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Abstract

Most researches interested in finding the bounds of the cumulative standard normal distribution Φ(x) are not tight for all

positive values of the argument x. This paper mainly proposes new simple lower and upper bounds for Φ(x). Over the whole

range of the positive argument x, the maximum absolute difference between the proposed lower bound and Φ(x) is less than

3×〖10〗ˆ(-4), while it is less than 4.8×〖10〗ˆ(-4) between the proposed upper bound and Φ(x). Numerical comparisons have

been made between the proposed bounds and some of the other existing bounds, which showed that the proposed bounds are

more compact than most alternative bounds found in the literature.
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1. Introduction 
 

The probability that a standard normal random variable 𝑋 is less than a real value 𝑥 is 
known as the cumulative standard normal distribution, which is mathematically given 
by,  

Φ(𝑥) = ∫ 𝜙𝑋(𝑡)𝑑𝑡
𝑥

−∞

, 

where 𝜙𝑋(𝑡) =
exp(−𝑡2/2)

√2𝜋
, −∞ < 𝑡 < ∞ is the standard normal probability density 

function of a random variable  𝑋. The function Φ(𝑥) cannot be expressed in a closed 
form, therefore, there are numerous proposed approximations for Φ(𝑥) that developed 
in the literature (see Eidous and Abu-Shareefa, 2020). Also, many works are interested 
to find upper bounds for Φ(𝑥) (Eidous, 2022) and lower bounds for Φ(𝑥) (Peric et al., 
2019). There are two main interesting functions related to Φ(𝑥). The first one is known 
as Q-function and the other one is the error function, which are, respectively, defined as 
follows, 

                                                            𝑄(𝑥) = ∫ 𝜙𝑋(𝑡)𝑑𝑡
∞

𝑥

 , 

                                                                      = 1 − Φ(𝑥) 
and  

                                                       𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫ exp(−𝑡2) 𝑑𝑡

𝑥

0

 

                                                                     = 2Φ(√2𝑥) − 1. 

Several works have been discussed the importance of the functions Φ(𝑥), 𝑄(𝑥) and 
𝑒𝑟𝑓(𝑥) and their broad scope of application for science and engineering (See, Simon, 
2006 and Sandoval-Hernandez et al., 2019). 
 
In this paper, we will focus our attention on providing new lower and upper bounds for 
the function Φ(𝑥) and consequently for the two functions 𝑄(𝑥) and 𝑒𝑟𝑓(𝑥). The 
proposed bounds are very tight for their corresponding functions for all values of the 
argument 𝑥 ≥ 0. More specifically, the maximum absolute difference between the 
proposed lower bound and Φ(𝑥) is less than 3 × 10−4, and it is less than 4.8 × 10−4 
between the proposed upper bound and Φ(𝑥). In addition, the mathematical and 
numerical results show that the absolute differences between the proposed bounds and 
the actual function converge to zero for large 𝑥. It is worthwhile to mention here that 
the relation Φ(−𝑥) = 1 − Φ(𝑥) can be used to address the case of a negative argument 
𝑥. 
 
2. Overview of Some Bounds for 𝚽(𝒙) 

 
This section summarizes some existing lower and upper bounds for Φ(𝑥). The symbol 
Φ𝐿−(𝑥) is used to represent the lower bound of 𝛷(𝑥), while Φ𝑈−(𝑥) denotes its upper 
bound.  
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 Boyd (1959) gave the following upper and lower bound for Φ(𝑥) (for 𝑥 > 0), 

1 −
𝜋𝜙(𝑥)

2𝑥 + √(𝜋 − 1)2𝑥2 + 2𝜋
≤ Φ(𝑥) ≤ 1 −

𝜋𝜙(𝑥)

(𝜋 − 1)𝑥 + √𝑥2 + 2𝜋
 

 
Ruskai and Werner (2000) improved the lower bound of Boyd (1959). They gave the 
following lower and upper bounds for Φ(𝑥), 

Φ𝐿−𝑅𝑊(𝑥) ≤ Φ(𝑥) ≤ Φ𝑈−𝑅𝑊(𝑥) 
 

where Φ𝐿−𝑅𝑊(𝑥) = 1 −
4𝜙(𝑥)

3𝑥+√𝑥2+8
 and Φ𝑈−𝑅𝑊(𝑥) = 1 −

𝜋𝜙(𝑥)

(𝜋−1)𝑥+√𝑥2+2𝜋
 .  

 

 The more recent bounds of Alzer (2010) depend on the function tanh (𝑥). The lower 
and upper bounds were given as follows (for 𝑥 > 0), 

Φ𝐿−𝐴𝐿(𝑥) ≤ Φ(𝑥) ≤ Φ𝑈−𝐴𝐿(𝑥) 
 

where Φ𝐿−𝐴𝐿(𝑥) =  0.5 +  
𝑇𝑎𝑛ℎ(√2/𝜋 𝑥)

2
 and Φ𝑈−𝐴𝐿(𝑥) =  0.5 +  

1.0407 𝑇𝑎𝑛ℎ(√2/𝜋 𝑥)

2
 . 

 

 Abreu (2012) gave the following bounds for Φ(𝑥) (for 𝑥 > 0), 
Φ𝐿−𝐴𝐵(𝑥) ≤ Φ(𝑥) ≤ Φ𝑈−𝐴𝐵(𝑥) 

 

where Φ𝐿−𝐴𝐵(𝑥) = 1 −  
exp(−𝑥2)

50
−

exp(−𝑥2/2)

2(1+𝑥)
 and Φ𝑈−𝐴𝐵(𝑥) =  1 −  

exp(−𝑥2)

12
−

𝜙(𝑥)

1+𝑥
 . 

 
 
 

 The Mastin and Jaillet (2013)’s lower and upper bounds for Φ(𝑥) are (for 𝑥 > 0), 
Φ𝐿−𝑀𝐽(𝑥) ≤ Φ(𝑥) ≤ Φ𝑈−𝑀𝐽(𝑥) 

 

where Φ𝐿−𝑀𝐽(𝑥) = 1 −
1

2
exp (−√2 𝜋⁄ 𝑥 − 𝑥2 𝜋⁄ ) and Φ𝑈−𝑀𝐽(𝑥) =  1 −

1

2
exp (−√2 𝜋⁄ 𝑥 − 𝑥2 2⁄ ) . 

 

 Peric et al. (2019) suggested the following lower and upper bounds for Φ(𝑥), for 𝑥 >
0, 

Φ𝐿−𝑃𝐸(𝑥) ≤ Φ(𝑥) ≤ Φ𝑈−𝑃𝐸(𝑥) 
 

where Φ𝐿−𝑃𝐸(𝑥) = 1 −
(𝑥2+2)𝜙(𝑥)

𝑥(𝑥2+3)
 and Φ𝑈−𝑃𝐸(𝑥) =  1 −

𝑥𝜙(𝑥)

𝑥2+1
 . 

 

 Bercu (2020) gave the following lower and upper bounds for Φ(𝑥) when 0 ≤ 𝑥 ≤
 6.248, 

Φ𝐿−𝐵𝐸(𝑥) ≤ Φ(𝑥) ≤ Φ𝑈−𝐵𝐸(𝑥) 
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where Φ𝐿−𝐵𝐸(𝑥) =
1

2
+

𝛽1(𝑥 √2⁄ )

√𝜋
 and Φ𝑈−𝐵𝐸(𝑥) =  

1

2
+

𝛽2(𝑥 √2⁄ )

√𝜋
. Also 𝛽1(t) =

110t3+210𝑡

39t4+180t2+210
 and 𝛽2(t) =

113400 𝑡

29𝑡8−660𝑡6+1260𝑡4+37800𝑡2+113400
 . As noted by Bercu (2020), 

the upper bound Φ𝑈−𝐵𝐸(𝑥) is valid only for 0 ≤ 𝑥 ≤  6.248. 
 
Concerning the above lower and upper bounds of Φ(𝑥), a limitation shared by almost 
all of them is that they do not exhibit a tight lower and upper bound for all values of the 
argument 𝑥 > 0. For instance, the numerical results in Section (4) of this paper showed 
that Bercu (2020)’s bounds (i.e. Φ𝐿−𝐵𝐸(𝑥) and Φ𝑈−𝐵𝐸(𝑥)) are very tight for small values 
of 𝑥 but it is less sharp for large values of 𝑥. The converse is true for the upper and 
lower bounds Φ𝐿−𝑃𝐸(𝑥) and Φ𝑈−𝑃𝐸(𝑥) of that derived by Peric et al. (2019). 
 
The main contribution of this work is to provide new lower and upper bounds for Φ(𝑥), 
which are very close to the true value of Φ(𝑥) for all values of the argument 𝑥 ≥ 0.  
 
3. Proposed New Bounds for  𝚽(𝒙) 

 
The following lemma gives the proposed lower and upper bounds for Φ(𝑥). 
Lemma 1: Let 

Φ𝐿(𝑥) =
1

2
√1 − exp (−𝑥2 (

203

320
−

𝑥2

125
+

𝑥6

1000000
)) 

and 

Φ𝑈(𝑥) =
1

2
√1 − exp (−𝑥2 (

1500

2351
−

4𝑥2

485
+

𝑥6

40000
)) 

 
then, for 𝑥 ≥ 0, Φ𝐿(𝑥) and Φ𝑈−𝐸𝐼(𝑥) are a lower and an upper bounds for Φ(𝑥) 
respectively. That is, 
 

Φ𝐿(𝑥) ≤ Φ(𝑥) ≤ Φ𝑈(𝑥) . 

 
Also, the maximum absolute difference between Φ𝐿(𝑥) and Φ(𝑥) is 3.06 × 10−4 occurs 
at 𝑥 ≅ 2.462 and it is 4.746 × 10−4 between Φ𝑈(𝑥) and Φ(𝑥), which occurs at 𝑥 ≅
1.17709. 
 
Proof: To verify the above inequality, it is enough to show that ℎ1(𝑥) = Φ𝐿(𝑥) −
Φ(𝑥) ≤ 0 and ℎ2(𝑥) = Φ𝑈(𝑥) − Φ(𝑥) ≥ 0 for all 𝑥 ≥ 0. The two bounds Φ𝐿(𝑥) and 
Φ𝑈(𝑥) take the same form, which can be written as 

1

2
√1 − exp(−𝑥2(𝑎 − 𝑏𝑥2 + 𝑐𝑥6)) , 
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where the constants 𝑎, 𝑏 and  𝑐 equal  
203

320
,

1

125
  and  

1

1000000
  for Φ𝐿(𝑥) and their values 

are  
1500

2351
,

4

485
  and  

1

40000
 for Φ𝑈(𝑥). Accordingly, the first derivative of ℎ𝑖(𝑥), 𝑖 = 1, 2 

with respect to 𝑥 is of the form, 
 

ℎ𝑖′(𝑥) =
𝑥(𝑎 − 2𝑏𝑥2 + 4𝑐𝑥6)exp(−𝑥2(𝑎 − 𝑏𝑥2 + 𝑐𝑥6))

2√1 − exp(−𝑥2(𝑎 − 𝑏𝑥2 + 𝑐𝑥6))

−
exp(−𝑥2/2)

√2𝜋
  . 

Using Mathematica, Ver 11, it is found that there are three roots for each equation 
ℎ1′(𝑥) = 0 and ℎ2′(𝑥) = 0, which are approximately equal to 0.64620, 1.45355 and 
2.46200 for ℎ1

′ (𝑥) = 0 and 1.17709, 2.66243 and 3.41754 for ℎ2′(𝑥) = 0. This is 
illustrated in Graph (1) and Graph (2), which give the plots of ℎ1

′ (𝑥) and ℎ2
′ (𝑥) 

respectively. 

 
Graph (1). Plot of ℎ1

′ (𝑥). 

 

 

Graph (2). Plot of ℎ2
′ (𝑥). 

 
By using the derivative sign (see also, Graph 3 below), it is found that ℎ1(𝑥) decreasing 
for 𝑥 ∈ [0, 0.64620] and 𝑥 ∈ [1.45355, 2.462], while it increases for 𝑥 ∈
[0.6462, 1.45355] and 𝑥 ∈ [2.462, ∞). It is a simple technique to show that the 
minimum absolute value of ℎ1(𝑥) occurs at 𝑥 = 1.45355 with ℎ1(1.45355) =

1 2 3 4 5
x

0.0005

0.0005

0.0010

1 2 3 4 5
x

0.0004

0.0002

0.0002

0.0004

ℎ1
′ (𝑥)

ℎ2
′ (𝑥)
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 −1.3762 × 10−4 < 0  and  ℎ1(𝑥) → 0 as 𝑥 → 0 or ∞. Therefore, ℎ1(𝑥) ≤ 0, ∀ 𝑥 ≥ 0. In 
addition, the two points 𝑥 = 0.6462 and  2.462 give local maximum absolute values for 
ℎ1(𝑥). Since |ℎ1(0.6462)| =  2.77 × 10−4 < |ℎ1(2.6462)| = 3.06 × 10−4 then the 

maximum absolute difference between Φ𝐿(𝑥) and Φ(𝑥) is 3.06 × 10−4. 
For the second function, ℎ2(𝑥) increases for 𝑥 ∈ [0, 1.7709] and 𝑥 ∈
[2.66243, 3.41754], while it is decreases for 𝑥 ∈ [1.17709, 2.66243] and 𝑥 ∈
[3.41754, ∞). The local minimum value of ℎ2(𝑥) is ℎ2(2.66243) =  6.2 × 10−6 > 0. 
Also, it is clear that ℎ2(𝑥) → 0 as 𝑥 → 0 or ∞. Therefore, ℎ2(𝑥) ≥ 0, ∀ 𝑥 ≥ 0. Also and 
in the same manner followed previously for ℎ1(𝑥), it can easily be proven that the 

maximum absolute difference between Φ𝑈(𝑥) and Φ(𝑥) is 4.746 × 10−4. 
This completes the proof. 
 

 
 

Graph (3). Plots of  ℎ1(𝑥) = Φ𝐿(𝑥) − Φ(𝑥) and  ℎ2(𝑥) = Φ𝑈(𝑥) − Φ(𝑥). 

 

The following two observations should be noted here:  
 

1. Since the Q-function, 𝑄(𝑥) = 1 − Φ(𝑥) then the lower and upper bounds for 
𝑄(𝑥) based on the proposed Φ𝐿(𝑥) and Φ𝑈(𝑥) are given by the following 
inequality, 

 
1 − Φ𝑈(𝑥) ≤ 𝑄(𝑥) ≤ 1 − Φ𝐿(𝑥) . 

2. The lower and upper bounds for 𝑒𝑟𝑓(𝑥) based on the proposed Φ𝐿(𝑥) and 
Φ𝑈(𝑥) are given by, 

2Φ𝐿(√2𝑥) − 1 ≤ 𝑒𝑟𝑓(𝑥) ≤ 2Φ𝑈(√2𝑥) − 1. 

 
 
 
 
 
 

 

1 2 3 4 5
x

0.0004

0.0002

0.0002

0.0004
ℎ2(𝑥)

ℎ1(𝑥)
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4. Numerical Comparisons and Conclusion 
 
In this section, we have provided some numerical results to check the tightness of our 

proposed bounds of Φ(𝑥) and to compare their performances with that of some current 

bounds mentioned in Section 2. Let ℎ𝑈−𝑡(𝑥) be the absolute error function between the 
upper bound of Φ(𝑥) and the exact Φ(𝑥). Also, let ℎ𝐿−𝑡(𝑥) be the absolute error 
function between the lower bound of Φ(𝑥) and the exact Φ(𝑥). That is, ℎ𝑠−𝑡(𝑥) =
|Φ𝑠−𝑡(𝑥) − Φ(𝑥)|, where 𝑠 stands for 𝑈 or 𝐿 and  𝑡 stands for 𝑅𝑊 (Roskai and Werner, 
2000), 𝐴𝐿 (Alzer, 2010), 𝐴𝐵 (Abreu, 2012), 𝑀𝐽 (Mastin and Jaillet, 2013), 𝑃𝐸 (Peric et al., 
2019), 𝐵𝐸 (Bercu, 2020) and 𝐸𝐼 (Proposed bounds as given in Section 3). 
Table (1) shows the values of the error function ℎ𝑠−𝑡(𝑥) for some values of 𝑥, varying 
from 0.1 to 8.7, although all the bounds considered in this paper (except the upper 
bound Φ𝑈−𝐵𝐸(𝑥)) can be applied to any value of 𝑥 ≥ 0. We focused our analysis on the 
small and moderate values of 𝑥 since our suggested bounds are too precise for large 
values of 𝑥. By examining the numerical results of Table (1), the following points can be 
drawn: 

1. The proposed bounds are very accurate for moderate to large values of the 
argument 𝑥. Compared with other considered bounds, the accuracy of the 
proposed bounds is very satisfactory for small values of 𝑥.  

2. For large 𝑥, the proposed bounds as well as those of Abreu (AB), Mastin and 
Jaillet (MJ) and Peric et al. (PE) are very tight. The absolute error associated with 
these bounds becomes very small as the size of 𝑥 increases. However, the results 
clearly showed that the proposed bounds are much tighter than these bounds 
for 0 < 𝑥 < 2.1. 

3. For 0 < 𝑥 < 1.7, the absolute error associated with Bercu (BE) bounds is very 
small compared to the other bounds. However, the absolute error becomes 
large when 𝑥 gets large. The same conclusion can be said for the bounds of Alzer 
(AL). In addition, taking into account all the considered values of the argument 𝑥, 
in this numerical study, one can conclude that the tightness of the bounds BE, AL 
and those given by Ruskai and Werner (RW) are not as good as the other 
bounds.  

4. In general and for all values of 𝑥, the numerical results of Table (1) clearly show 
that the proposed bounds are tighter than the other ones considered in this 
study. Because of their tightness, one can use the lower bound or upper bound 
as an approximation for Φ(𝑥), with some preference for the lower bound over 
the upper bound. Its absolute maximum error is 3.06 × 10−4 instead of 3.06 ×
10−4 for the upper bound. 
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Table (1). The values of error function ℎ𝑠−𝑡(𝑥) = |Φ𝑠−𝑡(𝑥) − Φ(𝑥)| for some values of 𝑥.  

𝑥  ℎ𝑠−𝑅𝑊(𝑥) ℎ𝑠−𝐴𝐿(𝑥) ℎ𝑠−𝐴𝐵(𝑥) ℎ𝑠−𝑀𝐽(𝑥) ℎ𝑠−𝑃𝐸(𝑥) ℎ𝑠−𝐵𝐸(𝑥) ℎ𝑠−𝐸𝐼(𝑥) 

0.1 𝐿 7.95×10-2 1.81×10-5 1.19×10-2 1.65×10-5 2.19 6.92×10-14 6.96×10-5 

 𝑈 2.16×10-3 1.60×10-3 1.68×10-2 8.19×10-4 4.21×10-1 0.00 4.43×10-5 
0.3 𝐿 2.35×10-1 4.63×10-4 3.88×10-3 3.60×10-4 4.78×10-1 1.29×10-9 1.90×10-4 

 𝑈 3.76×10-3 4.32×10-3 1.26×10-2 5.84×10-3 2.77×10-1 3.11×10-12 1.37×10-4 

0.5 𝐿 3.82×10-1 1.94×10-3 1.20×10-3 1.31×10-3 1.79×10-1 1.16×10-7 2.62×10-4 

 𝑈 3.57×10-3 5.77×10-3 8.93×10-3 1.24×10-2 1.68×10-1 8.05×10-10 2.38×10-4 

0.7 𝐿 5.15×10-1 4.60×10-3 4.96×10-4 2.76×10-3 7.63×10-2 2.07×10-6 2.75×10-4 

 𝑈 2.80×10-3 5.72×10-3 7.23×10-3 1.81×10-2 9.53×10-2 2.96×10-8 3.40×10-4 

0.9 𝐿 6.31×10-1 8.08×10-3 3.57×10-4 4.36×10-3 3.40×10-2 1.65×10-5 2.42×10-4 

 𝑈 1.97×10-3 4.46×10-3 6.94×10-3 2.14×10-2 5.18×10-2 4.16×10-7 4.24×10-4 

1.1 𝐿 7.28×10-1 1.17×10-2 3.16×10-4 5.76×10-3 1.53×10-2 8.02×10-5 1.90×10-4 

 𝑈 1.29×10-3 2.64×10-3 7.08×10-3 2.22×10-2 2.72×10-2 3.25×10-6 4.70×10-4 

1.3 𝐿 8.06×10-1 1.48×10-2 2.72×10-4 6.68×10-3 6.91×10-3 2.80×10-4 1.48×10-4 

 𝑈 7.96×10-4 1.01×10-3 6.92×10-3 2.07×10-2 1.40×10-2 1.71×10-5 4.64×10-4 

1.5 𝐿 8.66×10-1 1.69×10-2 2.31×10-4 7.01×10-3 3.09×10-3 7.66×10-4 1.39×10-4 

 𝑈 4.69×10-4 9.57×10-5 6.22×10-3 1.78×10-2 7.03×10-3 6.80×10-5 4.06×10-4 

1.7 𝐿 9.10×10-1 1.77×10-2 2.03×10-4 6.77×10-3 1.36×10-3 1.75×10-3 1.64×10-4 

 𝑈 2.64×10-4 1.63×10-4 5.10×10-3 1.42×10-2 3.46×10-3 2.17×10-4 3.1×10-4 

1.9 𝐿 9.42×10-1 1.73×10-2 1.82×10-4 6.08×10-3 5.93×10-4 3.47×10-3 2.11×10-4 

 𝑈 1.43×10-4 1.19×10-3 3.84×10-3 1.07×10-2 1.67×10-3 5.86×10-4 2.04×10-4 

2.1 𝐿 9.64×10-1 1.60×10-2 1.61×10-4 5.13×10-3 2.54×10-4 6.14×10-3 2.62×10-4 
 𝑈 7.48×10-5 2.98×10-3 2.66×10-3 7.54×10-3 7.91×10-4 1.38×10-3 1.10×10-4 

2.3 𝐿 9.78×10-1 1.41×10-2 1.35×10-4 4.09×10-3 1.06×10-4 9.94×10-3 2.97×10-4 

 𝑈 3.77×10-5 5.23×10-3 1.72×10-3 5.06×10-3 3.66×10-4 2.92×10-3 4.54×10-5 

2.5 𝐿 9.88×10-1 1.20×10-2 1.06×10-4 3.09×10-3 4.37×10-5 1.49×10-2 3.05×10-4 

 𝑈 1.84×10-5 7.65×10-3 1.04×10-3 3.22×10-3 1.65×10-4 5.65×10-3 1.29×10-5 

2.7 𝐿 9.93×10-1 9.81×10-3 7.66×10-5 2.23×10-3 1.75×10-5 2.11×10-2 2.88×10-4 

 𝑈 8.63×10-6 1.00×10-2 5.94×10-4 1.95×10-3 7.29×10-5 1.01×10-2 6.49×10-6 

3.1 𝐿 9.98×10-1 6.09×10-3 3.24×10-5 1.01×10-3 2.64×10-6 3.66×10-2 2.02×10-4 

 𝑈 1.72×10-6 1.40×10-2 1.65×10-4 6.22×10-4 1.31×10-5 2.75×10-2 2.64×10-5 

3.5 𝐿 1. 00 3.51×10-3 1.05×10-5 3.88×10-4 3.59×10-7 5.52×10-2 1.10×10-4 

 𝑈 3.01×10-7 1.67×10-2 3.83×10-5 1.66×10-4 2.11×10-6 6.30×10-2 3.46×10-5 

3.9 𝐿 1.00 1.93×10-3 2.72×10-6 1.28×10-4 4.37×10-8 7.53×10-2 4.92×10-5 

 𝑈 4.58×10-8 1.83×10-2 7.53×10-6 3.70×10-5 3.01×10-7 1.29×10-1 2.11×10-5 

4.5 𝐿 1.00 7.57×10-4 2.45×10-7 1.85×10-5 1.50×10-9 1.06×10-1 1.14×10-5 

 𝑈 2.10×10-9 1.96×10-2 4.91×10-7 2.85×10-6 1.29×10-8 3.31×10-1 3.13×10-6 

5.1 𝐿 1.00 2.92×10-4 1.45×10-8 2.00×10-6 3.89×10-11 1.35×10-1 2.25×10-6 

 𝑈 7.05×10-11 2.00×10-2 2.27×10-8 1.51×10-7 4.1×10-10 6.78×10-1 1.70×10-7 

5.9 𝐿 1.00 8.15×10-5 1.83×10-10 6.77×10-8 1.9×10-13 1.70×10-1 2.38×10-7 
 𝑈 4.64×10-13 2.03×10-2 2.21×10-10 1.69×10-9 2.57×10-12 2.98×10-1 1.82×10-9 

6.7 𝐿 1.00 2.27×10-5 1.19×10-12 1.47×10-9 5.55×10-16 --- 1.85×10-8 

 𝑈 1.78×10-15 2.03×10-2 1.16×10-12 9.99×10-12 9.21×10-15 2.97×10-1 1.04×10-11 

7.5 𝐿 1.00 6.34×10-6 3.89×10-15 2.11×10-11 1.11×10-16 --- 3.52×10-10 

 𝑈 1.11×10-16 2.03×10-2 3.33×10-15 3.12×10-14 1.11×10-16 4.40×10-1 3.20×10-14 

8.7 𝐿 1.00 9.35×10-7 0.00 1.67×10-14 0.00 --- 2.22×10-16 

 𝑈 0.00 2.04×10-2 0.00 0.00 0.00 4.85×10-1 0.00 
  

 
 
 



9 

 

 

References 
 

Abreu, G. (2012). Very simple tight bounds on the Q‐function. IEEE Trans Commun. 
60(9): 2415‐2420. 
 

Alzer, H. (2010). Error function inequalities. Adv. Comput. Math., 33: 349–379. doi: 
10.1007/s10444-009-9139-2. 
 

Bercu, G. (2020). New refinements for the error function with applications in diffusion 
theory. Symmetry, 12. doi:10.3390/sym12122017. 
 

Boyd, A. V. (1959). Inequalities for Mills’ ratio. Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 
6 1959, 44–46. 
 

Eidous, O. (2022). Improvements of Polya upper bound for cumulative standard normal 
distribution and related functions. https://doi.org/10.48550/arXiv.2205.03485 
 

Eidous, O. and Abu Shareefa, R. (2020). New approximations for standard normal 
distribution function. Communications in Statistics - Simulation and computation, 49 
(6),1357-1374. 
 

Lipoth, J., Tereda, Y., Papalexiou, S. and  Spiteri, R. (2022). A new very simply explicitly 
invertible approximation for the standard normal cumulative distribution function. AIMS 
Mathematics, 7(7): 11635–11646. DOI:10.3934/math.2022648. 
 

Mastin, A. and Jaillet, P. (2013).Log-Quadratic Bounds for the Gaussian Q-function. 
https://arxiv.org/abs/1304.2488. 
 

Peric, Z. H., Nikolic, J. R. and Petkovic, M. D. (2019). Class of tight bounds on the Q -
function with closed-form upper bound on relative error. Math. Meth. Appl. Sci., 42, 
1786-1794. 
 

Ruskai, M. B. and Werner, E. (2000). Study of a class of regularizations of 1/|𝑋| using 
Gaussian integrals. SIAM Journal of Mathematical Analysis, 32 (2), 435-463.  
 

Sandoval-Hernandez, M., Vazquez-Leal, H., Filobello-Nino, U. and Hernandez-Martinez, 
L. (2019). New handy and accurate approximation for the Gaussian integrals with 
applications to science and engineering. Open Mathematics, 17 (1), 1774-
1793. https://doi.org/10.1515/math-2019-0131 
 

Simon, M. (2006). Probability Distributions Involving Gaussian Random Variables: A 
Handbook for Engineers and Scientists, 2nd ed. Springer. 
 

Trigui, I., Agbogla, E. Benjillali, M., Ajib, W. and Zhu, W. (2021). Bit Error Rate Analysis for 
Reconfigurable Intelligent Surfaces with Phase Errors. IEEE Communications Letters, 25 
(7):  2176 -2180. 
 

https://doi.org/10.1515/math-2019-0131
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4234

	Peric, Z. H., Nikolic, J. R. and Petkovic, M. D. (2019). Class of tight bounds on the Q -function with closed-form upper bound on relative error. Math. Meth. Appl. Sci., 42, 1786-1794.

