                      |               |               |               | nent          | nent          | nent        |            |                        |               |               |               |               |
| Species       | 3                    | 9653          | 9653          | 3218          | 6.47          | 6.47          | 6.47        | 3          | 3                      | 10910         | 10910         | 3637          | 363           |
| Commu         | nity                 | 171           | 171           | 171           | 0             | 0             | 0           | 1          | 1                      | 11            | 11            | 11            | 11            |
| Ecology       |                      | 39            | 39            | 39            | 0.17          | 0.17          | 0.17        |            |                        | 56            | 56            | 56            | 56            |
| Evolutio      | n                    | 56            | 56            | 56            | 0.25          | 0.25          | 0.25        |            |                        | 65            | 65            | 65            | 65            |
| Eco           |                      | 77            | 77            | 77            | 0.13          | 0.13          | 0.13        |            |                        | -             | -             | -             | -             |
| x             |                      |               |               |               |               |               |             |            |                        | 110           | 110           | 110           | 110           |
| Evo           |                      |               |               |               |               |               |             |            |                        |               |               |               |               |
|               | ment                 | 31            | 31            | 31            | 0             | 0             | 0           | 1          | 1                      | 25            | 25            | 25            | 25            |
| Environi      |                      |               |               |               |               |               |             | 0          |                        |               |               |               |               |
| Spe           | 3                    | 609           | 609           | 181           | 1.44          | 1.44          | 1.44        | 3          | 3                      | 948           | 948           | 236           | 236           |
|               |                      | 609           | 609           | 181           | 1.44          | 1.44          | 1.44        | 3          | 3                      | 948           | 948           | 236           | 230           |

 $\operatorname{Com}$ 

| Trans-<br>plant | Trans-                                                                                                                   | Trans-                                                                                                                                             | Trans-                                                                                                                                                                                                                                                   | Trans-                                                                                                                                                                                                                                                                                             | ocalecipro                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| plant           |                                                                                                                          |                                                                                                                                                    | LIGING                                                                                                                                                                                                                                                   | rans-                                                                                                                                                                                                                                                                                              | Trans-                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| C-00110         | $\operatorname{plant}$                                                                                                   | plant                                                                                                                                              | plant                                                                                                                                                                                                                                                    | plant                                                                                                                                                                                                                                                                                              | plant                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| Envi-           | Envi-                                                                                                                    | Ēnvi-                                                                                                                                              | Ēnvi-                                                                                                                                                                                                                                                    | Ēnvi-                                                                                                                                                                                                                                                                                              | Envi-                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| ron-            | ron-                                                                                                                     | ron-                                                                                                                                               | ron-                                                                                                                                                                                                                                                     | ron-                                                                                                                                                                                                                                                                                               | ron-                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| ment:           | ment:                                                                                                                    | ment:                                                                                                                                              | ment:                                                                                                                                                                                                                                                    | ment:                                                                                                                                                                                                                                                                                              | ment:                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| 1,              | 1,                                                                                                                       | 1,                                                                                                                                                 | 1,                                                                                                                                                                                                                                                       | 1,                                                                                                                                                                                                                                                                                                 | 1,                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| High            | High                                                                                                                     | High                                                                                                                                               | High                                                                                                                                                                                                                                                     | High                                                                                                                                                                                                                                                                                               | High                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| Light           | Light                                                                                                                    | Light                                                                                                                                              | Light                                                                                                                                                                                                                                                    | Light                                                                                                                                                                                                                                                                                              | Light                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| – Low           | - Low                                                                                                                    | - Low                                                                                                                                              | – Low                                                                                                                                                                                                                                                    | - Low                                                                                                                                                                                                                                                                                              | – Low                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| Nutri-          | Nutri-                                                                                                                   | Nutri-                                                                                                                                             | Nutri-                                                                                                                                                                                                                                                   | Nutri-                                                                                                                                                                                                                                                                                             | Nutri-                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| ents            | ents                                                                                                                     | ents                                                                                                                                               | ents                                                                                                                                                                                                                                                     | ents                                                                                                                                                                                                                                                                                               | ents                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| Repli-          | Repli-                                                                                                                   | Repli-                                                                                                                                             | Repli-                                                                                                                                                                                                                                                   | Repli-                                                                                                                                                                                                                                                                                             | Repli-                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| cate            | cate                                                                                                                     | cate                                                                                                                                               | cate                                                                                                                                                                                                                                                     | cate                                                                                                                                                                                                                                                                                               | cate                                                                                                                                                                                                                                                                                                                                                    | Replica                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | teReplica                                                                                                                                                                                                                                                                                                                                                                                                             | teReplica                                                                                                                                                                                                                                                                                                                                                                                  | teReplica                                                                                                                                                                                                                                                                                                                                                                          | teReplica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | teReplica                                             | iteRep                                                |
| meso-           | meso-                                                                                                                    | meso-                                                                                                                                              | meso-                                                                                                                                                                                                                                                    | meso-                                                                                                                                                                                                                                                                                              | meso-                                                                                                                                                                                                                                                                                                                                                   | meso-                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | meso-                                                                                                                                                                                                                                                                                                                                                                                                                 | meso-                                                                                                                                                                                                                                                                                                                                                                                      | meso-                                                                                                                                                                                                                                                                                                                                                                              | meso-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | meso-                                                 | meso                                                  |
| cosm:           | cosm:                                                                                                                    | cosm:                                                                                                                                              | cosm:                                                                                                                                                                                                                                                    | cosm:                                                                                                                                                                                                                                                                                              | cosm:                                                                                                                                                                                                                                                                                                                                                   | cosm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cosm:                                                                                                                                                                                                                                                                                                                                                                                                                 | cosm:                                                                                                                                                                                                                                                                                                                                                                                      | cosm:                                                                                                                                                                                                                                                                                                                                                                              | cosm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cosm:                                                 | $\cos n$                                              |
| 1               | 1                                                                                                                        | 1                                                                                                                                                  | 1                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                     | 2                                                     |
| 3               | 228                                                                                                                      | 228                                                                                                                                                | 76                                                                                                                                                                                                                                                       | 0.58                                                                                                                                                                                                                                                                                               | 0.58                                                                                                                                                                                                                                                                                                                                                    | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                          | 230                                                                                                                                                                                                                                                                                                                                                                                | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                    | $\gamma\gamma$                                        |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| 1               | 48                                                                                                                       | 48                                                                                                                                                 | 48                                                                                                                                                                                                                                                       | 0.01                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                    | 15                                                    |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| 3               | 124                                                                                                                      | 124                                                                                                                                                | 41                                                                                                                                                                                                                                                       | 0.30                                                                                                                                                                                                                                                                                               | 0.30                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                          | 75                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                    | 25                                                    |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
|                 |                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| -               |                                                                                                                          |                                                                                                                                                    | 4                                                                                                                                                                                                                                                        | 4.35                                                                                                                                                                                                                                                                                               | 4.35                                                                                                                                                                                                                                                                                                                                                    | 4.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                     | 5                                                     |
| 399             | 12535                                                                                                                    | 12535                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 399                                                                                                                                                                                                                                                                                                                                                                                                                   | 399                                                                                                                                                                                                                                                                                                                                                                                        | 14152                                                                                                                                                                                                                                                                                                                                                                              | 14152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |                                                       |
|                 | ron-<br>ment: 1,<br>High<br>Light – Low<br>Nutri-<br>ents<br>Repli-<br>cate<br>meso-<br>cosm: 1<br>3<br>1<br>3<br>3<br>3 | ron-<br>ment:ron-<br>ment:1,1,HighHighLightLight- Low- LowNutri-Nutri-<br>entsentsentsRepli-Repli-<br>catecatecasemeso-cosm:<br>11132281 $48$ 3124 | ron-<br>ment:ron-<br>ment:ron-<br>ment:1,1,1,HighHighHighLightLightLightLightLightLightLightLightLightLightLightLightLow- Low- LowNutri-Nutri-Nutri-Nutri-entsentsentsRepli-Repli-Repli-catecatecatemeso-meso-meso-cosm:cosm:cosm:1113228228148483124124 | ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:1,1,1,1,HighHighHighHighLightLightLightLightLightLightLightLightLightLightLightLightLow- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-Nutri-entsentsentsRepli-Repli-Repli-catecatecatemeso-meso-meso-cosm:cosm:cosm:1113228228312412438416711671 | ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:1,1,1,1,1,HighHighHighHighHighLightLightLightLightLightLightLightLightLightLight- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-entsentsentsentsRepli-Repli-Repli-Repli-catecatecatecatemeso-meso-meso-meso-11113228228761484848312412441 $384$ 1671167144.35 | ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:1,1,1,1,1,1,1,HighHighHighHighHighHighHighLightLightLightLightLightLightLightLightLightLightLightLightLightLight- Low- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-Nutri-entsentsentsentsentsRepli-Repli-Repli-Repli-Repli-catecatecatecatecatemeso-meso-meso-meso-meso-cosm:cosm:cosm:cosm:cosm:111113228228760.5814848480.010.013124124410.300.30 | ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:1,1,1,1,1,1,HighHighHighHighHighHighLightLightLightLightLightLight- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-entsentsentsentsentsRepli-Repli-Repli-Repli-Repli-catecatecatecatecatecatecosm:cosm:cosm:cosm:cosm:cosm:1111123228228760.580.580.5814848480.010.010.013124124410.300.300.30 | ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:1,1,1,1,1,1,HighHighHighHighHighLightLightLightLightLightLightLightLightLightLightLight- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-entsentsentsentsentsRepli-Repli-Repli-Repli-Repli-catecatecatecatecatecasecosm:cosm:cosm:cosm:cosm:cosm:1111113124124410.300.300.303841671167144.354.354.35384 | ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:1,1,1,1,1,1,HighHighHighHighHighHighLightLightLightLightLightLight- Low- Low- Low- Low- Low- LowNutri-Nutri-Nutri-Nutri-Nutri-entsentsentsentsentsentsentsentsentsentsRepli-Repli-Repli-Repli-Repli-catecatecatecatecatecosm:cosm:cosm:cosm:cosm:11111288228760.580.583841671167144.354.354.35384384 | ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ron-<br>ment:ment:<br>ment:ment:<br>ment:1,1,1,1,1,1,High<br>HighHigh<br>LightHigh<br>LightHigh<br>LightHigh<br>LightHigh<br>LightLight<br>LowLight<br>LowLight<br>LightLight<br>LightLight<br>LightLight<br>Light- Low<br>Nutri-<br>ents- Low<br>ents- Low<br>ents- Low<br>ents- Low<br>entsNutri-<br>entsnutri-<br>entsNutri-<br>entsNutri-<br>entsNutri-<br>entsNutri-<br>entsRepli-<br>catecate<br>catecate<br>catecate<br>catecate<br>catecate<br>catemeso-<br>meso-<br>meso-meso-<br>meso-meso-<br>meso-11111112223228228760.580.583323014848480.010.0111153124124410.300.300.303375 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm: | Replicate<br>mesocosm: | Replicate<br>mesocosm: | Replicate<br>mesocosm: | Replica<br>mesocos       |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|--------------------------|
| 1                                                                                                               | 1                                                                                                               | 1                                                                                                               | 1                                                                                                               | 1                                                                                                               | 2                      | 2                      | 2                      | 2                        |
| Source                                                                                                          | df                                                                                                              | SS                                                                                                              | MS                                                                                                              | Variance<br>Com-<br>ponent                                                                                      | df                     | SS                     | MS                     | Varian<br>Com-<br>ponent |
| Species                                                                                                         | 3                                                                                                               | 13081                                                                                                           | 4360                                                                                                            | 7.97                                                                                                            | 3                      | 11868                  | 3956                   | 7.03                     |
| Community                                                                                                       | 1                                                                                                               | 282                                                                                                             | 282                                                                                                             | 0                                                                                                               | 1                      | 434                    | 434                    | 0                        |
| Ecology                                                                                                         |                                                                                                                 | 1                                                                                                               | 1                                                                                                               | 0                                                                                                               |                        | 9                      | 9                      | 0                        |
| Evolution                                                                                                       |                                                                                                                 | 314                                                                                                             | 314                                                                                                             | 1.51                                                                                                            |                        | 320                    | 320                    | 1.54                     |
| Eco x<br>Evo                                                                                                    |                                                                                                                 | -33                                                                                                             | -33                                                                                                             | 0                                                                                                               |                        | 105                    | 105                    | 0.26                     |

| Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm:<br>1     | Replicate<br>mesocosm:<br>2      | Replicate<br>mesocosm:<br>2      | Replicate<br>mesocosm:<br>2      | Replica<br>mesoco<br>2        |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------|
| Environment                                                                                                              |                                                                                                                          | 112                                                                                                                      | 112                                                                                                                      | 0                                                                                                                        | 1                                | 81                               | 81                               | 0                             |
| Spe x<br>Com                                                                                                             | 3                                                                                                                        | 4155                                                                                                                     | 1419                                                                                                                     | 10.35                                                                                                                    | 3                                | 2921                             | 967                              | 6.76                          |
| Spe x<br>Env                                                                                                             | 3                                                                                                                        | 2084                                                                                                                     | 695                                                                                                                      | 5.05                                                                                                                     | 3                                | 1409                             | 470                              | 3.30                          |
| Com x<br>Env                                                                                                             | 1                                                                                                                        | 20                                                                                                                       | 20                                                                                                                       | 0                                                                                                                        | 1                                | 51                               | 51                               | 0                             |
| Spe x<br>Com x<br>Env                                                                                                    | 3                                                                                                                        | 142                                                                                                                      | 47                                                                                                                       | 0.30                                                                                                                     | 3                                | 588                              | 196                              | 1.35                          |
| Error<br>Total                                                                                                           | 384<br>399                                                                                                               | 2175<br>22051                                                                                                            | 6                                                                                                                        | 5.66                                                                                                                     | 384<br>399                       | 2519<br>19871                    | $\gamma$                         | 6.56                          |
| Reciprocal<br>Transplant<br>Environ-<br>ment: 4,<br>Medium<br>Light –<br>Low<br>Nutrients<br>Replicate<br>mesocosm:<br>1 | Replicate<br>meso-<br>cosm:<br>2 | Replicate<br>meso-<br>cosm:<br>2 | Replicate<br>meso-<br>cosm:<br>2 | Replic<br>meso-<br>cosm:<br>2 |
| Source                                                                                                                   | df                                                                                                                       | SS                                                                                                                       | MS                                                                                                                       | Variance<br>Com-<br>ponent                                                                                               | df                               | SS                               | $\mathbf{MS}$                    | Varian<br>Com-<br>ponen       |
| Species                                                                                                                  | 3                                                                                                                        | 10920                                                                                                                    | 3640                                                                                                                     | 7.32                                                                                                                     | 3                                | 9606                             | 3202                             | 6.27                          |
| Community                                                                                                                | 1                                                                                                                        | 64                                                                                                                       | 64                                                                                                                       | 0                                                                                                                        | 1                                | 82                               | 82                               | 0.06                          |
| Ecology                                                                                                                  |                                                                                                                          | 12                                                                                                                       | 12                                                                                                                       | 0.04                                                                                                                     |                                  | 86                               | 86                               | 0.41                          |
| Evolution                                                                                                                |                                                                                                                          | 25                                                                                                                       | 25                                                                                                                       | 0.10                                                                                                                     |                                  | 14                               | 14                               | 0.05                          |
| Eco x<br>Evo                                                                                                             |                                                                                                                          | 28                                                                                                                       | 28                                                                                                                       | 0.11                                                                                                                     |                                  | -18                              | -18                              | 0.02                          |
| Environment                                                                                                              |                                                                                                                          | 22                                                                                                                       | 22                                                                                                                       | 0                                                                                                                        | 1                                | 29                               | 29                               | 0                             |
| Spe x<br>Com                                                                                                             | 3                                                                                                                        | 491                                                                                                                      | 279                                                                                                                      | 2.23                                                                                                                     | 3                                | 58                               | 6                                | 0.02                          |
| Spe x<br>Env                                                                                                             | 3                                                                                                                        | 199                                                                                                                      | 66                                                                                                                       | 0.51                                                                                                                     | 3                                | 204                              | 68                               | 0.51                          |
| Com x                                                                                                                    | 1                                                                                                                        | 25                                                                                                                       | 25                                                                                                                       | 0                                                                                                                        | 1                                | 13                               | 13                               | 0                             |

| Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm:<br>1      | Replicate<br>mesocosm:<br>2      | Replicate<br>mesocosm:<br>2      | Replicate<br>mesocosm:<br>2      | Replica<br>mesocos<br>2        |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------|
| Spe x<br>Com x<br>Env                                                                                                     | 3                                                                                                                         | 140                                                                                                                       | 47                                                                                                                        | 0.35                                                                                                                      | 3                                | 56                               | 19                               | 0.12                           |
| Error<br>Total                                                                                                            | 384<br>399                                                                                                                | 1331<br>13193                                                                                                             | 3                                                                                                                         | 3.47                                                                                                                      | 384<br>399                       | 1165<br>11212                    | 3                                | 3.03                           |
| Reciprocal<br>Transplant<br>Environ-<br>ment: 6,<br>Medium<br>Light –<br>High<br>Nutrients<br>Replicate<br>mesocosm:<br>1 | Replicate<br>meso-<br>cosm:<br>2 | Replicate<br>meso-<br>cosm:<br>2 | Replicate<br>meso-<br>cosm:<br>2 | Replica<br>meso-<br>cosm:<br>2 |
| Source                                                                                                                    | df                                                                                                                        | SS                                                                                                                        | MS                                                                                                                        | Variance<br>Com-<br>ponent                                                                                                | df                               | SS                               | $\mathbf{MS}$                    | Varian<br>Com-<br>ponent       |
| Species                                                                                                                   | 3                                                                                                                         | 16118                                                                                                                     | 5373                                                                                                                      | 11.24                                                                                                                     | 3                                | 12124                            | 4041                             | 8.17                           |
| Community                                                                                                                 | 1                                                                                                                         | 150                                                                                                                       | 150                                                                                                                       | 0.02                                                                                                                      | 1                                | 219                              | 219                              | 0.13                           |
| Ecology                                                                                                                   |                                                                                                                           | 223                                                                                                                       | 223                                                                                                                       | 1.09                                                                                                                      |                                  | 428                              | 428                              | 2.11                           |
| Evolution                                                                                                                 |                                                                                                                           | 25                                                                                                                        | 25                                                                                                                        | 0.10                                                                                                                      |                                  | 81                               | 81                               | 0.38                           |
| Eco x<br>Evo                                                                                                              |                                                                                                                           | -98                                                                                                                       | -98                                                                                                                       | 0                                                                                                                         |                                  | -289                             | -289                             | 0.15                           |
| Environment                                                                                                               |                                                                                                                           | 8                                                                                                                         | 8                                                                                                                         | 0                                                                                                                         | 1                                | 13                               | 13                               | 0                              |
| Spe x<br>Com                                                                                                              | 3                                                                                                                         | 405                                                                                                                       | 176                                                                                                                       | 1.46                                                                                                                      | 3                                | 280                              | 31                               | 0.23                           |
| Spe x<br>Env                                                                                                              | 3                                                                                                                         | 320                                                                                                                       | 107                                                                                                                       | 0.86                                                                                                                      | 3                                | 152                              | 51                               | 0.38                           |
| Com x<br>Env                                                                                                              | 1                                                                                                                         | 17                                                                                                                        | 17                                                                                                                        | 0                                                                                                                         | 1                                | 13                               | 13                               | 0                              |
| Spe x<br>Com x<br>Env                                                                                                     | 3                                                                                                                         | 197                                                                                                                       | 66                                                                                                                        | 0.51                                                                                                                      | 3                                | 180                              | 60                               | 0.45                           |
| Error                                                                                                                     | 384                                                                                                                       | 1642                                                                                                                      | 4                                                                                                                         | 4.28                                                                                                                      | 384                              | 1462                             | 4                                | 3.81                           |
| Total                                                                                                                     | 399                                                                                                                       | 18856                                                                                                                     |                                                                                                                           |                                                                                                                           | 399                              | 14444                            |                                  |                                |
|                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                  |                                  |                                  |                                |

| Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm:<br>1    | Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm:<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm:<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm:<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Replicate<br>mesocosm:<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Replicate<br>mesocosm:<br>2                          | Replicate<br>mesocosm:<br>2                            | Replica<br>mesoco<br>2                                  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| Reciprocal<br>Transplant<br>Environ-<br>ment: 7,<br>Low Light<br>– Low<br>Nutrients<br>Replicate<br>mesocosm:<br>1      | Reciprocal<br>Transplant<br>Environ-<br>ment: 7,<br>Low Light<br>– Low<br>Nutrients<br>Replicate<br>mesocosm:<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reciprocal<br>Transplant<br>Environ-<br>ment: 7,<br>Low Light<br>– Low<br>Nutrients<br>Replicate<br>mesocosm:<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reciprocal<br>Transplant<br>Environ-<br>ment: 7,<br>Low Light<br>– Low<br>Nutrients<br>Replicate<br>mesocosm:<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Replicate<br>meso-<br>cosm:<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Replicate<br>meso-<br>cosm:<br>2                     | Replicate<br>meso-<br>cosm:<br>2                       | Replic<br>meso-<br>cosm:<br>2                           |
| df                                                                                                                      | SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Variance<br>Com-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS                                                   | $\mathbf{MS}$                                          | Varian<br>Com-<br>ponent                                |
| 3                                                                                                                       | 13499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11836                                                | 3945                                                   | 7.16                                                    |
| 1                                                                                                                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overset{\cdot}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81                                                   | 81                                                     | 0.00                                                    |
|                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77                                                   | 77                                                     | 0.35                                                    |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                   | 42                                                     | 0.18                                                    |
|                                                                                                                         | -85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -38                                                  | -38                                                    | 0                                                       |
| 1                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                   | 25                                                     | 0                                                       |
| 3                                                                                                                       | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 432                                                  | 196                                                    | 1.39                                                    |
| 3                                                                                                                       | 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 181                                                  | 60                                                     | 0.40                                                    |
| 1                                                                                                                       | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | 53                                                     | 0                                                       |
| 3                                                                                                                       | 540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 272                                                  | 91                                                     | 0.62                                                    |
| 384<br>200                                                                                                              | 1759<br>16597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 384<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2019                                                 | 5                                                      | 5.26                                                    |
| 399<br>Reciprocal<br>Transplant<br>Environ-<br>ment: 8,<br>Low Light<br>– Medium<br>Nutrients<br>Replicate<br>mesocosm: | 16537<br>Reciprocal<br>Transplant<br>Environ-<br>ment: 8,<br>Low Light<br>– Medium<br>Nutrients<br>Replicate<br>mesocosm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reciprocal<br>Transplant<br>Environ-<br>ment: 8,<br>Low Light<br>– Medium<br>Nutrients<br>Replicate<br>mesocosm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reciprocal<br>Transplant<br>Environ-<br>ment: 8,<br>Low Light<br>– Medium<br>Nutrients<br>Replicate<br>mesocosm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 399<br>Replicate<br>meso-<br>cosm:<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14900<br>Replicate<br>meso-<br>cosm:<br>2            | Replicate<br>meso-<br>cosm:<br>2                       | Replic<br>meso-<br>cosm:<br>2                           |
| -                                                                                                                       | Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm: 1<br>Reciprocal<br>Transplant<br>Environ-<br>ment: 7,<br>Low Light<br>– Low<br>Nutrients<br>Replicate<br>mesocosm: 1<br>df<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>3<br>1<br>3<br>1<br>3<br>3<br>1<br>3<br>1<br>3<br>3<br>1<br>3<br>1<br>3<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | TransplantTransplantEnviron-<br>ment: 3,Environ-<br>ment: 3,High LightHigh Light- High- HighNutrientsNutrientsReplicateReplicate<br>mesocosm:11ReciprocalReciprocal<br>TransplantEnviron-<br>ment: 7,Environ-<br>ment: 7,Low LightLow Light- LowNutrientsReplicate<br>mesocosm:Replicate<br>mesocosm:11dfSS313499195044<br>- 8518<br>26333981613540384<br>TransplantTransplant<br>Environ-<br>ment: 8,1613540384<br>Low LightTransplant<br>Environ-<br>ment: 8,1613540384<br>Low LightTransplant<br>Environ-<br>ment: 8,Low Light- Medium<br>NutrientsNutrientsReciprocal<br>Transplant<br>Environ-<br>ment: 8,Low Light- Medium<br>NutrientsNutrientsReciprocal<br>Reciprocal<br>Transplant<br>Environ-<br>ment: 8, | Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>NutrientsTransplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>– High<br>– High<br>NutrientsTransplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>NutrientsTransplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>NutrientsTransplant<br>Environ-<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>1Transplant<br>Environ-<br>ment: 7,<br>ment: 8,<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesocosm:<br>mesoco | Transplant<br>Environ-<br>ment: 3,<br>High Light<br>- High<br>- High<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh<br>tigh <br< td=""><td><math display="block">\begin{array}{cccccccccccccccccccccccccccccccccccc</math></td><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td></br<> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| – High<br>Nutrients<br>Replicate                                                                               | Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate             | Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate             | Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate             | Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light<br>– High<br>Nutrients<br>Replicate             | Replicate                        | Replicate                         | Replicate                        | Replica                        |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|--------------------------------|
| mesocosm:<br>1                                                                                                 | mesocosm:<br>1                                                                                                 | mesocosm:<br>1                                                                                                 | mesocosm:<br>1                                                                                                 | mesocosm:<br>1                                                                                                 | mesocosm:<br>2                   | mesocosm:<br>2                    | mesocosm:<br>2                   | mesoco<br>2                    |
| Source                                                                                                         | df                                                                                                             | SS                                                                                                             | MS                                                                                                             | Variance<br>Com-<br>ponent                                                                                     | df                               | SS                                | MS                               | Varian<br>Com-<br>ponent       |
| Species                                                                                                        | 3                                                                                                              | 12156                                                                                                          | 4052                                                                                                           | 7.67                                                                                                           | 3                                | 14921                             | 4974                             | 8.79                           |
| Community<br>Ecology<br>Evolution<br>Eco x                                                                     | 1                                                                                                              | 11<br>103<br>94<br>-185                                                                                        | 11<br>103<br>94<br>-185                                                                                        | $0 \\ 0.48 \\ 0.44 \\ 0$                                                                                       | 1                                | 84<br>44<br>119<br>-79            | 84<br>44<br>119<br>-79           | 0<br>0.15<br>0.52<br>0         |
| Evo<br>Emi                                                                                                     | 4                                                                                                              | 04                                                                                                             | 04                                                                                                             | 0                                                                                                              | 4                                | 20                                | 20                               | 0                              |
| Environment<br>Spe x<br>Com                                                                                    | $\frac{1}{3}$                                                                                                  | 21<br>585                                                                                                      | 21<br>145                                                                                                      | $\begin{array}{c} 0 \\ 1.07 \end{array}$                                                                       | $\frac{1}{3}$                    | 72<br>814                         | 72<br>454                        | 0<br>3.17                      |
| Spe x<br>Env                                                                                                   | 3                                                                                                              | 222                                                                                                            | 74                                                                                                             | 0.53                                                                                                           | 3                                | 674                               | 225                              | 1.52                           |
| Com x<br>Env                                                                                                   | 1                                                                                                              | 44                                                                                                             | 44                                                                                                             | 0                                                                                                              | 1                                | 177                               | 177                              | 0                              |
| Spe x<br>Com x<br>Env                                                                                          | 3                                                                                                              | 232                                                                                                            | 77                                                                                                             | 0.55                                                                                                           | 3                                | 849                               | 283                              | 1.93                           |
| Error<br>Total                                                                                                 | 384<br>399                                                                                                     | 1725<br>14996                                                                                                  | 4                                                                                                              | 4.49                                                                                                           | 384<br>399                       | 4013<br>21604                     | 10                               | 10.45                          |
| Reciprocal<br>Transplant<br>Environ-<br>ment: 9,<br>Low Light<br>– High<br>Nutrients<br>Replicate<br>mesocosm: | Replicate<br>meso-<br>cosm:<br>2 | Replicate<br>meso-<br>cosm:<br>2  | Replicate<br>meso-<br>cosm:<br>2 | Replic<br>meso-<br>cosm:<br>2  |
| 1<br>Source                                                                                                    | 1<br>df                                                                                                        | $1 \\ SS$                                                                                                      | $\frac{1}{\mathbf{MS}}$                                                                                        | 1<br>Variance<br>Com-<br>ponent                                                                                | df                               | $\mathbf{SS}$                     | $\mathbf{MS}$                    | Varian<br>Com-<br>ponent       |
| Species<br>Community<br>Ecology<br>Evolution<br>Eco x<br>Evo                                                   | 3<br>1                                                                                                         | 15036<br>27<br>46<br>121<br>-140                                                                               | 5012<br>27<br>46<br>121<br>-140                                                                                | 9.01<br>0<br>0.20<br>0.57<br>0                                                                                 | 3<br>1                           | 12712<br>129<br>247<br>48<br>-167 | 4237<br>129<br>247<br>48<br>-167 | 7.44<br>0<br>1.20<br>0.21<br>0 |
| Environment                                                                                                    | 1                                                                                                              | 38                                                                                                             | 38                                                                                                             | 0                                                                                                              | 1                                | 14                                | 14                               | 0                              |
|                                                                                                                |                                                                                                                |                                                                                                                |                                                                                                                |                                                                                                                |                                  | ,                                 | ,                                |                                |

| Reciprocal<br>Transplant<br>Environ-<br>ment: 3,<br>High Light |           |           |           |         |
|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------|-----------|-----------|---------|
| – High                                                         |           |           |           |         |
| Nutrients                                                      | Nutrients                                                      | Nutrients                                                      | Nutrients                                                      | Nutrients                                                      |           |           |           |         |
| Replicate                                                      | Replicate                                                      | Replicate                                                      | Replicate                                                      | Replicate                                                      | Replicate | Replicate | Replicate | Replica |
| mesocosm:                                                      | mesocosm:                                                      | mesocosm:                                                      | mesocosm:                                                      | mesocosm:                                                      | mesocosm: | mesocosm: | mesocosm: | mesoco  |
| 1                                                              | 1                                                              | 1                                                              | 1                                                              | 1                                                              | 2         | 2         | 2         | 2       |
| Spe x                                                          | 3                                                              | 781                                                            | 278                                                            | 1.98                                                           | 3         | 475       | 421       | 2.94    |
| Com                                                            |                                                                |                                                                |                                                                |                                                                |           |           |           |         |
| Spe x                                                          | 3                                                              | 213                                                            | 71                                                             | 0.47                                                           | 3         | 153       | 51        | 0.33    |
| Env                                                            |                                                                |                                                                |                                                                |                                                                |           |           |           |         |
| Com x                                                          | 1                                                              | 14                                                             | 14                                                             | 0                                                              | 1         | 100       | 100       | 0       |
| Env                                                            | 0                                                              | 0.017                                                          | 76                                                             | 0.50                                                           | 0         | F00       | 107       | 1 00    |
| Spe x<br>Com x                                                 | 3                                                              | 227                                                            | 70                                                             | 0.50                                                           | 3         | 582       | 194       | 1.33    |
| Env                                                            |                                                                |                                                                |                                                                |                                                                |           |           |           |         |
| Error                                                          | 384                                                            | 2182                                                           | 6                                                              | 5.68                                                           | 384       | 1566      | 4         | 4.08    |
| Total                                                          | 399                                                            | 18518                                                          | ~                                                              |                                                                | 399       | 15731     | 7         | 7.00    |

| In       | In                   | In            | In     | In     | In                   | In            | In            | In            | In     | In      |         |                        |               |
|----------|----------------------|---------------|--------|--------|----------------------|---------------|---------------|---------------|--------|---------|---------|------------------------|---------------|
| situ     | situ                 | situ          | situ   | situ   | situ                 | situ          | situ          | situ          | situ   | situ    |         |                        |               |
| time     | time                 | time          | time   | time   | time                 | time          | time          | time          | time   | time    |         |                        |               |
| series   | series               | series        | series | series | series               | series        | series        | series        | series | series  |         |                        |               |
| Envi-    | Envi-                | Envi-         | Envi-  | Envi-  | Envi-                | Envi-         | Envi-         | Envi-         | Envi-  | Envi-   |         |                        |               |
| ron-     | ron-                 | ron-          | ron-   | ron-   | ron-                 | ron-          | ron-          | ron-          | ron-   | ron-    |         |                        |               |
| ment:    | ment:                | ment:         | ment:  | ment:  | ment:                | ment:         | ment:         | ment:         | ment:  | ment:   |         |                        |               |
| 1,       | 1,                   | 1,            | 1,     | 1,     | 1,                   | 1,            | 1,            | 1,            | 1,     | 1,      |         |                        |               |
| High     | High                 | High          | High   | High   | High                 | High          | High          | High          | High   | High    |         |                        |               |
| Light    | Light                | Light         | Light  | Light  | Light                | Light         | Light         | Light         | Light  | Light   |         |                        |               |
| – Low    | – Low                | – Low         | – Low  | – Low  | – Low                | – Low         | – Low         | – Low         | – Low  | – Low   |         |                        |               |
| Nutri-   | Nutri-               | Nutri-        | Nutri- | Nutri- | Nutri-               | Nutri-        | Nutri-        | Nutri-        | Nutri- | Nutri-  |         |                        |               |
| ents     | ents                 | ents          | ents   | ents   | ents                 | ents          | ents          | ents          | ents   | ents    |         |                        |               |
| Repli-   | Repli-               | Repli-        | Repli- | Repli- | Repli-               | Repli-        | Repli-        | Repli-        | Repli- | Repli-  |         |                        |               |
| cate     | cate                 | cate          | cate   | cate   | cate                 | cate          | cate          | cate          | cate   | cate    | Replica | ateReplica             | ateRep        |
| meso-    | meso-                | meso-         | meso-  | meso-  | meso-                | meso-         | meso-         | meso-         | meso-  | meso-   | meso-   | meso-                  | meso          |
| cosm:    | cosm:                | cosm:         | cosm:  | cosm:  | cosm:                | cosm:         | cosm:         | cosm:         | cosm:  | cosm:   | cosm:   | cosm:                  | $\cos n$      |
| 1        | 1                    | 1             | 1      | 1      | 1                    | 1             | 1             | 1             | 1      | 1       | 2       | 2                      | 2             |
| Source   | Source               | df            | df     | df     | SS                   | $\mathbf{SS}$ | $\mathbf{MS}$ | $\mathbf{MS}$ | Varian | ceVaria | ncelf   | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$ |
|          |                      |               |        |        |                      |               |               |               | Com-   | Com-    |         |                        |               |
|          |                      |               |        |        |                      |               |               |               | po-    | po-     |         |                        |               |
|          |                      |               |        |        |                      |               |               |               | nent   | nent    |         |                        |               |
| Species* | Species <sup>*</sup> | * 2           | 2      | 2      | 506                  | 506           | 253           | 253           | 0.45   | 0.45    | 2       | 2                      | 586           |
| Commu    | n <b>ty</b> mmu      | ni <b>t</b> y | 1      | 1      | 18                   | 18            | 18            | 18            | 0      | 0       | 1       | 1                      | 35            |
| Ecology  | Ecology              |               |        |        | $\widetilde{\gamma}$ | $\gamma$      | $\gamma$      | $\gamma$      | 0.02   | 0.02    |         |                        | 3             |
| Evolutio | onEvolutio           | on            |        |        | 29                   | 29            | 29            | 29            | 0.13   | 0.13    |         |                        | 50            |
|          |                      |               |        |        |                      |               |               |               |        |         |         |                        |               |

| In                   | In                   | In             | In             | In             | In             | In             | In             | In             | In             | In             |       |           |              |
|----------------------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|-----------|--------------|
| situ                 | situ                 | situ           | situ           | situ           | situ           | situ           | situ           | situ           | situ           | situ           |       |           |              |
| time                 | time                 | time           | time           | time           | time           | time           | time           | time           | time           | time           |       |           |              |
| series               | series               | series         | series         | series         | series         | series         | series         | series         | series         | series         |       |           |              |
| Envi-                | Envi-                | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          |       |           |              |
| ron-                 | ron-                 | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           |       |           |              |
| ment:                | ment:                | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          |       |           |              |
| 1,                   | 1,<br>II: 1          | 1,<br>II: 1    | 1,<br>II: 1    | 1,             | 1,             | 1,<br>         | 1,<br>II: 1    | 1,<br>II: 1    | 1,             | 1,             |       |           |              |
| High                 | High                 | High           | High           | High           | High           | High           | High           | High           | High           | High           |       |           |              |
| Light                | Light                | Light          | Light          | Light          | Light          | Light          | Light          | Light          | Light          | Light          |       |           |              |
| – Low                | – Low                | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          |       |           |              |
| Nutri-               | Nutri-               | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         |       |           |              |
| ents<br>Der li       | ents<br>Der li       | ents<br>Der li | ents<br>Der li | ents           | ents<br>Der li | ents<br>D 1:   | ents<br>D 1:   | ents           | ents           | ents<br>Der li |       |           |              |
| Repli-               | Repli-               | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | D 1:  | + - D 1:  | + - D 1      |
| cate                 | cate                 | cate           | cate           | cate           | cate           | cate           | cate           | cate           | cate           | cate           | -     | teReplica | -            |
| meso-                | meso-                | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso- | meso-     | meso         |
| cosm:                | cosm:                | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | $\cosm$ :      | cosm:          | cosm:          | cosm: | cosm:     | $\cos n$     |
| 1                    | 1                    | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 2     | 2         | 2            |
| Eco                  | Eco                  |                |                |                | -18            | -18            | -18            | -18            | 0              | 0              |       |           | -18          |
| х                    | х                    |                |                |                |                |                |                |                |                |                |       |           |              |
| Evo                  | Evo                  |                |                |                |                |                |                |                |                |                |       |           |              |
|                      | m <b>ænt</b> iron    |                | 1              | 1              | 65             | 65             | 65             | 65             | 0              | 0              | 1     | 1         | 163          |
| $\operatorname{Spe}$ | $\operatorname{Spe}$ | 3              | 3              | 3              | 321            | 321            | 211            | 211            | 1.51           | 1.51           | 3     | 3         | 765          |
| х                    | х                    |                |                |                |                |                |                |                |                |                |       |           |              |
| Com                  | Com                  |                |                |                |                |                |                |                |                |                |       |           |              |
| $\operatorname{Spe}$ | $\operatorname{Spe}$ | 3              | 3              | 3              | 194            | 194            | 97             | 97             | 0.68           | 0.68           | 3     | 3         | 113          |
| х                    | х                    |                |                |                |                |                |                |                |                |                |       |           |              |
| Env                  | Env                  |                |                |                |                |                |                |                |                |                |       |           |              |
| Com                  | Com                  | 1              | 1              | 1              | 62             | 62             | 62             | 62             | 0              | 0              | 1     | 1         | 61           |
| х                    | х                    |                |                |                |                |                |                |                |                |                |       |           |              |
| Env                  | Env                  |                |                |                |                |                |                |                |                |                |       |           |              |
| $\operatorname{Spe}$ | $\operatorname{Spe}$ | 3              | 3              | 3              | 144            | 144            | 72             | 72             | 0.50           | 0.50           | 3     | 3         | 395          |
| X                    | X                    |                |                |                |                |                |                |                |                |                |       |           |              |
| Com                  | Com                  |                |                |                |                |                |                |                |                |                |       |           |              |
| X                    | X                    |                |                |                |                |                |                |                |                |                |       |           |              |
| Env                  | Env                  |                |                | 221            | 0.00           | 0.00           | 0              | 0              |                |                | 001   | 224       | 0 <b>F N</b> |
| Error                | Error                | 384            | 384            | 384            | <i>978</i>     | <i>978</i>     | 3              | 3              | 2.52           | 2.52           | 384   | 384       | 857          |
| Total                | Total                | 399<br>*1 1    | 399<br>*1 1    | 399<br>*1 1    | 2289           | 2289           | *7 1           | *7 1           | *7 '           | *7 '           | 399   | 399       | 2976         |
| *Local               | *Local               | *Local         | *Local         | *Local         | *Local         | *Local         | *Local         | *Local         | *Local         | *Local         |       |           |              |
| ex-                  | ex-                  | ex-            | ex-            | ex-            | ex-            | ex-            | ex-            | ex-            | ex-            | ex-            |       |           |              |
| tinc-                | tinc-                | tinc-          | tinc-          | tinc-          | tinc-          | tinc-          | tinc-          | tinc-          | tinc-          | tinc-          |       |           |              |
| tion                 | tion                 | tion           | tion           | tion           | tion           | tion           | tion           | tion           | tion           | tion           |       |           |              |
| of                   | of                   | of             | of             | of             | of<br>W        | of<br>W        | of<br>W        | of             | of             | of             |       |           |              |
| Wc,                  | Wc,                  | Wc,            | Wc,            | Wc,            | Wc,            | Wc,            | Wc,            | Wc,            | Wc,            | Wc,            |       |           |              |
| hence                | hence                | hence          | hence          | hence          | hence          | hence          | hence          | hence          | hence          | hence          |       |           |              |
| 2 df                 | 2 df                 | 2 df           | 2 df           | 2 df           | 2 df           | 2 df           | 2 df           | 2 df           | 2 df           | 2 df           |       |           |              |
| for<br>Currier       | for<br>Currier       | for<br>Curries | for<br>Currier | for<br>Curries | for<br>Currier | for<br>Curvier | for<br>Currier | for<br>Currier | for<br>Curried | for<br>Curried |       |           |              |
| Species              | Species              | Species        | Species        | Species        | Species        | Species        | Species        | Species        | Species        | Species        |       |           |              |

| In       | In                     | In                     | In            | In            | In            | In            | In            | In            | In     | In       |          |                        |                |
|----------|------------------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|--------|----------|----------|------------------------|----------------|
| situ     | situ                   | situ                   | situ          | situ          | situ          | situ          | situ          | situ          | situ   | situ     |          |                        |                |
| time     | time                   | time                   | time          | time          | time          | time          | time          | time          | time   | time     |          |                        |                |
| series   | series                 | series                 | series        | series        | series        | series        | series        | series        | series | series   |          |                        |                |
| Envi-    | Envi-                  | Envi-                  | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-  | Envi-    |          |                        |                |
| ron-     | ron-                   | ron-                   | ron-          | ron-          | ron-          | ron-          | ron-          | ron-          | ron-   | ron-     |          |                        |                |
| ment:    | ment:                  | ment:                  | ment:         | ment:         | ment:         | ment:         | ment:         | ment:         | ment:  | ment:    |          |                        |                |
| 1,       | 1,                     | 1,                     | 1,            | 1,            | 1,            | 1,            | 1,            | 1,            | 1,     | 1,       |          |                        |                |
| High     | High                   | High                   | High          | High          | High          | High          | High          | High          | High   | High     |          |                        |                |
| Light    | Light                  | Light                  | Light         | Light         | Light         | Light         | Light         | Light         | Light  | Light    |          |                        |                |
| – Low    | – Low                  | – Low                  | – Low         | – Low         | – Low         | – Low         | – Low         | – Low         | – Low  | – Low    |          |                        |                |
| Nutri-   | Nutri-                 | Nutri-                 | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri- | Nutri-   |          |                        |                |
| ents     | ents                   | ents                   | ents          | ents          | ents          | ents          | ents          | ents          | ents   | ents     |          |                        |                |
| Repli-   | Repli-                 | Repli-                 | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli- | Repli-   | י ו ת    | י ו ת                  | D              |
| cate     | cate                   | cate                   | cate          | cate          | cate          | cate          | cate          | cate          | cate   | cate     | -        | eReplicat              | -              |
| meso-    | meso-                  | meso-                  | meso-         | meso-         | meso-         | meso-         | meso-         | meso-         | meso-  | meso-    | meso-    | meso-                  | meso           |
| cosm:    | cosm:                  | cosm:                  | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:  | cosm:    | cosm:    | cosm:                  | cosn           |
| 1        | 1                      | 1                      | 1             | 1             | 1             | 1             | 1             | 1             | 1      | 1        | 2        | 2                      | 2              |
| In       | In                     | In                     | In            | In            | In            | In            | In            | In            | In     | In       | Replica  | tReplica               | t <b>R</b> ep  |
| situ     | situ                   | situ                   | situ          | situ          | situ          | situ          | situ          | situ          | situ   | situ     | meso-    | meso-                  | $\mathbf{mes}$ |
| time     | time                   | time                   | time          | time          | time          | time          | time          | time          | time   | time     | cosm:    | cosm:                  | cosr           |
| series   | series                 | series                 | series        | series        | series        | series        | series        | series        | series | series   | <b>2</b> | <b>2</b>               | <b>2</b>       |
| Envi-    | Envi-                  | Envi-                  | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-  | Envi-    |          |                        |                |
| ron-     | ron-                   | ron-                   | ron-          | ron-          | ron-          | ron-          | ron-          | ron-          | ron-   | ron-     |          |                        |                |
| ment:    | ment:                  | ment:                  | ment:         | ment:         | ment:         | ment:         | ment:         | ment:         | ment:  | ment:    |          |                        |                |
| 2,       | 2,                     | 2,                     | 2,            | 2,            | 2,            | 2,            | 2,            | 2,            | 2,     | 2,       |          |                        |                |
| High     | High                   | High                   | High          | High          | High          | High          | High          | High          | High   | High     |          |                        |                |
| Light    | Light                  | Light                  | Light         | Light         | Light         | Light         | Light         | Light         | Light  | Light    |          |                        |                |
| _        | _                      | _                      | _             | _             | _             | _             | _             | _             | _      | _        |          |                        |                |
|          |                        |                        | Medium        |               |               |               |               |               |        |          |          |                        |                |
| Nutri-   | Nutri-                 | Nutri-                 | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri- | Nutri-   |          |                        |                |
| ents     | ents                   | ents                   | ents          | ents          | ents          | ents          | ents          | ents          | ents   | ents     |          |                        |                |
| Repli-   | Repli-                 | Repli-                 | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli- | Repli-   |          |                        |                |
| cate     | cate                   | cate                   | cate          | cate          | cate          | cate          | cate          | cate          | cate   | cate     |          |                        |                |
| meso-    | meso-                  | meso-                  | meso-         | meso-         | meso-         | meso-         | meso-         | meso-         | meso-  | meso-    |          |                        |                |
| cosm:    | cosm:                  | cosm:                  | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:  | cosm:    |          |                        |                |
| 1        | 1                      | 1                      | 1             | 1             | 1             | 1             | 1             | 1             | 1      | 1        |          |                        |                |
| Source   | $\mathbf{d}\mathbf{f}$ | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$ | $\mathbf{SS}$ | $\mathbf{SS}$ | $\mathbf{MS}$ | $\mathbf{MS}$ | $\mathbf{MS}$ |        | eVariano | edf      | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$  |
|          |                        |                        |               |               |               |               |               |               | Com-   | Com-     |          |                        |                |
|          |                        |                        |               |               |               |               |               |               | po-    | po-      |          |                        |                |
| ~ .      |                        |                        |               |               |               |               |               |               | nent   | nent     |          |                        |                |
| Species  |                        | 3                      | 1168          | 1168          | 1168          | 389           | 389           | 389           | 0.78   | 0.78     | 3        | 3                      | 357            |
| Commur   | nıty                   | 1                      | 7             | 7             | 7             | 7             | 7             | 7             | 0      | 0        | 1        | 1                      | 20             |
| Ecology  |                        |                        | 46            | 46            | 46            | 46            | 46            | 46            | 0.22   | 0.22     |          |                        | 3              |
| Evolutio | n                      |                        | 75            | 75            | 75            | 75            | 75            | 75            | 0.37   | 0.37     |          |                        | 16             |
| Eco      |                        |                        | -             | -             | -             | -             | -             | -             | 0      | 0        |          |                        | 1              |
| x        |                        |                        | 114           | 114           | 114           | 114           | 114           | 114           |        |          |          |                        |                |
| Evo      | <b>.</b> .             |                        | 0             | 0             | 0             | 0             | 0             | 0             | 0      | 0        |          |                        | <u></u>        |
| Environ  | nient                  | 1                      | 6             | 6             | 6             | 6             | 6             | 6             | 0      | 0        | 1        | 1                      | 24             |
|          |                        |                        |               |               |               |               |               |               |        |          |          |                        |                |

| In                    |         |           |          |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------|-----------|----------|
| situ                  |         |           |          |
| $\operatorname{time}$ |         |           |          |
| series                |         |           |          |
| Envi-                 |         |           |          |
| ron-                  |         |           |          |
| ment:                 |         |           |          |
| 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    |         |           |          |
| High                  |         |           |          |
| Light                 |         |           |          |
| - Low                 | – Low                 | – Low                 | - Low                 | – Low                 | – Low                 | - Low                 | – Low                 | – Low                 | – Low                 | – Low                 |         |           |          |
| Nutri-                |         |           |          |
| ents                  |         |           |          |
| Repli-                |         |           |          |
| cate                  | Replica | teReplica | teRepl   |
| meso-                 | meso-   | meso-     | mesc     |
| cosm:                 | cosm:   | cosm:     | $\cos n$ |
| 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 2       | 2         | 2        |
| Spe                   | 3                     | 3                     | 265                   | 265                   | 265                   | 88                    | 88                    | 88                    | 0.71                  | 0.71                  | 3       | 3         | 878      |
| х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Com                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Spe                   | 3                     | 3                     | 94                    | 94                    | 94                    | 31                    | 31                    | 31                    | 0.25                  | 0.25                  | 3       | 3         | 136      |
| х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Env                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Com                   | 1                     | 1                     | 18                    | 18                    | 18                    | 18                    | 18                    | 18                    | 0.02                  | 0.02                  | 1       | 1         | 19       |
| х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Env                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| $\operatorname{Spe}$  | 3                     | 3                     | 27                    | 27                    | 27                    | 9                     | 9                     | 9                     | 0.07                  | 0.07                  | 3       | 3         | 327      |
| х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Com                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Env                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |
| Error                 | 384                   | 384                   | 242                   | 242                   | 242                   | 1                     | 1                     | 1                     | 0.63                  | 0.63                  | 384     | 384       | 392      |
| Total                 | 399                   | 399                   | 1827                  | 1827                  | 1827                  |                       |                       |                       |                       |                       | 399     | 399       | 2154     |
|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |         |           |          |

| In            | In                    | In                     | In                     | In                    | In            | In            | In                    | In                    | In                    | In     |             |           |               |
|---------------|-----------------------|------------------------|------------------------|-----------------------|---------------|---------------|-----------------------|-----------------------|-----------------------|--------|-------------|-----------|---------------|
| $_{i}^{situ}$ | situ                  | situ                   | situ                   | situ                  | situ          | situ          | situ                  | situ                  | situ                  | situ   |             |           |               |
| time          | $\operatorname{time}$ | time                   | time                   | $\operatorname{time}$ | time          | time          | $\operatorname{time}$ | $\operatorname{time}$ | $\operatorname{time}$ | time   |             |           |               |
| series        | series                | series                 | series                 | series                | series        | series        | series                | series                | series                | series |             |           |               |
| Envi-         | Envi-                 | Envi-                  | Envi-                  | Envi-                 | Envi-         | Envi-         | Envi-                 | Envi-                 | Envi-                 | Envi-  |             |           |               |
| ron-          | ron-                  | ron-                   | ron-                   | ron-                  | ron-          | ron-          | ron-                  | ron-                  | ron-                  | ron-   |             |           |               |
| ment:         | ment:                 | ment:                  | ment:                  | ment:                 | ment:         | ment:         | ment:                 | ment:                 | ment:                 | ment:  |             |           |               |
| 1,            | 1,                    | 1,                     | 1,                     | 1,                    | 1,            | 1,            | 1,                    | 1,                    | 1,                    | 1,     |             |           |               |
| High          | High                  | High                   | High                   | High                  | High          | High          | High                  | High                  | High                  | High   |             |           |               |
| Light         | Light                 | Light                  | Light                  | Light                 | Light         | Light         | Light                 | Light                 | Light                 | Light  |             |           |               |
| – Low         | – Low                 | – Low                  | – Low                  | – Low                 | – Low         | – Low         | – Low                 | – Low                 | – Low                 | – Low  |             |           |               |
| Nutri-        | Nutri-                | Nutri-                 | Nutri-                 | Nutri-                | Nutri-        | Nutri-        | Nutri-                | Nutri-                | Nutri-                | Nutri- |             |           |               |
| ents          | ents                  | ents                   | ents                   | ents                  | ents          | ents          | ents                  | ents                  | ents                  | ents   |             |           |               |
| Repli-        | Repli-                | Repli-                 | Repli-                 | Repli-                | Repli-        | Repli-        | Repli-                | Repli-                | Repli-                | Repli- | <b>D</b> 11 |           |               |
| cate          | cate                  | cate                   | cate                   | cate                  | cate          | cate          | cate                  | cate                  | cate                  | cate   |             | teReplica |               |
| meso-         | meso-                 | meso-                  | meso-                  | meso-                 | meso-         | meso-         | meso-                 | meso-                 | meso-                 | meso-  | meso-       | meso-     | mesc          |
| cosm:         | cosm:                 | cosm:                  | cosm:                  | cosm:                 | cosm:         | cosm:         | cosm:                 | cosm:                 | cosm:                 | cosm:  | cosm:       | cosm:     | $\cos n$      |
| 1             | 1                     | 1                      | 1                      | 1                     | 1             | 1             | 1                     | 1                     | 1                     | 1      | 2           | 2         | 2             |
| In            | In                    | In                     | In                     | In                    | In            | In            | In                    | In                    | In                    | In     | In          | Replic    | atRep         |
| situ          | situ                  | situ                   | situ                   | situ                  | situ          | situ          | situ                  | situ                  | situ                  | situ   | situ        | meso-     | mes           |
| time          | time                  | time                   | time                   | time                  | time          | time          | time                  | time                  | time                  | time   | time        | cosm:     | $\cos n$      |
| series        | series                | series                 | series                 | series                | series        | series        | series                | series                | series                | series | series      | <b>2</b>  | <b>2</b>      |
| Envi-         | Envi-                 | Envi-                  | Envi-                  | Envi-                 | Envi-         | Envi-         | Envi-                 | Envi-                 | Envi-                 | Envi-  | Envi-       |           |               |
| ron-          | ron-                  | ron-                   | ron-                   | ron-                  | ron-          | ron-          | ron-                  | ron-                  | ron-                  | ron-   | ron-        |           |               |
| ment:         | ment:                 | ment:                  | ment:                  | ment:                 | ment:         | ment:         | ment:                 | ment:                 | ment:                 | ment:  | ment:       |           |               |
| 3,            | 3,                    | 3,                     | 3,                     | 3,                    | 3,            | 3,            | 3,                    | 3,                    | 3,                    | 3,     | 3,          |           |               |
| High          | High                  | High                   | High                   | High                  | High          | High          | High                  | High                  | High                  | High   | High        |           |               |
| Light         | Light                 | Light                  | Light                  | Light                 | Light         | Light         | Light                 | Light                 | Light                 | Light  | Light       |           |               |
| _             | _                     | _                      | _                      | _                     | _             | _             | _                     | _                     | _                     | _      | _           |           |               |
| High          | High                  | High                   | High                   | High                  | High          | High          | High                  | High                  | High                  | High   | High        |           |               |
| Nutri-        | Nutri-                | Nutri-                 | Nutri-                 | Nutri-                | Nutri-        | Nutri-        | Nutri-                | Nutri-                | Nutri-                | Nutri- | Nutri-      |           |               |
| ents          | ents                  | ents                   | ents                   | ents                  | ents          | ents          | ents                  | ents                  | ents                  | ents   | ents        |           |               |
| Repli-        | Repli-                | Repli-                 | Repli-                 | Repli-                | Repli-        | Repli-        | Repli-                | Repli-                | Repli-                | Repli- | Repli-      |           |               |
| cate          | cate                  | cate                   | cate                   | cate                  | cate          | cate          | cate                  | cate                  | cate                  | cate   | cate        |           |               |
| meso-         | meso-                 | meso-                  | meso-                  | meso-                 | meso-         | meso-         | meso-                 | meso-                 | meso-                 | meso-  | meso-       |           |               |
| cosm:         | cosm:                 | cosm:                  | cosm:                  | cosm:                 | cosm:         | cosm:         | cosm:                 | cosm:                 | cosm:                 | cosm:  | cosm:       |           |               |
| 1             | 1                     | 1                      | 1                      | 1                     | 1             | 1             | 1                     | 1                     | 1                     | 1      | 1           |           |               |
| Source        | Source                | $\mathbf{d}\mathbf{f}$ | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$         | $\mathbf{SS}$ | $\mathbf{SS}$ | $\mathbf{SS}$         | $\mathbf{MS}$         | $\mathbf{MS}$         | Varian | ceVarian    | celf      | $\mathbf{SS}$ |
|               |                       |                        |                        |                       |               |               |                       |                       |                       | Com-   | Com-        |           |               |
|               |                       |                        |                        |                       |               |               |                       |                       |                       | po-    | po-         |           |               |
|               |                       |                        |                        |                       |               |               |                       |                       |                       | nent   | nent        |           |               |
| Species       | Species               | 3                      | 3                      | 1242                  | 1242          | 1242          | 1242                  | 414                   | 414                   | 0.76   | 0.76        | 3         | 2172          |
|               | ni¢ømmu               |                        | 1                      | 27                    | 27            | 27            | 27                    | 27                    | 27                    | 0      | 0           | 1         | 22            |
|               | Ecology               | v                      |                        | 6                     | 6             | 6             | 6                     | 6                     | 6                     | 0.02   | 0.02        |           | 1             |
|               | onEvolutio            |                        |                        | 49                    | 49            | 49            | 49                    | 49                    | 49                    | 0.24   | 0.24        |           | 16            |
| Eco           | Eco                   |                        |                        | -28                   | -28           | -28           | -28                   | -28                   | -28                   | 0      | 0           |           | 5             |
| x             | х                     |                        |                        |                       |               |               |                       |                       |                       |        |             |           |               |
| Evo           | Evo                   |                        |                        |                       |               |               |                       |                       |                       |        |             |           |               |
|               | m <b>ent</b> iron     | mlent                  | 1                      | 6                     | 6             | 6             | 6                     | 6                     | 6                     | 0      | 0           | 1         | 6             |
|               |                       |                        |                        |                       |               |               |                       |                       |                       |        |             |           |               |

| In                    |          |           |          |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------|-----------|----------|
| situ                  |          |           |          |
| $\operatorname{time}$ |          |           |          |
| series                |          |           |          |
| Envi-                 |          |           |          |
| ron-                  |          |           |          |
| ment:                 |          |           |          |
| 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    |          |           |          |
| High                  |          |           |          |
| Light                 |          |           |          |
| – Low                 | - Low                 | – Low                 |          |           |          |
| Nutri-                |          |           |          |
| ents                  |          |           |          |
| Repli-                |          |           |          |
| cate                  | Replica  | teReplica | teRepl   |
| meso-                 | meso-    | meso-     | meso     |
| cosm:                 | cosm:    | cosm:     | $\cos n$ |
| 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 2        | 2         | 2        |
| Spe                   | Spe                   | 3                     | 3                     | 514                   | 514                   | 514                   | 514                   | 177                   | 177                   | 1.29                  | 1.29     | 3         | 59       |
| х                     | х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| Com                   | Com                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| $\operatorname{Spe}$  | $\operatorname{Spe}$  | 3                     | 3                     | 54                    | 54                    | 54                    | 54                    | 18                    | 18                    | 0.12                  | 0.12     | 3         | 76       |
| х                     | х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| Env                   | Env                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| Com                   | Com                   | 1                     | 1                     | 13                    | 13                    | 13                    | 13                    | 13                    | 13                    | 0                     | 0        | 1         | 23       |
| х                     | х                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| Env                   | Env                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| $\operatorname{Spe}$  | $\operatorname{Spe}$  | 3                     | 3                     | 108                   | 108                   | 108                   | 108                   | 36                    | 36                    | 0.25                  | 0.25     | 3         | 316      |
| X                     | X                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| Com                   | Com                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| X                     | X                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |
| Env                   | Env                   | 004                   | 224                   | 100                   | 100                   | 100                   | 100                   | ,                     |                       |                       | <b>.</b> |           |          |
| Error                 | Error                 | 384                   | 384                   | 482                   | 482                   | 482                   | 482                   | 1                     | 1                     | 1.25                  | 1.25     | 384       | 445      |
| Total                 | Total                 | 399                   | 399                   | 2446                  | 2446                  | 2446                  | 2446                  |                       |                       |                       |          | 399       | 3119     |
|                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |          |           |          |

| In             | In                  | In                     | In                     | In             | In             | In             | In             | In              | In              | In               |                  |           |               |
|----------------|---------------------|------------------------|------------------------|----------------|----------------|----------------|----------------|-----------------|-----------------|------------------|------------------|-----------|---------------|
| situ<br>timo   | situ<br>timo        | situ<br>timo           | situ<br>timo           | situ<br>timo   | situ<br>timo   | situ<br>timo   | situ<br>timo   | situ<br>timo    | situ<br>timo    | situ<br>timo     |                  |           |               |
| time<br>series | time<br>series      | time<br>series         | time<br>series         | time<br>series | time<br>series | time<br>series | time<br>series | time<br>series  | time<br>series  | time<br>series   |                  |           |               |
| Envi-          | Envi-               | Envi-                  | Envi-                  | Envi-          | Envi-          | Envi-          | Envi-          | Series<br>Envi- | Series<br>Envi- | Envi-            |                  |           |               |
| ron-           | ron-                | ron-                   | ron-                   | ron-           | ron-           | ron-           | ron-           | ron-            | ron-            | ron-             |                  |           |               |
| ment:          | ment:               | ment:                  | ment:                  | ment:          | ment:          | ment:          | ment:          | ment:           | ment:           | ment:            |                  |           |               |
| 1,             | 1,                  | 1,                     | 1,                     | 1,             | 1,             | 1,             | 1,             | 1,              | 1,              | 1,               |                  |           |               |
| 1,<br>High     | I,<br>High          | I,<br>High             | I,<br>High             | I,<br>High     | I,<br>High     | I,<br>High     | I,<br>High     | ı,<br>High      | I,<br>High      | I,<br>High       |                  |           |               |
|                | Light               | Light                  | Light                  | Light          | Light          | Light          | Light          | Light           | Light           | Light            |                  |           |               |
| – Low          | – Low               | – Low                  | – Low                  | – Low          | – Low          | – Low          | – Low          | – Low           | – Low           | – Low            |                  |           |               |
| Nutri-         | Nutri-              | Nutri-                 | Nutri-                 | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-          | Nutri-          | Nutri-           |                  |           |               |
| ents           | ents                | ents                   | ents                   | ents           | ents           | ents           | ents           | ents            | ents            | ents             |                  |           |               |
| Repli-         | Repli-              | Repli-                 | Repli-                 | Repli-         | Repli-         | Repli-         | Repli-         | Repli-          | Repli-          | Repli-           |                  |           |               |
| cate           | cate                | cate                   | cate                   | cate           | cate           | cate           | cate           | cate            | cate            | cate             | Replicat         | eReplicat | eRepl         |
| meso-          | meso-               | meso-                  | meso-                  | meso-          | meso-          | meso-          | meso-          | meso-           | meso-           | meso-            | meso-            | meso-     | mesc          |
| cosm:          | cosm:               | cosm:                  | cosm:                  | cosm:          | cosm:          | cosm:          | cosm:          | cosm:           | cosm:           | cosm:            | cosm:            | cosm:     | $\cos n$      |
| 1              | 1                   | 1                      | 1                      | 1              | 1              | 1              | 1              | 1               | 1               | 1                | 2                | 2         | 2             |
| In             | In                  | In                     | In                     | In             | In             | In             | In             | In              | In              | In               | In               | Replica   | tRep          |
| situ           | situ                | situ                   | situ                   | situ           | situ           | situ           | situ           | situ            | situ            | situ             | situ             | meso-     | mes           |
| time           | time                | time                   | time                   | time           | time           | time           | time           | time            | time            | time             | time             | cosm:     | $\cos n$      |
| series         | series              | series                 | series                 | series         | series         | series         | series         | series          | series          | series           | series           | <b>2</b>  | <b>2</b>      |
| Envi-          | Envi-               | Envi-                  | Envi-                  | Envi-          | Envi-          | Envi-          | Envi-          | Envi-           | Envi-           | Envi-            | Envi-            |           |               |
| ron-           | ron-                | ron-                   | ron-                   | ron-           | ron-           | ron-           | ron-           | ron-            | ron-            | ron-             | ron-             |           |               |
| ment:          | ment:               | ment:                  | ment:                  | ment:          | ment:          | ment:          | ment:          | ment:           | ment:           | ment:            | ment:            |           |               |
| 4,             | 4,                  | 4,                     | 4,                     | 4,             | 4,             | 4,             | 4,             | 4,              | 4,              | 4,               | 4,               |           |               |
|                | Medium              |                        |                        |                |                |                |                |                 |                 |                  |                  |           |               |
| Light          | Light               | Light                  | Light                  | Light          | Light          | Light          | Light          | Light           | Light           | Light            | Light            |           |               |
| – Low          | – Low               | – Low                  | – Low                  | – Low          | – Low          | – Low          | – Low          | – Low           | – Low           | – Low            | – Low            |           |               |
| Nutri-         | Nutri-              | Nutri-                 | Nutri-                 | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-          | Nutri-          | Nutri-           | Nutri-           |           |               |
| ents           | ents                | ents                   | ents                   | ents           | ents           | ents           | ents           | ents            | ents            | ents             | ents             |           |               |
| Repli-         | Repli-              | Repli-                 | Repli-                 | Repli-         | Repli-         | Repli-         | Repli-         | Repli-          | Repli-          | Repli-           | Repli-           |           |               |
| cate           | cate                | cate                   | cate                   | cate           | cate           | cate           | cate           | cate            | cate            | cate             | cate             |           |               |
| meso-          | meso-               | meso-                  | meso-                  | meso-          | meso-          | meso-          | meso-          | meso-           | meso-           | meso-            | meso-            |           |               |
| cosm:          | cosm:               | cosm:                  | cosm:                  | cosm:          | cosm:          | cosm:          | cosm:          | cosm:           | cosm:           | cosm:            | cosm:            |           |               |
| 1              | 1                   | 1                      | 1                      | 1              | 1              | 1              | 1              | 1               | 1               | 1                | 1                | 10        | aa            |
| Source         | Source              | $\mathbf{d}\mathbf{f}$ | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$  | $\mathbf{SS}$  | $\mathbf{SS}$  | $\mathbf{SS}$  | $\mathbf{MS}$   | $\mathbf{MS}$   | Variance<br>Com- | eVarianc<br>Com- | elf       | $\mathbf{SS}$ |
|                |                     |                        |                        |                |                |                |                |                 |                 | po-              | po-              |           |               |
|                |                     |                        |                        |                |                |                |                |                 |                 | nent             | nent             |           |               |
| Species*       | Species*            | 3                      | 3                      | 4009           | 4009           | 4009           | 4009           | 2004            | 2004            | 4.06             | 4.06             | 3         | 3454          |
|                | n <b>E</b> ømmur    |                        | 1                      | 47             | 47             | 47             | 47             | 2004<br>47      | 2004<br>47      | $\frac{1}{0}$    | $0^{4.00}$       | 1         | 84<br>84      |
| Ecology        |                     | iii) y                 | 1                      | 20             | 20             | 20             | 20             | 20              | 20              | 0.08             | 0.08             | 1         | 18            |
| 00             | nEvolution          | n                      |                        | 20<br>104      | 20<br>104      | 20<br>104      | 20<br>104      | 20<br>104       | 20<br>104       | 0.50             | 0.50             |           | 127           |
| Eco            | Eco                 |                        |                        | -77            | -77            | -77            | -77            | -77             | -77             | 0.00             | 0.00             |           | -61           |
| x              | x                   |                        |                        |                |                |                |                |                 |                 | ~                | 5                |           |               |
| Evo            | Evo                 |                        |                        |                |                |                |                |                 |                 |                  |                  |           |               |
|                | n <b>fent</b> ironr | nŧent                  | 1                      | 37             | 37             | 37             | 37             | 37              | 37              | 0                | 0                | 1         | 246           |
| Spe            | Spe                 | 3                      | 3                      | 369            | 369            | 369            | 369            | 327             | 327             | 2.64             | 2.64             | 3         | 425           |
| x<br>x         | x                   |                        | -                      |                |                |                |                |                 | •               | · · 7            |                  |           | 1.20          |
| Com            | Com                 |                        |                        |                |                |                |                |                 |                 |                  |                  |           |               |
|                |                     |                        |                        |                |                |                |                |                 |                 |                  |                  |           |               |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|---------|---------|---------|---------|---------|---------|--------------|--------------|--------------|---------------|----------|----------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                    | 0       | 0       | 0       | 0       | 0       |         | 0       | 0            | 0            | 0            |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                    | 0       | 0       | 0       | 0       | 0       | 0       |         | 0            | 0            | 0            |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         | Nutri-  |         |         | Nutri-  | Nutri-       |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                    | -       | -       | -       | -       | -       | -       | -       | -            | -            | -            |               |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cate                 | cate    | cate    | cate    | cate    | cate    | cate    | cate    | cate         | cate         | cate         | Replicat      | eReplica | -        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | meso-                | meso-   | meso-   | meso-   | meso-   | meso-   | meso-   | meso-   | meso-        | meso-        | meso-        | meso-         | meso-    | meso     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cosm:                | cosm:   | cosm:   |         | cosm:   | cosm:   |         | cosm:   |              |              |              |               |          | $\cos n$ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                    | 1       | 1       | 1       | 1       | 1       | 1       | 1       | 1            | 1            | 1            | 2             | 2        | 2        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spe                  | Spe     | 3       | 3       | 119     | 119     | 119     | 119     | 59           | 59           | 0.45         | 0.45          | 3        | 153      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\operatorname{Com}$ | Com     | 1       | 1       | 51      | 51      | 51      | 51      | 51           | 51           | 0.02         | 0.02          | 1        | 29       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         | _       |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                    | -       | 3       | 3       | 90      | 90      | 90      | 90      | 45           | 45           | 0.33         | 0.33          | 3        | 113      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| TotalTotal $399$ $399$ $6170$ $6170$ $6170$ $6170$ $6170$ $6170$ $6170$ $6170$ $6170$ $6170$ $6170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ $5170$ </td <td></td> <td></td> <td>221</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>a <b>r</b>ia</td> <td>0.01</td> <td></td>                                                                                      |                      |         | 221     |         |         |         |         |         |              |              | 0.00         | a <b>r</b> ia | 0.01     |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |         |         |         |         |         |         | 4            | 4            | 3.73         | 3.73          |          | 1674     |
| ex- $ex$ - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ψ<b>Τ</b> 1</td><td>ψ<b>τ</b> 1</td><td>ψ<b>τ</b> 1</td><td>** 1</td><td>399</td><td>6177</td></th<> |                      |         |         |         |         |         |         |         | ψ <b>Τ</b> 1 | ψ <b>τ</b> 1 | ψ <b>τ</b> 1 | ** 1          | 399      | 6177     |
| tinc-tinc-tinc-tinc-tinc-tinc-tinc-tinc-tinc-tinc-tiontiontiontiontiontiontiontiontiontiontionofofofofofofofofofofofofWc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,hencehencehencehencehencehencehencehencehence2 df2 df2 df2 df2 df2 df2 df2 df2 df2 dfforforforforforforforforforforforfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| tiontiontiontiontiontiontiontiontiontionofofofofofofofofofofofWc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,Wc,hencehencehencehencehencehencehencehencehencehence2 df2 df2 df2 df2 df2 df2 df2 df2 df2 dfforforforforforforforforforforfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| ofofofofofofofofofofofof $Wc$ , $Wc$ ,hencehencehencehencehencehencehencehencehencehence2 df2 df2 df2 df2 df2 df2 df2 df2 df2 dfforforforforforforforforforforfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| Wc, $Wc$ , $Wc$ ,hencehencehencehencehencehencehencehencehence2df2df2df2df2df2df2offorforforforforforforforforfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                    | •       | •       |         | •       |         | •       |         | •            |              | •            | •             |          |          |
| 2 df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |         | ,       |         |         | · ·     |         |         |              | · ·          |              |               |          |          |
| for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |         |         |         |         |         |         |         |              |              |              |               |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                    | •       |         | •       | •       |         | •       |         |              |              |              |               |          |          |
| Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 0       |         | 9       |         |         | 2       |         |              |              | •            | •             |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Species              | Species | Species | Species | Species | Species | Species | Species | Species      | Species      | Species      | Species       |          |          |

| In             | In                 | In             | In             | In             | In             | In             | In             | In             | In             | In             |           |           |                |
|----------------|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------|-----------|----------------|
| situ           | situ               | situ           | situ           | situ           | situ           | situ           | situ           | situ           | situ           | situ           |           |           |                |
| time           | time               | time           | time           | time           | time           | time           | time           | time           | time           | time           |           |           |                |
| series<br>Emri | series<br>Enui     | series<br>Enui | series<br>Emri | series<br>Enui | series<br>Enui | series<br>Enui | series<br>Envi | series<br>Enui | series<br>Enui | series<br>Envi |           |           |                |
| Envi-          | Envi-              | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          |           |           |                |
| ron-           | ron-               | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           |           |           |                |
| ment:          | ment:              | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          |           |           |                |
| 1,             | 1,                 | 1,             | 1,             | 1,             | 1,             | 1,             | 1,             | 1,<br>         | 1,             | 1,             |           |           |                |
| High           | High               | High           |                | High           |           |           |                |
| Light          | Light              | Light          | Light          | Light          | Light          | Light          | Light          | Light          | Light          | Light          |           |           |                |
| – Low          | – Low              | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          | – Low          |           |           |                |
| Nutri-         | Nutri-             | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         |           |           |                |
| ents<br>Der li | ents<br>Dardi      | ents<br>D1     | ents<br>Der li | ents<br>Dardi  | ents<br>Der li | ents<br>Darili | ents<br>D l:   | ents<br>Dauli  | ents<br>D l'   | ents<br>D l:   |           |           |                |
| Repli-         | Repli-             | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | D 1: +    | -D 1: +   | - D 1          |
| cate           | cate               | cate           | cate           | cate           | cate           | cate           | cate           | cate           | cate           | cate           |           | eReplicat |                |
| meso-          | meso-              | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-     | meso-     | meso           |
| cosm:          | cosm:              | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:     | cosm:     | cosm           |
| 1              | 1                  | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 2         | 2         | 2              |
| In             | In                 | In             | In             | In             | In             | In             | In             | In             | In             | In             | In        | Replica   | tRep           |
| situ           | situ               | situ           | situ           | situ           | situ           | situ           | situ           | situ           | situ           | situ           | situ      | meso-     | $\mathbf{mes}$ |
| time           | time               | time           | time           | time           | time           | time           | time           | time           | time           | time           | time      | cosm:     | $\cos n$       |
| series         | series             | series         | series         | series         | series         | series         | series         | series         | series         | series         | series    | <b>2</b>  | <b>2</b>       |
| Envi-          | Envi-              | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-          | Envi-     |           |                |
| ron-           | ron-               | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-           | ron-      |           |                |
| ment:          | ment:              | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:          | ment:     |           |                |
| 6,             | 6,                 | 6,             | 6,             | 6,             | 6,             | 6,             | 6,             | 6,             | 6,             | 6,             | 6,        |           |                |
| Medium         | Medium             | Medium         | Medium         | Medium         | Medium         | Medium         | Medium         | Medium         | Medium         | Medium         | Medium    |           |                |
| Light          | Light              | Light          | Light          | Light<br>–     | Light          | Light          | Light          | Light          | Light          | Light          | Light     |           |                |
| –<br>High      | –<br>High          | –<br>High      | –<br>High      | –<br>High      | –<br>High      | –<br>High      | –<br>High      | –<br>High      | –<br>High      | –<br>High      | –<br>High |           |                |
| Nutri-         | Nutri-             | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-         | Nutri-    |           |                |
| ents           | ents               | ents           | ents           | ents           | ents           | ents           | ents           | ents           | ents           | ents           | ents      |           |                |
| Repli-         | Repli-             | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-         | Repli-    |           |                |
| cate           | cate               | cate           | cate           | cate           | cate           | cate           | cate           | cate           | cate           | cate           | cate      |           |                |
| meso-          | meso-              | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-          | meso-     |           |                |
| cosm:          | cosm:              | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:          | cosm:     |           |                |
| 1              | 1                  | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1         |           |                |
| Source         | Source             | df             | df             | SS             | SS             | SS             | SS             | MS             | MS             |                | Warianc   | elf       | $\mathbf{SS}$  |
| Source         | Source             |                |                | 55             | 55             | 22             | 55             | 1110           | 1110           | Com-           | Com-      |           | 22             |
|                |                    |                |                |                |                |                |                |                |                | po-            | po-       |           |                |
|                |                    |                |                |                |                |                |                |                |                | nent           | nent      |           |                |
| Species        | Species            | 3              | 3              | 3627           | 3627           | 3627           | 3627           | 1209           | 1209           | 2.53           | 2.53      | 3         | 4997           |
| Commur         | n <b>E</b> ømmur   | nity           | 1              | g              | 9              | g              | g              | 9              | 9              | 0              | 0         | 1         | 11             |
| Ecology        | •                  | -              |                | 215            | 215            | 215            | 215            | 215            | 215            | 1.06           | 1.06      |           | 395            |
|                | nEvolutio          | n              |                | 235            | 235            | 235            | 235            | 235            | 235            | 1.16           | 1.16      |           | 387            |
| Eco            | Eco                |                |                | -              | -              | -              | -              | -              | -              | 0              | 0         |           | -              |
| х              | х                  |                |                | 441            | 441            | 441            | 441            | 441            | 441            |                |           |           | 772            |
| Evo            | Evo                |                |                |                |                |                |                |                |                |                |           |           |                |
| Environ        | n <b>ent</b> ironr | ment           | 1              | 41             | 41             | 41             | 41             | 41             | 41             | 0.02           | 0.02      | 1         | 21             |
|                |                    |                |                |                |                |                |                |                |                |                |           |           |                |

| In                    | In                   | In                    | In                    | In          | In                    | In          | In                    | In                    | In     | In                    |         |            |             |
|-----------------------|----------------------|-----------------------|-----------------------|-------------|-----------------------|-------------|-----------------------|-----------------------|--------|-----------------------|---------|------------|-------------|
| situ                  | situ                 | situ                  | situ                  | situ        | situ                  | situ        | situ                  | situ                  | situ   | situ                  |         |            |             |
| $\operatorname{time}$ | time                 | $\operatorname{time}$ | $\operatorname{time}$ | time        | $\operatorname{time}$ | time        | $\operatorname{time}$ | $\operatorname{time}$ | time   | $\operatorname{time}$ |         |            |             |
| series                | series               | series                | series                | series      | series                | series      | series                | series                | series | series                |         |            |             |
| Envi-                 | Envi-                | Envi-                 | Envi-                 | Envi-       | Envi-                 | Envi-       | Envi-                 | Envi-                 | Envi-  | Envi-                 |         |            |             |
| ron-                  | ron-                 | ron-                  | ron-                  | ron-        | ron-                  | ron-        | ron-                  | ron-                  | ron-   | ron-                  |         |            |             |
| ment:                 | ment:                | ment:                 | ment:                 | ment:       | ment:                 | ment:       | ment:                 | ment:                 | ment:  | ment:                 |         |            |             |
| 1,                    | 1,                   | 1,                    | 1,                    | 1,          | 1,                    | 1,          | 1,                    | 1,                    | 1,     | 1,                    |         |            |             |
| High                  | High                 | High                  | High                  | High        | High                  | High        | High                  | High                  | High   | High                  |         |            |             |
| Light                 | Light                | Light                 | Light                 | Light       | Light                 | Light       | Light                 | Light                 | Light  | Light                 |         |            |             |
| – Low                 | – Low                | – Low                 | – Low                 | – Low       | – Low                 | – Low       | – Low                 | – Low                 | – Low  | – Low                 |         |            |             |
| Nutri-                | Nutri-               | Nutri-                | Nutri-                | Nutri-      | Nutri-                | Nutri-      | Nutri-                | Nutri-                | Nutri- | Nutri-                |         |            |             |
| ents                  | ents                 | ents                  | ents                  | ents        | ents                  | ents        | ents                  | ents                  | ents   | ents                  |         |            |             |
| Repli-                | Repli-               | Repli-                | Repli-                | Repli-      | Repli-                | Repli-      | Repli-                | Repli-                | Repli- | Repli-                |         |            |             |
| cate                  | cate                 | cate                  | cate                  | cate        | cate                  | cate        | cate                  | cate                  | cate   | cate                  | Replica | teReplica  | teRepl      |
| meso-                 | meso-                | meso-                 | meso-                 | meso-       | meso-                 | meso-       | meso-                 | meso-                 | meso-  | meso-                 | meso-   | meso-      | mesc        |
| cosm:                 | cosm:                | cosm:                 | cosm:                 | cosm:       | cosm:                 | cosm:       | cosm:                 | cosm:                 | cosm:  | cosm:                 | cosm:   | cosm:      | $\cos n$    |
| 1                     | 1                    | 1                     | 1                     | 1           | 1                     | 1           | 1                     | 1                     | 1      | 1                     | 2       | 2          | 2           |
| Spe                   | Spe                  | 3                     | 3                     | 596         | 596                   | 596         | 596                   | 150                   | 150    | 1.25                  | 1.25    | 3          | 592         |
| х                     | х                    |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| $\operatorname{Com}$  | Com                  |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| $\operatorname{Spe}$  | $\operatorname{Spe}$ | 3                     | 3                     | 62          | 62                    | 62          | 62                    | 21                    | 21     | 0.16                  | 0.16    | 3          | 132         |
| х                     | х                    |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| $\operatorname{Env}$  | Env                  |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| $\operatorname{Com}$  | Com                  | 1                     | 1                     | 6           | 6                     | 6           | 6                     | 6                     | 6      | 0                     | 0       | 1          | 9           |
| х                     | х                    |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| Env                   | Env                  |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| $\operatorname{Spe}$  | $\operatorname{Spe}$ | 3                     | 3                     | 134         | 134                   | 134         | 134                   | 45                    | 45     | 0.36                  | 0.36    | 3          | 101         |
| х                     | х                    |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| $\operatorname{Com}$  | $\operatorname{Com}$ |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| 0.0111                | COIII                |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| х                     | х                    |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| x<br>Env              | ${ m x}{ m Env}$     |                       |                       |             |                       |             |                       |                       |        |                       |         |            |             |
| x<br>Env<br>Error     | x<br>Env<br>Error    | 384                   | 384                   | 562         | 562                   | 562         | 562                   | 1                     | 1      | 1.46                  | 1.46    | 384        | 794         |
| x<br>Env              | ${ m x}{ m Env}$     | 384<br>399            | 384<br>399            | 562<br>5036 | 562<br>5036           | 562<br>5036 | 562<br>5036           | 1                     | 1      | 1.46                  | 1.46    | 384<br>399 | 794<br>6656 |

| In                   | In                    | In                     | In                     | In             | In             | In                    | In                    | In                    | In                    | In                    |                 |           |               |
|----------------------|-----------------------|------------------------|------------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------|-----------|---------------|
| situ                 | situ                  | situ                   | situ                   | situ           | situ           | situ                  | situ                  | situ                  | situ                  | situ                  |                 |           |               |
| time                 | $\operatorname{time}$ | time                   | time                   | time           | time           | $\operatorname{time}$ | $\operatorname{time}$ | $\operatorname{time}$ | $\operatorname{time}$ | $\operatorname{time}$ |                 |           |               |
| series<br>Envi       | series<br>Enui        | series<br>Envi         | series<br>Enui         | series<br>Envi | series<br>Enui | series<br>Envi        | series<br>Envi        | series<br>Envi        | series<br>Envi        | series<br>Envi-       |                 |           |               |
| Envi-                | Envi-<br>ron-         | Envi-                  | Envi-<br>ron-          | Envi-<br>ron-  | Envi-<br>ron-  | Envi-<br>ron-         | Envi-                 | Envi-<br>ron-         | Envi-<br>ron-         | ron-                  |                 |           |               |
| ron-<br>ment:        | ment:                 | ron-<br>ment:          | ment:                  | ment:          | ment:          | ment:                 | ron-<br>ment:         | ment:                 | ment:                 | ment:                 |                 |           |               |
| 1,                   | 1,                    | 1,                     | 1,                     | 1,             | 1,             | 1,                    | 1,                    | 1,                    | 1,                    | 1,                    |                 |           |               |
| r,<br>High           | I,<br>High            | I,<br>High             | ı,<br>High             | r,<br>High     | ı,<br>High     | ı,<br>High            | I,<br>High            | I,<br>High            | ı,<br>High            | I,<br>High            |                 |           |               |
| Light                | Light                 | Light                  | Light                  | Light          | Light          | Light                 | Light                 | Light                 | Light                 | Light                 |                 |           |               |
| – Low                | – Low                 | – Low                  | – Low                  | – Low          | – Low          | – Low                 | – Low                 | – Low                 | – Low                 | – Low                 |                 |           |               |
| Nutri-               | Nutri-                | Nutri-                 | Nutri-                 | Nutri-         | Nutri-         | Nutri-                | Nutri-                | Nutri-                | Nutri-                | Nutri-                |                 |           |               |
| ents                 | ents                  | ents                   | ents                   | ents           | ents           | ents                  | ents                  | ents                  | ents                  | ents                  |                 |           |               |
| Repli-               | Repli-                | Repli-                 | Repli-                 | Repli-         | Repli-         | Repli-                | Repli-                | Repli-                | Repli-                | Repli-                |                 |           |               |
| cate                 | cate                  | cate                   | cate                   | cate           | cate           | cate                  | cate                  | cate                  | cate                  | cate                  | Replica         | teReplica | teRepl        |
| meso-                | meso-                 | meso-                  | meso-                  | meso-          | meso-          | meso-                 | meso-                 | meso-                 | meso-                 | meso-                 | meso-           | meso-     | meso          |
| cosm:                | cosm:                 | cosm:                  | cosm:                  | cosm:          | cosm:          | cosm:                 | cosm:                 | cosm:                 | cosm:                 | cosm:                 | cosm:           | cosm:     | cosn          |
| 1                    | 1                     | 1                      | 1                      | 1              | 1              | 1                     | 1                     | 1                     | 1                     | 1                     | 2               | 2         | 2             |
| In                   | In                    | In                     | In                     | In             | In             | In                    | In                    | In                    | In                    | In                    | In              | Replic    | atRep         |
| situ                 | situ                  | situ                   | situ                   | situ           | situ           | situ                  | situ                  | situ                  | situ                  | situ                  | situ            | meso-     | mes           |
| time                 | time                  | time                   | time                   | time           | time           | time                  | time                  | time                  | time                  | time                  | time            | cosm:     | cosr          |
| series               | series                | series                 | series                 | series         | series         | series                | series                | series                | series                | series                | series          | <b>2</b>  | <b>2</b>      |
| Envi-                | Envi-                 | Envi-                  | Envi-                  | Envi-          | Envi-          | Envi-                 | Envi-                 | Envi-                 | Envi-                 | Envi-                 | Envi-           |           |               |
| ron-                 | ron-                  | ron-                   | ron-                   | ron-           | ron-           | ron-                  | ron-                  | ron-                  | ron-                  | ron-                  | ron-            |           |               |
| ment:                | ment:                 | ment:                  | ment:                  | ment:          | ment:          | ment:                 | ment:                 | ment:                 | ment:                 | ment:                 | ment:           |           |               |
| 7,                   | 7,                    | 7,                     | 7,                     | 7,             | 7,             | 7,                    | 7,                    | 7,                    | 7,                    | 7,                    | 7,              |           |               |
| Low                  | Low                   | Low                    | Low                    | Low            | Low            | Low                   | Low                   | Low                   | Low                   | Low                   | Low             |           |               |
| Light                | Light                 | Light                  | Light                  | Light          | Light          | Light                 | Light                 | Light                 | Light                 | Light                 | Light           |           |               |
| – Low                | – Low                 | – Low                  | – Low                  | – Low          | – Low          | – Low                 | – Low                 | – Low                 | – Low                 | – Low                 | – Low           |           |               |
| Nutri-               | Nutri-                | Nutri-                 | Nutri-                 | Nutri-         | Nutri-         | Nutri-                | Nutri-                | Nutri-                | Nutri-                | Nutri-                | Nutri-          |           |               |
| ents                 | ents                  | ents                   | ents                   | ents           | ents           | ents                  | ents                  | ents                  | ents                  | ents                  | ents            |           |               |
| Repli-               | Repli-                | Repli-                 | Repli-                 | Repli-         | Repli-         | Repli-                | Repli-                | Repli-                | Repli-                | Repli-                | Repli-          |           |               |
| cate                 | cate                  | cate                   | cate                   | cate           | cate           | cate                  | cate                  | cate                  | cate                  | cate                  | cate            |           |               |
| meso-                | meso-                 | meso-                  | meso-                  | meso-          | meso-          | meso-                 | meso-                 | meso-                 | meso-                 | meso-                 | meso-           |           |               |
| cosm:                | cosm:                 | cosm:                  | cosm:                  | cosm:          | cosm:          | cosm:                 | cosm:                 | cosm:                 | cosm:                 | cosm:                 | cosm:           |           |               |
| 1                    | 1                     | 1                      | 1                      | 1              | 1              | 1                     | 1                     | 1                     | 1                     | 1                     | 1               |           |               |
| Source               | Source                | $\mathbf{d}\mathbf{f}$ | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$  | $\mathbf{SS}$  | $\mathbf{SS}$         | $\mathbf{SS}$         | $\mathbf{MS}$         | $\mathbf{MS}$         |                       | ceVarian        | celf      | $\mathbf{SS}$ |
|                      |                       |                        |                        |                |                |                       |                       |                       |                       | Com-                  | Com-            |           |               |
|                      |                       |                        |                        |                |                |                       |                       |                       |                       | po-                   | po-             |           |               |
|                      |                       |                        |                        |                |                |                       |                       |                       |                       | $\mathbf{nent}$       | $\mathbf{nent}$ |           |               |
|                      | Species               |                        | 3                      | 4813           | 4813           | 4813                  | 4813                  | 1604                  | 1604                  | 3.10                  | 3.10            | 3         | 7088          |
|                      | nοmmu                 |                        | 1                      | 4              | 4              | 4                     | 4                     | 4                     | 4                     | 0                     | 0               | 1         | $\tilde{7}$   |
|                      | Ecology               |                        |                        | 56             | 56             | 56                    | 56                    | 56                    | 56                    | 0.26                  | 0.26            |           | 72            |
|                      | onEvolutio            | on                     |                        | 57             | 57             | 57                    | 57                    | 57                    | 57                    | 0.27                  | 0.27            |           | 64            |
| Eco                  | Eco                   |                        |                        | -              | -              | -                     | -                     | -                     | -                     | 0                     | 0               |           | -             |
| х                    | х                     |                        |                        | 108            | 108            | 108                   | 108                   | 108                   | 108                   |                       |                 |           | 129           |
| Evo                  | Evo                   |                        |                        |                |                |                       |                       |                       |                       |                       |                 |           |               |
|                      | m <b>Ent</b> iron     |                        | 1                      | 16             | 16             | 16                    | 16                    | 16                    | 16                    | 0                     | 0               | 1         | 8             |
| $\operatorname{Spe}$ | Spe                   | 3                      | 3                      | 641            | 641            | 641                   | 641                   | 156                   | 156                   | 1.21                  | 1.21            | 3         | 661           |
| X                    | x                     |                        |                        |                |                |                       |                       |                       |                       |                       |                 |           |               |
| Com                  | Com                   |                        |                        |                |                |                       |                       |                       |                       |                       |                 |           |               |
|                      |                       |                        |                        |                |                |                       |                       |                       |                       |                       |                 |           |               |

| In       | In                   | In     | In     | In     | In     | In     | In     | In     | In     | In     |        |            |          |
|----------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|----------|
| situ     | situ                 | situ   | situ   | situ   | situ   | situ   | situ   | situ   | situ   | situ   |        |            |          |
| time     | time                 | time   | time   | time   | time   | time   | time   | time   | time   | time   |        |            |          |
| series   | series               | series | series | series | series | series | series | series | series | series |        |            |          |
| Envi-    | Envi-                | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  |        |            |          |
| ron-     | ron-                 | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   |        |            |          |
| ment:    | ment:                | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  |        |            |          |
| 1,       | 1,                   | 1,     | 1,     | 1,     | 1,     | 1,     | 1,     | 1,     | 1,     | 1,     |        |            |          |
| High     | High                 | High   | High   | High   | High   | High   | High   | High   | High   | High   |        |            |          |
| Light    | Light                | Light  | Light  | Light  | Light  | Light  | Light  | Light  | Light  | Light  |        |            |          |
| – Low    | – Low                | – Low  | – Low  | – Low  | – Low  | – Low  | – Low  | – Low  | – Low  | – Low  |        |            |          |
| Nutri-   | Nutri-               | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- |        |            |          |
| ents     | ents                 | ents   | ents   | ents   | ents   | ents   | ents   | ents   | ents   | ents   |        |            |          |
| Repli-   | Repli-               | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- |        |            | _        |
| cate     | cate                 | cate   | cate   | cate   | cate   | cate   | cate   | cate   | cate   | cate   | -      | eReplicate | -        |
| meso-    | meso-                | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-      | mesc     |
| cosm:    | cosm:                | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:      | $\cos n$ |
| 1        | 1                    | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 2      | 2          | 2        |
| Spe      | Spe                  | 3      | 3      | 122    | 122    | 122    | 122    | 41     | 41     | 0.30   | 0.30   | 3          | 142      |
| х        | х                    |        |        |        |        |        |        |        |        |        |        |            |          |
| Env      | Env                  |        |        |        |        |        |        |        |        |        |        |            |          |
| Com      | Com                  | 1      | 1      | 10     | 10     | 10     | 10     | 10     | 10     | 0      | 0      | 1          | 10       |
| х        | X                    |        |        |        |        |        |        |        |        |        |        |            |          |
| Env      | Env                  | 0      | 0      | 100    | 100    | 100    | 100    | F 1    | F 1    | 0.14   | 0.14   | 0          | 000      |
| Spe      | $\operatorname{Spe}$ | 3      | 3      | 163    | 163    | 163    | 163    | 54     | 54     | 0.41   | 0.41   | 3          | 260      |
| X<br>Com | X                    |        |        |        |        |        |        |        |        |        |        |            |          |
| Com      | Com                  |        |        |        |        |        |        |        |        |        |        |            |          |
| x<br>Env | x<br>Env             |        |        |        |        |        |        |        |        |        |        |            |          |
| Error    | Error                | 384    | 384    | 695    | 695    | 695    | 695    | 2      | 2      | 1.81   | 1.81   | 384        | 1181     |
| Total    | Total                | 399    | 399    | 6465   | 6465   | 6465   | 6465   | $\sim$ | ~      | 1.01   | 1.01   | 399        | 9358     |
| In       | In                   | In     | In     | In     | In     | In     | In     | In     | In     | In     | In     | Replica    |          |
| situ     | situ                 | situ   | situ   | situ   | situ   | situ   | situ   | situ   | situ   | situ   | situ   | meso-      | mes      |
| time     | time                 | time   | time   | time   | time   | time   | time   | time   | time   | time   | time   | cosm:      | cosn     |
| series   | series               | series | series | series | series | series | series | series | series | series | series | <b>2</b>   | 2        |
| Envi-    | Envi-                | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  |            |          |
| ron-     | ron-                 | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   |            |          |
| ment:    | ment:                | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  |            |          |
| 8,       | 8,                   | 8,     | 8,     | 8,     | 8,     | 8,     | 8,     | 8,     | 8,     | 8,     | 8,     |            |          |
| Low      | Low                  | Low    | Low    | Low    | Low    | Low    | Low    | Low    | Low    | Low    | Low    |            |          |
| Light    | Light                | Light  | Light  | Light  | Light  | Light  | Light  | Light  | Light  | Light  | Light  |            |          |
| _        | _                    | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      |            |          |
|          | Medium               |        |        |        |        |        |        |        |        |        |        |            |          |
| Nutri-   | Nutri-               | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- |            |          |
| ents     | ents                 | ents   | ents   | ents   | ents   | ents   | ents   | ents   | ents   | ents   | ents   |            |          |
| Repli-   | Repli-               | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- |            |          |
| cate     | cate                 | cate   | cate   | cate   | cate   | cate   | cate   | cate   | cate   | cate   | cate   |            |          |
| meso-    | meso-                | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  |            |          |
| cosm:    | cosm:                | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  |            |          |
| 1        | 1                    | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |            |          |
|          |                      |        |        |        |        |        |        |        |        |        |        |            |          |

| In       | In                | In                                      | In                     | In                     | In                     | In     | In         | In          | In                     | In         |                  |            |         |
|----------|-------------------|-----------------------------------------|------------------------|------------------------|------------------------|--------|------------|-------------|------------------------|------------|------------------|------------|---------|
| situ     | situ              | situ                                    | situ                   | situ                   | situ                   | situ   | situ       | situ        | situ                   | situ       |                  |            |         |
| time     | time              | time                                    | time                   | time                   | time                   | time   | time       | time        | time                   | time       |                  |            |         |
| series   | series            | series                                  | series                 | series                 | series                 | series | series     | series      | series                 | series     |                  |            |         |
| Envi-    | Envi-             | Envi-                                   | Envi-                  | Envi-                  | Envi-                  | Envi-  | Envi-      | Envi-       | Envi-                  | Envi-      |                  |            |         |
| ron-     | ron-              | ron-                                    | ron-                   | ron-                   | ron-                   | ron-   | ron-       | ron-        | ron-                   | ron-       |                  |            |         |
| ment:    | ment:             | ment:                                   | ment:                  | ment:                  | ment:                  | ment:  | ment:      | ment:       | ment:                  | ment:      |                  |            |         |
| 1,       | 1,                | 1,                                      | 1,                     | 1,                     | 1,                     | 1,     | 1,         | 1,          | 1,                     | 1,         |                  |            |         |
| High     | High              | High                                    | High                   | High                   | High                   | High   | High       | High        | High                   | High       |                  |            |         |
| Light    | Light             | Light                                   | $\operatorname{Light}$ | $\operatorname{Light}$ | $\operatorname{Light}$ | Light  | Light      | Light       | $\operatorname{Light}$ | Light      |                  |            |         |
| – Low    | - Low             | - Low                                   | – Low                  | – Low                  | – Low                  | – Low  | - Low      | - Low       | – Low                  | – Low      |                  |            |         |
| Nutri-   | Nutri-            | Nutri-                                  | Nutri-                 | Nutri-                 | Nutri-                 | Nutri- | Nutri-     | Nutri-      | Nutri-                 | Nutri-     |                  |            |         |
| ents     | ents              | ents                                    | ents                   | ents                   | ents                   | ents   | ents       | ents        | ents                   | ents       |                  |            |         |
| Repli-   | Repli-            | Repli-                                  | Repli-                 | Repli-                 | Repli-                 | Repli- | Repli-     | Repli-      | Repli-                 | Repli-     |                  |            |         |
| cate     | cate              | cate                                    | cate                   | cate                   | cate                   | cate   | cate       | cate        | cate                   | cate       | Replica          | ateReplica | ateRepl |
| meso-    | meso-             | meso-                                   | meso-                  | meso-                  | meso-                  | meso-  | meso-      | meso-       | meso-                  | meso-      | meso-            | meso-      | meso    |
| cosm:    | cosm:             | cosm:                                   | cosm:                  | cosm:                  | cosm:                  | cosm:  | cosm:      | cosm:       | cosm:                  | cosm:      | cosm:            | cosm:      | cosm    |
| 1        | 1                 | 1                                       | 1                      | 1                      | 1                      | 1      | 1          | 1           | 1                      | 1          | 2                | 2          | 2       |
| Source   | Source            | df                                      | df                     | SS                     | SS                     | SS     | SS         | MS          | MS                     | Variar     | nceVariar        | ncælf      | SS      |
|          | Source            |                                         |                        | 22                     | 22                     | 22     | 22         | 1120        | 1120                   | Com-       | Com-             | - Curr     | ~~      |
|          |                   |                                         |                        |                        |                        |        |            |             |                        | po-        | po-              |            |         |
|          |                   |                                         |                        |                        |                        |        |            |             |                        | nent       | nent             |            |         |
| Species  | Species           | 3                                       | 3                      | 7615                   | 7615                   | 7615   | 7615       | 2538        | 2538                   | 4.80       | 4.80             | 3          | 6871    |
| 1        | nÆømmu            |                                         | 1                      | 151                    | 151                    | 151    | 151        | 2000<br>151 | 2000<br>151            | 0          | $\frac{4.00}{0}$ | 1          | 9       |
|          | Ecology           |                                         | 1                      | 116                    | 116                    | 116    | 116        | 116         | 116                    | 0.53       | 0.53             | 1          | 63      |
|          | onEvolutio        |                                         |                        | 513                    | 513                    | 513    | 513        | 513         | 513                    | 2.52       | 2.52             |            | 51      |
| Eco      | Eco               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                        | -                      | -                      | -      | -          | -           | -                      | $0^{2.02}$ | $\frac{2.52}{0}$ |            | -       |
| x        | x                 |                                         |                        | 479                    | 479                    | 479    | 479        | 479         | 479                    | Ū          | 0                |            | 105     |
| Evo      | Evo               |                                         |                        | 410                    | 410                    | 410    | 410        | 410         | 410                    |            |                  |            | 100     |
|          | m <b>ent</b> iron | m⊉nt                                    | 1                      | 22                     | 22                     | 22     | 22         | 22          | 22                     | 0          | 0                | 1          | 17      |
| Spe      | Spe               | 3                                       | 3                      | 2117                   | 2117                   | 2117   | 22<br>2117 | 791         | 791                    | 5.94       | 5.94             | 3          | 514     |
| x        | x                 | 0                                       | 0                      | ~111                   | ~111                   | ~111   | ~±11       | 101         | 101                    | 0.04       | 0.04             | 0          | 014     |
| Com      | Com               |                                         |                        |                        |                        |        |            |             |                        |            |                  |            |         |
| Spe      | Spe               | 3                                       | 3                      | 634                    | 634                    | 634    | 634        | 211         | 211                    | 1.55       | 1.55             | 3          | 141     |
| x        | x                 | 0                                       | 0                      | 004                    | 004                    | 004    | 004        | ~1 I        | ~11                    | 1.00       | 1.00             | 0          | 141     |
| Env      | Env               |                                         |                        |                        |                        |        |            |             |                        |            |                  |            |         |
| Com      | Com               | 1                                       | 1                      | 75                     | 75                     | 75     | 75         | 75          | 75                     | 0          | 0                | 1          | g       |
| x        | x                 | 1                                       | T                      | 10                     | 10                     | 10     | 10         | 10          | 10                     | U          | U                | 1          | 9       |
| x<br>Env | x<br>Env          |                                         |                        |                        |                        |        |            |             |                        |            |                  |            |         |
|          | Spe               | 3                                       | 3                      | 525                    | 525                    | 525    | 505        | 175         | 175                    | 1.27       | 1.27             | 3          | 123     |
| Spe      | -                 | J                                       | J                      | 020                    | 020                    | 929    | 525        | 170         | 110                    | 1.21       | 1.21             | J          | 123     |
| x<br>Com | x<br>Com          |                                         |                        |                        |                        |        |            |             |                        |            |                  |            |         |
|          | Com               |                                         |                        |                        |                        |        |            |             |                        |            |                  |            |         |
| X        | X<br>E            |                                         |                        |                        |                        |        |            |             |                        |            |                  |            |         |
| Env      | Env               | 001                                     | 001                    | 0450                   | 0450                   | 00000  | 00000      | ~           | ~                      | NAN        | NAN              | 001        | 100     |
| Error    | Error             | 384                                     | 384                    | 2753                   | 2753                   | 2753   | 2753       | $\gamma$    | $\gamma$               | 7.17       | 7.17             | 384        | 1334    |
| Total    | Total             | 399                                     | 399                    | 13892                  | 13892                  | 13892  | 13892      |             |                        |            |                  | 399        | 9018    |
|          |                   |                                         |                        |                        |                        |        |            |             |                        |            |                  |            |         |

| In             | In                       | In                     | In                     | In            | In            | In            | In            | In            | In            | In           |                |           |                           |
|----------------|--------------------------|------------------------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|----------------|-----------|---------------------------|
| situ           | situ                     | situ                   | situ                   | situ          | situ          | situ          | situ          | situ          | situ          | situ         |                |           |                           |
| time           | time                     | time                   | time                   | time          | time          | time          | time          | time          | time          | time         |                |           |                           |
| series         | series                   | series                 | series                 | series        | series        | series        | series        | series        | series        | series       |                |           |                           |
| Envi-          | Envi-                    | Envi-                  | Envi-                  | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-        |                |           |                           |
| ron-           | ron-                     | ron-                   | ron-                   | ron-          | ron-          | ron-          | ron-          | ron-          | ron-          | ron-         |                |           |                           |
| ment:          | ment:                    | ment:                  | ment:                  | ment:         | ment:         | ment:         | ment:         | ment:         | ment:         | ment:        |                |           |                           |
| 1,             | 1,                       | 1,                     | 1,                     | 1,            | 1,            | 1,            | 1,            | 1,            | 1,            | 1,           |                |           |                           |
| High           | High                     | High                   | High                   | High          | High          | High          | High          | High          | High          | High         |                |           |                           |
| Light          | Light                    | Light                  | Light                  | Light         | Light         | Light         | Light         | Light         | Light         | Light        |                |           |                           |
| – Low          | – Low                    | – Low                  | – Low                  | – Low         | – Low         | – Low         | – Low         | – Low         | – Low         | – Low        |                |           |                           |
| Nutri-         | Nutri-                   | Nutri-                 | Nutri-                 | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-       |                |           |                           |
| ents           | ents                     | ents                   | ents                   | ents          | ents          | ents          | ents          | ents          | ents          | ents         |                |           |                           |
| Repli-         | Repli-                   | Repli-                 | Repli-                 | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli-       |                |           |                           |
| cate           | cate                     | cate                   | cate                   | cate          | cate          | cate          | cate          | cate          | cate          | cate         | Replica        | teReplica | teRepl                    |
| meso-          | meso-                    | meso-                  | meso-                  | meso-         | meso-         | meso-         | meso-         | meso-         | meso-         | meso-        | meso-          | meso-     | mesc                      |
| cosm:          | cosm:                    | cosm:                  | cosm:                  | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:        | cosm:          | cosm:     | cosm                      |
| 1              | 1                        | 1                      | 1                      | 1             | 1             | 1             | 1             | 1             | 1             | 1            | 2              | 2         | 2                         |
| In             | In                       | In                     | In                     | In            | In            | In            | In            | In            | In            | In           | In             | Replic    | atRep                     |
| situ           | situ                     | situ                   | situ                   | situ          | situ          | situ          | situ          | situ          | situ          | situ         | situ           | meso-     | $\overline{\mathrm{mes}}$ |
| time           | time                     | time                   | time                   | time          | time          | time          | time          | time          | time          | time         | time           | cosm:     | $\cos n$                  |
| series         | series                   | series                 | series                 | series        | series        | series        | series        | series        | series        | series       | series         | <b>2</b>  | <b>2</b>                  |
| Envi-          | Envi-                    | Envi-                  | Envi-                  | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-         | Envi-        | Envi-          |           |                           |
| ron-           | ron-                     | ron-                   | ron-                   | ron-          | ron-          | ron-          | ron-          | ron-          | ron-          | ron-         | ron-           |           |                           |
| ment:          | ment:                    | ment:                  | ment:                  | ment:         | ment:         | ment:         | ment:         | ment:         | ment:         | ment:        | ment:          |           |                           |
| 9,             | 9,                       | 9,                     | 9,                     | 9,            | 9,            | 9,            | 9,            | 9,            | 9,            | 9,           | 9,             |           |                           |
| Low            | Low                      | Low                    | Low                    | Low           | Low           | Low           | Low           | Low           | Low           | Low          | Low            |           |                           |
| Light          | Light                    | Light                  | Light                  | Light         | Light         | Light         | Light         | Light         | Light         | Light        | Light          |           |                           |
| -              | _                        | _                      | _                      | -             | _             | _             | _             | _             | _             | _            | _              |           |                           |
| High           | High                     | High                   | High                   | High          | High          | High          | High          | High          | High          | High         | High           |           |                           |
| Nutri-         | Nutri-                   | Nutri-                 | Nutri-                 | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-        | Nutri-       | Nutri-         |           |                           |
| ents           | ents                     | ents                   | ents                   | ents          | ents          | ents          | ents          | ents          | ents          | ents         | ents           |           |                           |
| Repli-         | Repli-                   | Repli-                 | Repli-                 | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli-        | Repli-       | Repli-         |           |                           |
| cate           | cate                     | cate                   | cate                   | cate          | cate          | cate          | cate          | cate          | cate          | cate         | cate           |           |                           |
| meso-          | meso-                    | meso-                  | meso-                  | meso-         | meso-         | meso-         | meso-         | meso-         | meso-         | meso-        | meso-          |           |                           |
| cosm:          | cosm:                    | cosm:                  | cosm:                  | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:         | cosm:        | cosm:          |           |                           |
| 1              | 1                        | 1                      | 1                      | 1             | 1             | 1             | 1             | 1             | 1             | 1            | 1              |           |                           |
| Source         | Source                   | $\mathbf{d}\mathbf{f}$ | $\mathbf{d}\mathbf{f}$ | $\mathbf{SS}$ | $\mathbf{SS}$ | $\mathbf{SS}$ | $\mathbf{SS}$ | $\mathbf{MS}$ | $\mathbf{MS}$ |              | ceVarian       | cœlf      | $\mathbf{SS}$             |
|                |                          |                        |                        |               |               |               |               |               |               | Com-         | Com-           |           |                           |
|                |                          |                        |                        |               |               |               |               |               |               | po-<br>nent  | po-<br>nent    |           |                           |
| Species        | Species                  | 2                      | 3                      | 4506          | 4506          | 4506          | 4506          | 1502          | 1502          | <i>2.70</i>  | <i>2.70</i>    | 3         | 7719                      |
|                | n <b>if</b> ømmu         |                        | $\frac{3}{1}$          | 4500<br>15    | 4500<br>15    | $4500 \\ 15$  | $4500 \\ 15$  | 1502<br>15    | 1502<br>15    | 2.70<br>0    | 2.70<br>0      | 3<br>1    | 25                        |
|                | Ecology                  |                        | 1                      | 15<br>119     | 15<br>119     | 15<br>119     | 15<br>119     | $10 \\ 119$   | 15<br>119     | 0.58         | 0.58           | 1         | $\frac{20}{190}$          |
|                | onEvolutio               |                        |                        | 80            | 80            | 80            | 80            | 80            | 80            | 0.38<br>0.38 | $0.38 \\ 0.38$ |           | 190                       |
|                |                          | )11                    |                        |               |               |               |               |               |               |              |                |           |                           |
| Eco            | Eco                      |                        |                        | -<br>181      | -<br>18/      | -<br>181      | -<br>181      | -<br>181      | -<br>18/      | 0            | 0              |           | -<br>275                  |
| X<br>Fuo       | x<br>Evo                 |                        |                        | 184           | 184           | 184           | 184           | 184           | 184           |              |                |           | 210                       |
| Evo<br>Environ | Evo<br>m <b>ent</b> iron | mþnt                   | 1                      | 23            | 23            | 23            | 23            | 23            | 23            | 0            | 0              | 1         | 21                        |
| плион          | Interry HOI              | 1116111                | 1                      | 20            | 20            | 20            | 20            | 20            | 20            | 0            | 0              | 1         | <i>41</i>                 |

| In                   | In                   | In     | In     | In     | In     | In     | In     | In     | In     | In                    |         |            | I        |
|----------------------|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------------|---------|------------|----------|
| situ                 | situ                 | situ   | situ   | situ   | situ   | situ   | situ   | situ   | situ   | situ                  |         |            | ŀ        |
| time                 | time                 | time   | time   | time   | time   | time   | time   | time   | time   | $\operatorname{time}$ |         |            | , ,      |
| series               | series               | series | series | series | series | series | series | series | series | series                |         |            | , ,      |
| Envi-                | Envi-                | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-  | Envi-                 |         |            | 1        |
| ron-                 | ron-                 | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-   | ron-                  |         |            | , ,      |
| ment:                | ment:                | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:  | ment:                 |         |            | , ,      |
| 1,                   | 1,                   | 1,     | 1,     | 1,     | 1,     | 1,     | 1,     | 1,     | 1,     | 1,                    |         |            | , ,      |
| High                 | High                 | High   | High   | High   | High   | High   | High   | High   | High   | High                  |         |            |          |
| Light                | Light                | Light  | Light  | Light  | Light  | Light  | Light  | Light  | Light  | Light                 |         |            |          |
| - Low                | – Low                | - Low  | – Low  | - Low  | – Low  | - Low  | – Low  | – Low  | - Low  | – Low                 |         |            |          |
| Nutri-               | Nutri-               | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri- | Nutri-                |         |            | 1        |
| ents                 | ents                 | ents   | ents   | ents   | ents   | ents   | ents   | ents   | ents   | ents                  |         |            |          |
| Repli-               | Repli-               | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli- | Repli-                |         |            |          |
| cate                 | cate                 | cate   | cate   | cate   | cate   | cate   | cate   | cate   | cate   | cate                  | Replica | ateReplica | ıteRepl  |
| meso-                | meso-                | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-  | meso-                 | meso-   | meso-      | mesc     |
| cosm:                | cosm:                | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:  | cosm:                 | cosm:   | cosm:      | $\cos n$ |
| 1                    | 1                    | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1                     | 2       | 2          | 2        |
| Spe                  | Spe                  | 3      | 3      | 606    | 606    | 606    | 606    | 202    | 202    | 1.44                  | 1.44    | 3          | 785      |
| х                    | х                    |        |        |        |        |        |        |        |        |                       |         |            |          |
| Com                  | Com                  |        |        |        |        |        |        |        |        |                       |         |            | , ,      |
| Spe                  | Spe                  | 3      | 3      | 346    | 346    | 346    | 346    | 115    | 115    | 0.82                  | 0.82    | 3          | 178      |
| х                    | х                    |        |        |        |        |        |        |        |        |                       |         |            | ļ        |
| Env                  | Env                  |        |        |        |        |        |        |        |        |                       |         |            | ļ        |
| Com                  | Com                  | 1      | 1      | 18     | 18     | 18     | 18     | 18     | 18     | 0                     | 0       | 1          | 17       |
| х                    | х                    |        |        |        |        |        |        |        |        |                       |         |            | I        |
| Env                  | Env                  |        |        |        |        |        |        |        |        |                       |         |            | I        |
| $\operatorname{Spe}$ | $\operatorname{Spe}$ | 3      | 3      | 75     | 75     | 75     | 75     | 25     | 25     | 0.17                  | 0.17    | 3          | 209      |
| х                    | х                    |        |        |        |        |        |        |        |        |                       |         |            | I        |
| Com                  | Com                  |        |        |        |        |        |        |        |        |                       |         |            | I        |
| х                    | х                    |        |        |        |        |        |        |        |        |                       |         |            | I        |
| Env                  | Env                  |        |        |        |        |        |        |        |        |                       |         |            |          |
| Error                | Error                | 384    | 384    | 629    | 629    | 629    | 629    | 2      | 2      | 1.64                  | 1.64    | 384        | 1149     |
| $T_{-+-1}$           |                      | 000    | 000    | 0010   | 0010   | 0010   | 0010   |        |        |                       |         | 000        | 1010     |
| Total                | Total                | 399    | 399    | 6218   | 6218   | 6218   | 6218   |        |        |                       |         | 399        | 1010     |