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Abstract

This paper considers relative controllability of leader-follower hybrid delay multi-agent systems under fixed communication

topology, where two kinds of state delays are existed and each agent subjects to one of them. Some agents with unidirectional

signal flows are assigned as leaders and the others are followers. With neighbor-based protocols adopted, the multi-agent systems

are represented as a higher dimensional two-delay system without pairwise matrices permutation. Fundamental solution matrix

of the two-delay system is constructed by improving the methods in literature, further solution of the system is obtained. Based

on the solution Gramian criterion on relative controllability of the system is established. Whereafter, a sufficient condition on

relative controllability of the system is presented. An example is attached to support the work.
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1. Introduction

The cluster behavior of multi-agents is of interest in recent years. This is because of the wide

applications of multi-agents, such as spacecraft formation, unmanned air vehicles, autonomous un-

derwater vehicles, etc. The main attentions for multi-agents are paid to consensus [1, 2, 3, 4, 5],

formation [6, 7], flocking [8, 9, 10] and controllability [11, 12], etc.

Controllability of the multi-agent systems is a basic problem, which determines whether we can

operate and control the cluster behaviors of the group of agents. Since Tanner [11] put forward

the controlled agreement problem of multi-agent systems with interaction topology fixation, great

improvements have been made in this field and abundant criterions have been established in various

conditions and ways, such as fixed topology [8, 9], switching topologies [12, 13], etc.

The above mentioned dynamics of agents are mainly single integrator. However, generic dynamics

of agents is another important branch for the controllability of multi-agent systems. Ji et al. [14]

consider the controllability of homogeneous multi-agent systems, where each agent shares a common

generic linear dynamics. Similar result can be found in [15]. Structural controllability of the multi-
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agent systems with each agent updating its state by a common generic linear dynamics is also

tackled in [16]. Zhao et al. [17] generalize the control problem of homogeneous multi-agent systems

to heterogeneous ones, where each agent follows different generic linear dynamics. More information

about the controllability of generic linear dynamic agents one can find in [18].

Besides, the dynamics of agents always exhibit time delays because of desensitization or burn-

in of the sensors. Thus, distributed cooperative control of the delay multi-agent systems is an

important topic (see, [3, 4, 19, 20]). For instance, Liu et al. [20] consider the controllability of

discrete-time multi-agent systems with delays in communication topology. Ji et al. [21] convert the

continuous-time multi-agent systems with communication delay to the delay system and deal with

controllability of the delay system by analysing the eigenvalue of matrix. For more conclusion about

controllability of the delay multi-agent systems it is referred to [19].

The delay aforementioned is mainly existed in communication topology. Whereas, each agent in

the multi-agent systems may subject to different delay because the degree of disturbance is different

for each agent (see more in [20, 22, 23, 24]), rendering it more reasonable to model each subsystem in

the multi-agent systems by a different delay differential equation. For instance, Si et al. [25] consider

the controllability of delay multi-agent systems by using the delay matrix exponential, where the

dynamics of each agent obeys a generic delay differential equation.

We call a delay differential system relatively controllable, if there exists a controller such that

for any initial function on the delay interval, the state of system can be steered to any designation

in a finite time (see [26, 27]). In this study, relative controllability of the hybrid delay multi-agent

systems is considered, where two types of delays in all are existed and the dynamics of each agent

subjects to one of them. The agents with unidirectional information flows are assigned as leaders

and the others are followers. Based on the kinds of delays that the followers subjected, we classify

the followers into two groups and index them separately. We assume the dynamics of leaders are

output controllable. Neighbor-based protocol is adopted to construct the communication network

among agents. Under such protocol the multi-agent systems are written as two-delay system without

pairwise permutation of matrices. We combine with the methods of Medved [28] and Mahmudov

[31] to solve the two-delayed system. Gramian criterion on relative controllability of the system

is established based on the solution. Whereafter, we construct a matrix sequence and prove that

the derivative up to any order for the fundamental solution matrix of the two-delay system can

be represented by such a matrix sequence established before. Based on this result and Gramian

criterion, a sufficient condition on relative controllability of the two-delay system is presented.

2. Preliminaries

Hereinafter, we define a weighted adjacent digraph as G = (V, E ,A), where V is the vertex set,

E is the edge set and A represents the weighted adjacency matrix. If we denote that V = {1, · · · , n}
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and A = [aij ], then there is an direct edge from vertex i to vertex j if and only if aji > 0. For an

edge (i, j) ∈ E , we call j the out neighbor of i. The collection of all nearest out neighbors is denoted

by Ni = {j ∈ V : εij = (i, j) ∈ E}. For the given graph G, the associated Laplacian matrix L is as

follows: L = (Lij)N×N , where Lij = −aij for i ̸= j and Lij =
N∑
j ̸=i

aij for i = j. More properties

about the Laplacian matrix it is referred to [29].

3. Description

In this section, we formulize the controlled agreement problem of hybrid delay multi-agent sys-

tems with fixed interconnection topology, in which two types of delays are existed in all and each

agent suffers from one of them. The interconnection topology among agents is abstracted as a

weighted digraph. Each vertex in the digraph represents a subsystem of the multi-agent systems

and the edge is associated with the information flow among agents.

The multi-agent systems are assumed to be consisted of M +L members, where L agents which

transform information to others unidirectionally are as leaders and the others are followers. Based

on the kinds of delays, we separate the rest M agents (followers) into two groups. The agents in one

group suffer from delay τ1 and are labelled from 1 to N(< M). The ones in another group suffer

from delay τ2 and are labelled from N + 1 to M . The indices from M + 1 to M + L are left to

leaders.

In what follows we assume that the followers update their states by the following delay differential

equations

ẋi(t) =Aixi(t) +Bixi(t− τ1) + Ciui(t), (1a)

ẋj(t) =Ajxj(t) +Bjxj(t− τ2) + Cjuj(t), (1b)

where xi(j) ∈ Rn is the state of agent i(j), Ai(j), Bi(j) ∈ Rn×n, Ci(j) ∈ Rn×p, ui(j) ∈ Rp is the

steering input and τ1, τ2 are the two kinds of delays, i = 1, · · · , N (j = N + 1, · · · ,M). We assume

that 0 < τ1 < τ2 ≤ 2τ1.

Motivated by Liu et al. [12], we introduce the following neighbor-based protocols to establish

the interconnection network among agents

ui(t) =K
∑
k∈Ni

wik(xi(t)− xk(t))

+ P

L∑
k=1

aikδik(yk(t)− xi(t)), i = 1, · · · ,M, (2)

where yk(t) = xM+k(t) represents the state of leader which receives exogenous control input, K and

P are the gain matrices in Rp×n, wik is the weight of edge (k, i) among followers, aik is the coupled

weight between leader and follower, and δik is equal to one if the i-th follower can directly receive

signal from the k-th leader, otherwise it is zero.
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Under (2), systems (1a)–(1b) are transformed into the following two-delay system

ẋ(t) = Ãx(t) + B̃1x(t− τ1) + B̃2x(t− τ2) + C̃u(t), (3)

where u(t) = (yT1 (t), · · · , yTL (t))
T , x(t) = (xT

1 (t), · · · , xT
M (t))T , and Ã, B̃1, B̃2, C̃ are defined

as follows: Ã = Ã1 − Ã2 + Ã3, Ã1 = diag(A1, · · · , AM ), Ã2 = diag(D1, · · · , DM ) with Dm =
L∑

k=1

amkδmkCmP , m = 1, · · · ,M , and

Ã3 =


l11C1K · · · l1MC1K

...
. . .

...

lM1CMK · · · lMMCMK


with lij = −wij for i ̸= j and lij =

M∑
j ̸=i

wij for i = j;

B̃1 =

 B̂1 0

0 0

 , B̃2 =

 0 0

0 B̂2

 ,

where B̂1 = diag(B1 · · · , BN ), B̂2 = diag(BN+1 · · · , BM ), and 0 is corresponding dimensional zero

matrix;

C̃ =


a11δ11C1P · · · a1Lδ1LC1P

...
. . .

...

aM1δM1CMP · · · aMLδMLCMP

 .

The matrices Ã, B̃1, and B̃2 are pairwise nonpermutable. If system (3) is controllable, then we

call the multi-agent systems (1a)-(1b) under (2) are controllable. For the controllability of system

(3), the analysis of matrix eigenvalue [12] or the graphical theory approach [30] might not be the

prefer choice because it is still left to us to establish the controllability criterion for system (3).

Alternatively, we will apply the method of mathematical analysis to tackle this problem. To this

end, firstly we consider the solution of (3).

Remark 3.1. For delay differential equations, Khusainov & Shuklin [27] gave the delay matrix

exponential and solved a single-delay differential equations. Mahmudov [31] presented a matrix

function of Mittag-Leffler type and constructed solution of the linear nonhomogeneous fractional

delay differential equations. Medved & Posṕı̌sil [28] extended the results of Khusainov & Shuklin

and established a multi-delay exponential function to solve multi-delay differential equations with

pairwise matrices permutation. System (3) is a linear two-delay dynamics without Ã, B̃1, B̃2 pairwise

permutation. We will improve the methods of Mahmudov and Khusainov to solve the solution of (3).

4



3.1. Solution

Next, we focus on the solution of (3) for arbitrary initial function. To this end, with referring to

[31] we firstly introduce the following matrix sequence
Q0(s) = Qk(−τ1) = Θ,

Q1(0) = I,

Qk+1(s) = ÃQk(s) + B̃1Qk(s− τ1), k ∈ N,

where Ã, B̃1 are defined in (3), Θ and I are zero and unit matrices of appropriate dimensions,

respectively, and s = 0, τ1, 2τ1, · · · . Further introduce a matrix polynomial function as follows

X(t) =


Θ, −τ1 ≤ t < 0,
∞∑
i=0

p−1∑
j=0

Qi+1(jτ1)
(t−jτ1)

i

Γ(i+1) , (p− 1)τ1 ≤ t < pτ1,
(4)

where p ∈ N+ and Γ(·) is the gamma function. It follows from Mahmudov [31] that (4) is a

fundamental solution matrix of

Ẋ(t) = ÃX(t) + B̃1X(t− τ1). (5)

Apply (4) to construct a function Φτ2(·) as follows

Φτ2(t) =



Θ, t < −τ2,

X(t+ τ2), −τ2 ≤ t < 0,

X(t+ τ2) +
∫ t

0
X(t− s1)B̃2X(s1)ds1 + · · ·

+
∫ t

(k−1)τ2

∫ s1
(k−1)τ2

· · ·
∫ sk−1

(k−1)τ2
X(t− s1)B̃2X(s1 − s2)B̃2 · · ·

×X(sk−1 − sk)B̃2X(sk − (k − 1)τ2)dsk · · · ds2ds1, (k − 1)τ2 ≤ t < kτ2, k ∈ N+.

(6)

Remark 3.2. To obtain a fundamental solution matrix of (3), we make an improvement of Eq.

(2.3) in Medved et al. [28]. Namely, we replace the function X(·) in Eq. (2.3) of Medved et al. [28]

by (4) and insert B̃2 into the integrand of the repeated integral discretely (in Eq. (2.3) of Medved et

al. [28]) to yield (6). These improvements help us to construct the fundamental solution matrix of

(3) without pairwise matrices permutation.

Define a function as follows

Y (t) = Φτ2(t− τ2), t ∈ R, (7)

where Φτ2(·) is defined by (6). The following lemma shows that Y (·) is exactly the fundamental

solution matrix of (3) with zero forcing, proof of which is referring to [28].

Lemma 3.3. Let Y (·) be the function in (7). Then we have

Ẏ (t) = ÃY (t) + B̃1Y (t− τ1) + B̃2Y (t− τ2) (8)
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with

Y (0) = I, Y (t) = Θ, t ∈ [−τ2, 0). (9)

Proof. Denote γ(t) = t − τ1 − τ2. For t ∈ [−τ2, 0), it is trivial for (9). For t = 0, it has X(0) = I.

Thus we obtain Y (0) = I. For 0 ≤ t < τ2, Y (t) = X(t). Thus, we obtain Y (t − τ2) = Θ. We

consider this interval in two cases. For 0 ≤ t < τ1, Y (t − τ1) = Θ, thus (8) holds. For τ1 ≤ t < τ2,

Y (t− τ1) = X(t− τ1). Thus it holds that

Ẏ (t) = Ẋ(t)

= ÃX(t) + B̃1X(t− τ1)

= ÃY (t) + B̃1Y (t− τ1) + B̃2Y (t− τ2).

For kτ2 ≤ t < (k + 1)τ2, taking the derivative of Y (·) and following from (5)–(6), we have

Ẏ (t) = ÃY (t) + B̃1Ỹ1(t) + B̃2Ỹ2(t)

with

Ỹ1(t) =X(t− τ1) +

∫ t−τ2

0

X(γ(t)− s1)B̃2X(s1)ds1

+

∫ t−τ2

τ2

∫ s1

τ2

X(γ(t)− s1)B̃2X(s1 − s2)B̃2X(s2 − τ2)ds2ds1 + · · ·

+

∫ t−τ2

(k−1)τ2

∫ s1

(k−1)τ2

· · ·
∫ sk−1

(k−1)τ2

X(γ(t)− s1)B̃2X(s1 − s2)B̃2 · · ·

×X(sk−1 − sk)B̃2X(sk − (k − 1)τ2)dsk · · · ds2ds1 (10)

and

Ỹ2(t) =X(t− τ2) +

∫ t−τ2

τ2

X(t− τ2 − s2)B̃2X(s2 − τ2)ds2 + · · ·

+

∫ t−τ2

(k−1)τ2

∫ s2

(k−1)τ2

· · ·
∫ sk−1

(k−1)τ2

X(t− τ2 − s2)B̃2X(s2 − s3)B̃2 · · ·

×X(sk−1 − sk)B̃2X(sk − (k − 1)τ2)dsk · · · ds3ds2. (11)

Next, we will compute Ỹ1(t) and Ỹ2(t), respectively, by separating the interval into two parts.

For kτ2 ≤ t < kτ2 + τ1, from jτ2 ≤ s1 ≤ t− τ2, j = 0, 1,· · · ,k − 1, we have

−τ1 ≤ t− τ1 − τ2 − s1 ≤ t− τ1 − τ2 − jτ2.

From

(k − 1)τ2 − τ1 ≤ t− τ1 − τ2 < (k − 1)τ2,
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we have

(k − j − 1)τ2 − τ1 ≤ t− τ1 − τ2 − jτ2 < (k − j − 1)τ2.

Thus, we further arrive at

−τ1 ≤ t− τ1 − τ2 − s1 ≤ t− τ1 − τ2 − jτ2 < (k − j − 1)τ2,

where j = 0, 1, · · · , k − 1. Thus if j = k − 1, it holds that

X(t− τ1 − τ2 − s1) = Θ.

For −τ1 ≤ t− τ1 − τ2 − s1 < 0, we have

X(t− τ1 − τ2 − s1) = Θ.

For 0 ≤ t− τ1 − τ2 − s1 ≤ t− τ1 − τ2 − jτ2, j = 0, 1, · · · , k − 2, we obtain

X(t− τ1 − τ2 − s1) ̸= Θ.

Thus, we arrive at

Ỹ1(t) =X(t− τ1) +

∫ γ(t)

0

X(γ(t)− s1)B̃2X(s1)ds1

+

∫ γ(t)

τ2

∫ s1

τ2

X(γ(t)− s1)B̃2X(s1 − s2)B̃2X(s2 − τ2)ds2ds1 + · · ·

+

∫ γ(t)

(k−2)τ2

∫ s1

(k−2)τ2

· · ·
∫ sk−2

(k−2)τ2

X(γ(t)− s1)B̃2X(s1 − s2)B̃2 · · ·

×X(sk−2 − sk−1)B̃2X(sk−1 − (k − 2)τ2)dsk−1 · · · ds2ds1

=Y (t− τ1).

For (11), making changes of variables, si = si+1 − τ2, i = 1, 2, · · · , k − 1, it yields that

Ỹ2(t) =X(t− τ2) +

∫ t−2τ2

0

X(t− 2τ2 − s1)B̃2X(s1)ds1 + · · ·

+

∫ t−2τ2

(k−2)τ2

∫ s1

(k−2)τ2

· · ·
∫ sk−2

(k−2)τ2

X(t− 2τ2 − s1)B̃2X(s1 − s2)B̃2 · · ·

×X(sk−2 − sk−1)B̃2X(sk−1 − (k − 2)τ2)dsk−1 · · · ds2ds1

=Y (t− τ2). (12)

Thus (8) holds for kτ2 ≤ t < kτ2 + τ1.

Next, we consider (10) in another subinterval. For kτ2 + τ1 ≤ t < (k+1)τ2, from jτ2 ≤ s1 ≤ t−τ2,

we also obtain

−τ1 ≤ t− τ1 − τ2 − s1 ≤ t− (j + 1)τ2 − τ1 < (k − j)τ2 − τ1,

7



where j = 0, 1, · · · , k − 1. Thus, for −τ1 ≤ t− τ1 − τ2 − s1 < 0, it holds that

X(t− τ1 − τ2 − s1) = Θ.

Further (10) becomes

Ỹ1(t) =X(t− τ1) +

∫ γ(t)

0

X(γ(t)− s1)B̃2X(s1)ds1

+

∫ γ(t)

τ2

∫ s1

τ2

X(γ(t)− s1)B̃2X(s1 − s2)B̃2X(s2 − τ2)ds2ds1 + · · ·

+

∫ γ(t)

(k−1)τ2

∫ s1

(k−1)τ2

· · ·
∫ sk−1

(k−1)τ2

X(γ(t)− s1)B̃2X(s1 − s2)B̃2 · · ·

×X(sk−1 − sk)B̃2X(sk − (k − 1)τ2)dsk · · · ds2ds1

=Y (t− τ1). (13)

Thus, from (12) and (13), we know that (8) holds for kτ2 + τ1 ≤ t < (k + 1)τ2. The proof is

completed.

Lemma 3.4. Solution of the following homogeneous Cauchy problem

ẋ(t) = Ãx(t) + B̃1x(t− τ1) + B̃2x(t− τ2), (14a)

x(t) = φ(t), t ∈ [−τ2, 0] (14b)

can be represented as

x̂(t) =Y (t+ τ1 + δ(t))φ(−τ1 − δ(t))

+

∫ 0

−τ1

Y (t− s+ δ(t))
(
φ′(s− δ(t))− Ãφ(s− δ(t))

)
ds, (15)

where δ(t) = 0 for t ∈ [−τ1,∞) and δ(t) = τ1 for t ∈ (−∞,−τ1).

Proof. From Lemma 3.3, it is easy to obtain that (15) satisfies (14a). It remains to verify that (14b)

is satisfied. For t ∈ [−τ2,−τ1), δ(t) = τ1. From −τ1 ≤ s ≤ 0, we have

−τ2 + τ1 ≤ t+ τ1 ≤ t− s+ δ(t) ≤ t+ 2τ1 < τ1.

Thus for t+ τ1 < s ≤ 0, we have

Y (t− s+ δ(t)) = Θ.

For −τ1 ≤ s ≤ t+ τ1, it holds that

Y (t− s+ δ(t)) = eÃ(t−s+τ1).

From −τ2 + 2τ1 ≤ t+ τ1 + δ(t) < τ1 and τ1 < τ2 < 2τ1, we arrive at

Y (t+ τ1 + δ(t)) = eÃ(t+2τ1).

8



Thus, (15) is simplified as

x̂(t) =

∫ t+τ1

−τ1

eÃ(t−s+τ1)(φ′(s− τ1)− Ãφ(s− τ1))ds

+ eÃ(t+2τ1)φ(−2τ1)

=φ(t).

For t ∈ [−τ1, 0], δ(t) = 0. From an analogous process, it holds that for t ≤ s < 0, Y (t− s) = Θ.

For −τ1 ≤ s ≤ t, another result is yielded

Y (t− s) = eÃ(t−s).

From 0 ≤ t+ τ1 ≤ τ1, we have

Y (t+ τ1) = eÃ(t+τ1).

Thus, the following relation holds

x̂(t) = eÃ(t+τ1)φ(−τ1) + φ(t)− eÃ(t+τ1)φ(−τ1) = φ(t).

The proof is ended.

Lemma 3.5. Solution of system (3) associated with the zero initial value can be represented as

x̃(t) =

∫ t

0

Y (t− s)C̃u(s)ds,

where Y (·) is the function defined by (7).

Proof. Assume solution of (3) with the zero initial value can be represented as

x̃(t) =

∫ t

0

Y (t− s)g(s)ds.

Based on Lemma 3.3, the derivative of x̃(t) is further arrived at

˙̃x(t) =g(t) +

∫ t

0

ÃY (t− s)g(s)ds

+

∫ t

0

(
B̃1Y (t− s− τ1) + B̃2Y (t− s− τ2)

)
g(s)ds.

For 0 ≤ s ≤ t, it holds −τ1 ≤ t− s− τ1 ≤ t− τ1. So, for −τ1 ≤ t− s− τ1 < 0, we arrive at

Y (t− s− τ1) = Θ.

Further for 0 ≤ t− s− τ1 ≤ t− τ1, we obtain that

Y (t− s− τ1) ̸= Θ.
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Similarly, for t− τ2 ≤ s < t, it holds

Y (t− s− τ2) = Θ.

For 0 ≤ s ≤ t− τ2, we obtain

Y (t− s− τ2) ̸= Θ.

Thus, we further arrive at

˙̃x(t) =B̃1

∫ t−τ1

0

Y (t− s− τ1)g(s)ds+ B̃2

∫ t−τ2

0

Y (t− s− τ2)g(s)ds

+ g(t) + Ã

∫ t

0

Y (t− s)g(s)ds

=g(t) + Ãx̃(t) + B̃1x̃(t− τ1) + B̃2x̃(t− τ2).

Comparing this formula with (3), we obtain that g(t) = C̃u(s). This proof is ended.

Lemma 3.6. Solution of system (3) with original function

x(t) = φ(t), t ∈ [−τ2, 0]

enjoys the following form

x(t) =

∫ 0

−τ1

Y (t− s+ δ(t))
(
φ′(s− δ(t))− Ãφ(s− δ(t))

)
ds

+ Y (t+ τ1 + δ(t))φ(−τ1 − δ(t))

+

∫ t

0

Y (t− s)C̃u(s)ds,

where δ(t) = 0 for t ∈ [−τ1,∞) and δ(t) = τ1 for t ∈ (−∞,−τ1).

Proof. Following from Lemmas 3.3–3.5 we can deduce the result.

4. Controllability

Relative controllability of system (3) is considered in this section.

Definition 4.1. System (3) is called relatively controllable if, for any initial function φ(t), t ∈

[−τ2, 0], and any final state xf , there exist a terminal time tf > 0 and a measurable function u∗(t)

such that system (3) has a solution x∗(t) on [−τ2, tf ] which satisfies x∗(tf ) = xf and x∗(t) ≡ φ(t),

t ∈ [−τ2, 0].

Next, we establish Gramian criterion for relative controllability of system (3). For some tf > 0,

construct the following matrix

G(0, tf ) =

∫ tf

0

Y (tf − s)C̃C̃TY T (tf − s)ds. (16)
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Denote that

η =Y (tf + τ1)φ(−τ1) +

∫ 0

−τ1

Y (tf − s)
(
φ′(s)− Ãφ(s)

)
ds. (17)

For relative controllability of (3), the following assertion holds.

Theorem 4.2. System (3) is relatively controllable on [0, tf ] if and only if (16) is nonsingular.

Proof. Sufficiency. Suppose (16) is nonsingular. Then for any differentiable function φ(t), t ∈

[−τ2, 0], construct the following control input

u∗(s) = C̃TY T (tf − s)G−1(0, tf )(xf − η). (18)

Under (18), system (3) always has a solution of the form in Lemma 3.6 and this solution automatically

satisfies the initial condition. Thus we have

x∗(tf ) =η +

∫ tf

0

Y (tf − s)C̃C̃TY T (tf − s)dsG−1(0, tf )(xf − η)

=η +G(0, tf )G
−1(0, tf )(xf − η)

=xf .

Thus, (3) is relatively controllable.

Necessity. Suppose that system (3) is relatively controllable, but (16) is singular. Then a nonzero

constant vector x̃ exists which renders the quadratic form vanishing, i.e.

x̃TG(0, tf )x̃ =

∫ tf

0

x̃TY (tf − s)C̃C̃TY T (tf − s)x̃ds

=

∫ tf

0

∥x̃TY (tf − s)C̃∥2ds

=0.

Thus, we further arrive at x̃TY (tf − s)C̃ = θ, s ∈ [0, tf ], where θ is a zero vector of appropriate

dimension. System (3) being relatively controllable, two measurable control functions exist which

steer the trajectories of (3) to x̃ and θ, respectively, namely

x∗(tf ) = η +

∫ tf

0

Y (tf − s)C̃u∗
1(s)ds = x̃,

x∗(tf ) = η +

∫ tf

0

Y (tf − s)C̃u∗
2(s)ds = θ.

Thus, we have

x̃ =

∫ tf

0

Y (tf − s)C̃ (u∗
1(s)− u∗

2(s)) ds.

Further we obtain

∥x̃∥2 =

∫ tf

0

x̃TY (tf − s)C̃ (u∗
1(s)− u∗

2(s)) ds = 0,

which yields that x̃ = θ. Thus (16) is nonsingular. This ends the proof.
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Next, we present a sufficient condition about relative controllability of system (3), which is based

on the rank of controllability matrix and avoids to compute (16) mathematically. To this end, we

construct the following bivariate matrix sequence

Q̃1(0, 0) = I,

Q̃0(s, t) = Q̃k(−τ1, t) = Q̃k(s,−τ2) = Θ,

Q̃k+1(s, t) = Q̃k(s, t)Ã+ Q̃k(s− τ1, t)B̃1 + Q̃k(s, t− τ2)B̃2 (19)

with Ã, B̃1, and B̃2 defined in (3), where k ∈ N, s = 0, τ1, 2τ1, · · · , and t = 0, τ2, 2τ2, · · · . We have

Q̃k+1(0, 0) =Ãk,

Q̃k+1(τ1, 0) =
k−1∑
i=0

ÃiB̃1Ã
k−i−1,

Q̃k+1(0, τ2) =
k−1∑
i=0

ÃiB̃2Ã
k−i−1,

where k ∈ N+. Besides, the following assertions hold

Q̃k(kτ1, 0) =Θ, Q̃k(0, kτ2) = Θ, (20)

where k ∈ N. In fact, from (19) we have

Q̃k(kτ1, 0) =Q̃k−1(kτ1, 0)Ã+ Q̃k−1((k − 1)τ1, 0)B̃1

=Q̃k−2(kτ1, 0)Ã
2 + Q̃k−2((k − 1)τ1, 0)B̃1Ã

+ Q̃k−2((k − 1)τ1, 0)ÃB̃1 + Q̃k−2((k − 2)τ1, 0)B̃
2
1

= · · ·

=Q̃1(kτ1, 0)Ã
k−1 + · · ·+ Q̃1(τ1, 0)B̃

k−1
1

=Θ.

By an analogous process we obtain the other equation in (20). More generally, we have

Q̃k(iτ1, 0) = Q̃k(0, jτ2) = Θ

12



as long as i ≥ k, j ≥ k. Based on this, it holds that

Q̃k(iτ1, (k − i)τ2) =Q̃k−1(iτ1, (k − i)τ2)Ã

+ Q̃k−1((i− 1)τ1, (k − i)τ2)B̃1

+ Q̃k−1(iτ1, (k − i− 1)τ2)B̃2

= · · ·

=Q̃k−i(iτ1, (k − i)τ2)Ã
i

+ · · ·+ Q̃k−i(0, (k − i)τ2)B̃
i
1 + · · ·

= · · ·

=Q̃1(iτ1, (k − i)τ2)Ã
k−1 + · · ·

+ Q̃1(0, τ2)B̃
i
1B̃

k−i−1
2 + · · · Q̃1(τ1, 0)B̃

k−i
2 B̃i−1

1

=Θ. (21)

Lemma 4.3. For the matrix sequence (19), the following assertions hold

Q̃k+j(τ1, 0) = Q̃k+1(0, 0)Q̃j(τ1, 0) + Q̃k+1(τ1, 0)Q̃j(0, 0), (22a)

Q̃k+j(0, τ2) = Q̃k+1(0, 0)Q̃j(0, τ2) + Q̃k+1(0, τ2)Q̃j(0, 0), (22b)

where j, k ∈ N+.

Proof. For k = 1, j = 1, we have Q̃k+1(0, 0) = Ã, Q̃j(τ1, 0) = Θ, and Q̃k+j(τ1, 0) = B̃1. For k = 1

and any integer j, it holds that

Q̃k+1(0, 0)Q̃j(τ1, 0) =

j−2∑
r=0

Ãr+1B̃1Ã
j−r−2

=

j−1∑
r=0

ÃrB̃1Ã
j−r−1 − B̃1Ã

j−1

=Q̃k+j(τ1, 0)− Q̃k+1(τ1, 0)Q̃j(0, 0).

Suppose (22a) holds for any k, j ∈ N+, then we have

Q̃k+2(0, 0)Q̃j(τ1, 0) =ÃQ̃k+1(0, 0)Q̃j(τ1, 0)

=ÃQ̃k+j(τ1, 0)− ÃQ̃k+1(τ1, 0)Q̃j(0, 0)

=

k+j−1∑
r=0

ÃrB̃1Ã
k+j−r−2 −

k∑
r=0

ÃrB̃1Ã
k+j−r−2

=Q̃k+j+1(τ1, 0)− Q̃k+2(τ1, 0)Q̃j(0, 0).

Thus (22a) holds. Similarly, we have (22b) hold.
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Remark 4.4. Based on the definition and simple calculation of Q̃k+1(iτ1, jτ2), we know that

Q̃k+1(iτ1, jτ2) can be regarded as a combination with k positions in a stack written into k matrices,

where i matrices B̃1 are wrote into i positions, j matrices B̃2 are into j positions and (k − i − j)

matrices Ã are into the rest (k−i−j) ones, respectively. The total number of writing methods can be

simply calculated by combination of mathematics. Based on the principles of classification counting

and step-by-step counting we can obtain a series of equations, such as

Qk+i+1(0, jτ2) =Qk+1(0, 0)Qi+1(0, jτ2) +Qk+1(0, τ2)Qi+1(0, (j − 1)τ2)

+ · · ·+Qk+1(0, jτ2)Qi+1(0, 0)

and

Qk+i+1(τ1, τ2) =Qk+1(τ1, 0)Qi+1(0, τ2) +Qk+1(0, τ2)Qi+1(τ1, 0)

+Qk+1(τ1, τ2)Qi+1(0, 0) +Qk+1(0, 0)Qi+1(τ1, τ2),

even more.

Lemma 4.5. The derivative of Y (·) in (7) up to any order can be represented as

Y (k)(t) =

k∑
i,j=0
i+j≤k

Q̃k+1(iτ1, jτ2)Y (t− iτ1 − jτ2), k ∈ N+. (23)

Proof. From Lemma 3.3, we have (23) hold for k = 1. Suppose (23) holds for any k ∈ N+. Taking

the (k + 1)-th derivative of (23) and following from (8), we have

Y (k+1)(t) =
k∑

i,j=0
i+j≤k

Q̃k+1(iτ1, jτ2)ÃY (t− iτ1 − jτ2)

+
k+1∑
i=1

k∑
j=0

i+j≤k+1

Q̃k+1((i− 1)τ1, jτ2)B̃1Y (t− iτ1 − jτ2)

+
k∑

i=0

k+1∑
j=1

i+j≤k+1

Q̃k+1(iτ1, (j − 1)τ2)B̃2Y (t− iτ1 − jτ2).
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Decompose the sum to yield

Y (k+1)(t) =
k∑

i,j=1
i+j≤k

Q̃k+2(iτ1, jτ2)Y (t− iτ1 − jτ2) +
k∑

i=0

Q̃k+1(iτ1, 0)ÃY (t− iτ1)

+
k∑

j=1

Q̃k+1(0, jτ2)ÃY (t− jτ2) +
k+1∑
i=1

Q̃k+1((i− 1)τ1, 0)B̃1Y (t− iτ1)

+

k∑
j=1

Q̃k+1((k − j)τ1, jτ2)B̃1Y (t− (k − j + 1)τ1 − jτ2)

+
k+1∑
j=1

Q̃k+1(0, (j − 1)τ2)B̃2Y (t− jτ2)

+
k∑

i=1

Q̃k+1(iτ1, (k − i)τ2)B̃2Y (t− iτ1 − (k − i+ 1)τ2)

:= J1 + J2 + J3 + J4 + J5 + J6 + J7, (24)

where Ji, i = 1, · · · , 7, is defined to represent each sum function at the right hand of (24), respec-

tively. From (20), it is obtained

Q̃k+2((k + 1)τ1, 0) =Q̃k+1((k + 1)τ1, 0)Ã+ Q̃k+1(kτ1, 0)B̃1

=Q̃k+1(kτ1, 0)B̃1.

Thus, it holds that

J2 + J4 =
k∑

i=1

(
Q̃k+1(iτ1, 0)Ã+ Q̃k+1((i− 1)τ1, 0)B̃1

)
Y (t− iτ1)

+ Q̃k+1(0, 0)ÃY (t) + Q̃k+1(kτ1, 0)B̃1Y (t− (k + 1)τ1)

=

k∑
i=1

Q̃k+2(iτ1, 0)Y (t− iτ1) + Q̃k+2(0, 0)Y (t)

+ Q̃k+2((k + 1)τ1, 0)Y (t− (k + 1)τ1).

By an analogous process we have

J3 + J6 =
k∑

j=1

(
Q̃k+1(0, jτ2)Ã+ Q̃k+1(0, (j − 1)τ2)B̃2

)
Y (t− jτ2)

+ Q̃k+1(0, kτ2)B̃2Y (t− (k + 1)τ2)

=
k∑

j=1

Q̃k+2(0, jτ2)Y (t− jτ2)

+ Q̃k+2(0, (k + 1)τ2)Y (t− (k + 1)τ2).
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Further combining the terms in (24) and from (21) we obtain

J5 + J7 =
k∑

j=1

Q̃k+1((j − 1)τ1, (k − j + 1)τ2)B̃1Y (t− jτ1 − (k − j + 1)τ2)

+
k∑

j=1

Q̃k+1(jτ1, (k − j)τ2)B̃2Y (t− jτ1 − (k − j + 1)τ2)

=
k∑

j=1

Q̃k+2(jτ1, (k − j + 1)τ2)Y (t− jτ1 − (k − j + 1)τ2) .

Rewrite (24) to yield

Y (k+1)(t) =
k∑

i,j=1
i+j≤k

Q̃k+2(iτ1, jτ2)Y (t− iτ1 − jτ2) +
k∑

i=1

Q̃k+2(iτ1, 0)Y (t− iτ1)

+
k∑

i=1

(
Q̃k+2(0, 0)Y (t) + Q̃k+2((k + 1)τ1, 0)Y (t− (k + 1)τ1)

)
+

k∑
j=1

(
Q̃k+2(0, jτ2)Y (t− jτ2) + Q̃k+2(0, (k + 1)τ2)Y (t− (k + 1)τ2)

)

+

k∑
j=1

Q̃k+2(jτ1, (k − j + 1)τ2)Y (t− jτ1 − (k − j + 1)τ2)

=
k+1∑
i,j=0

i+j≤k+1

Q̃k+2(iτ1, jτ2)Y (t− iτ1 − jτ2).

Thus, (23) holds for any k ∈ N+.

Theorem 4.6. If rank(Q̌) = Mn, then system (3) is relatively controllable on [0, tf ] for some

tf > 0, where Q̌ is the controllability matrix defined by

Q̌ =
[
Q̂1(0, 0), · · · , Q̂Mn(0, 0),

Q̂2(τ1, 0), · · · , Q̂Mn(τ1, 0),

Q̂2(0, τ2), · · · , Q̂Mn(0, τ2), · · · , Q̂Mn(iτ1, jτ2)
]
, i+ j ≤ Mn− 1, (25)

with

Q̂k+1(rτ1, sτ2) = Q̃k+1(rτ1, sτ2)C̃, r + s ≤ k, k ∈ N. (26)

Proof. Assume that rank(Q̌) = Mn, whereas (3) is relatively uncontrollable on [0, tf ]. Then (16) is

singular because of Theorem 4.2. Thus a nonzero vector x̂ is existed which renders x̂TG(0, tf )x̂ = 0,

namely,

x̂TY (t)C̃ = θ, t ∈ [0, tf ]. (27)
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Taking derivative of (27) up to any k-th order and from (23) we arrive at

x̂TY (k)(t)C̃ =

k∑
i,j=0
i+j≤k

x̂T Q̃k+1(iτ1, jτ2)Y (t− iτ1 − jτ2)C̃

=θ, k ∈ N+. (28)

Taking t = 0 in (28) and from (9), (27), we have

x̂T Q̃k+1(0, 0)C̃ = θ, k ∈ N. (29)

Taking t = τ1 in (28) we obtain that

x̂TY (k)(τ1)C̃ =

∞∑
i=0

x̂T Q̃k+i+1(0, 0)C̃
τ i1

Γ(i+ 1)
+ x̂T Q̃k+1(τ1, 0)C̃, k ∈ N.

From (29), we have

x̂T Q̃k+1(τ1, 0)C̃ = θ, k ∈ N. (30)

Following analogous process we obtain

x̂T Q̃k+1(2τ1, 0)C̃ = θ, (31a)

x̂T Q̃k+1(0, τ2)C̃ = θ, (31b)

where k ∈ N.

Again taking t = τ1 + τ2 and following from Remark 4.4 we have

x̂TY (k)(τ1 + τ2)C̃ =
∞∑
i=0

x̂T Q̃k+i+1(0, 0)C̃
(τ1 + τ2)

i

Γ(i+ 1)

+
∞∑
i=0

x̂T Q̃k+i+1(0, τ2)C̃
τ i1

Γ(i+ 1)

+

∞∑
i=0

x̂T Q̃k+i+1(τ1, 0)C̃
τ i2

Γ(i+ 1)

+

∞∑
i=0

x̂T Q̃k+i+1(2τ1, 0)C̃
(τ2 − τ1)

i

Γ(i+ 1)

+ x̂T Q̃k+1(τ1, τ2)C̃.

From (29), (30) and (31), we have

x̂T Q̃k+1(τ1, τ2)C̃ = θ, k ∈ N. (32)

Suppose that

x̂T Q̃k+1(iτ1, jτ2)C̃ = θ, i+ j ≤ r, (33)
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holds for arbitrary positive integer r ∈ (1, k − 1]. For t = iτ1 + jτ2, i+ j = r + 1, denote r∗ = r − i

to have

x̂TY (k)(iτ1 + (r∗ + 1)τ2)C̃

=

∞∑
j=0

x̂T Q̃k+j+1(0, 0)C̃
(iτ1 + (r∗ + 1)τ2)

j

Γ(j + 1)
+ · · ·

+
∞∑
j=0

x̂T Q̃k+j+1(0, (s
∗
1 + 1)τ2)C̃

(iτ1 + (r∗ − s∗1)τ2)
j

Γ(j + 1)

+

∞∑
j=0

x̂T Q̃k+j+1(τ1, 0)C̃
((i− 1)τ1 + (r∗ + 1)τ2)

j

Γ(j + 1)
+ · · ·

+
∞∑
j=0

x̂T Q̃k+j+1(τ1, (s
∗
2 + 1)τ2)C̃

((i− 1)τ1 + (r∗ − s∗2)τ2)
j

Γ(j + 1)
+ · · ·

+
∞∑
j=0

x̂T Q̃k+j+1(iτ1, 0)C̃
((r∗ + 1)τ2)

j

Γ(j + 1)
+ · · ·+ x̂T Q̃k+1(iτ1, (r

∗ + 1)τ2)C̃ + · · ·

+
∞∑
j=0

x̂T Q̃k+j+1(s
†τ1, 0)C̃

((i− s†)τ1 + (r∗ + 1)τ2)
j

Γ(j + 1)
+ · · ·

+
∞∑
j=0

x̂T Q̃k+j+1(s
†τ1, (s

∗
p + 1)τ2)C̃

((i− s†)τ1 + (r∗ − s∗p)τ2)
j

Γ(j + 1)
,

where s∗i , i = 1, · · · , p, p ∈ [r+1−i, r−1), is the maximum integer such that (i−j)τ1+(r−i−s∗p)τ2 ≥ 0

and (i− j)τ1 + (r − i− s∗p − 1)τ2 < 0 with j = 0, 1, · · · , s†, s† ∈ [i+ 1, r − 1). Thus, it follows from

(29)–(32) and the assumption (33) that

x̂T Q̃k+1(iτ1, jτ2)C̃ = θ. (34)

Thus, the assumption (33) holds.

From (27)–(34) we obtain that

x̂T Q̃k+1(iτ1, jτ2)C̃ = θ (35)

holds for i+ j ≤ k, k ∈ N+. Rewrite (35) to yield

x̂T
[
Q̂1(0, 0), Q̂2(0, 0), · · · , Q̂k+1(0, 0),

Q̂2(τ1, 0), Q̂3(τ1, 0), · · · , Q̂k+1(τ1, 0),

Q̂2(0, τ2), Q̂3(0, τ2), · · · , Q̂k+1(0, τ2),

Q̂3(τ1, τ2), Q̂4(τ1, τ2), · · · , Q̂k+1(τ1, τ2), · · · , Q̂k+1(iτ1, jτ2)
]
:= x̂T Q̄ = θ

for i+ j ≤ k, k ∈ N+, implying that Q̄ is always row linearly dependent for arbitrary k ∈ N+. Thus,

for k = Mn we obtain rank(Q̌) < Mn, which yields a contradiction. This ends the proof.
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5. Example

In this section, an example will be taken to explain our work. To simplify the problem, we

assume the topological graph of multi-agent systems is presented in Fig. 1, where agents 5, 6 are

selected as leaders and 1, 2, 3, 4 are followers. Dynamics of followers obey the following rules

ẋ1(t) =a1x1(t) + b1x1(t− τ1) + c1u1(t), (36a)

ẋ2(t) =a2x2(t) + b2x2(t− τ1) + c2u2(t), (36b)

ẋ3(t) =a3x3(t) + b3x3(t− τ2) + c3u3(t), (36c)

ẋ4(t) =a4x4(t) + b4x4(t− τ2) + c4u4(t), (36d)

where xi ∈ R, i = 1, · · · , 4. Taking values as τ1 = 2, τ2 = 3, finial state xf = [10,−20,−30, 24]T

and initial function

φ(t) = 10
[
− sin(2t), 2 cos(5t), 3 sin(πt),−3e−t

]T
.

From (4), it is obtained

X(t) =
∞∑
i=0

Qi+1(0)
ti

Γ(i+ 1)
+

∞∑
i=0

Qi+1(τ1)
(t− τ1)

i

Γ(i+ 1)

+

∞∑
i=0

Qi+1(2τ1)
(t− 2τ1)

i

Γ(i+ 1)
+

∞∑
i=0

Qi+1(3τ1)
(t− 3τ1)

i

Γ(i+ 1)
.

Thus, Gramian matrix becomes

G(0, tf ) =

∫ τ2

0

X(t)CCTXT (t)dt+

∫ 2τ2

τ2

X(t)CCTXT (t)dt

+

∫ 2τ2

τ2

X(t)CCT X̃T
1 (t)dt+

∫ 2τ2

τ2

X̃1(t)CCTXT (t)dt

+

∫ 2τ2

τ2

X̃1(t)CCT X̃T
1 (t)dt+

∫ tf

2τ2

X(t)CCTXT (t)dt

+

∫ tf

2τ2

X(t)CCT X̃T
1 (t)dt+

∫ tf

2τ2

X(t)CCT X̃T
2 (t)dt

+

∫ tf

2τ2

X̃1(t)CCTXT (t)dt+

∫ tf

2τ2

X̃1(t)CCT X̃T
1 (t)dt

+

∫ tf

2τ2

X̃1(t)CCT X̃T
2 (t)dt+

∫ tf

2τ2

X̃2(t)CCTXT (t)dt

+

∫ tf

2τ2

X̃2(t)CCT X̃T
1 (t)dt+

∫ tf

2τ2

X̃2(t)CCT X̃T
2 (t)dt,

with

X̃1(t) =

∫ t−τ2

0

X(t− s1 − τ2)B̃2X(s1)ds1,

X̃2(t) =

∫ t−τ2

τ2

∫ s1

τ2

X(t− s1 − τ2)B̃2X(s1 − s2)B̃2X(s2 − τ2)ds2ds1.
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If (16) is nonsingular, then the control input function is

u(t) =CTXT (t)G−1(0, tf )(xf − η), t ∈ [0, τ2),

u(t) =CTXT (t)G−1(0, tf )(xf − η)

+ CT

∫ t−τ2

0

XT (s1)B̃
T
2 X

T (t− s1 − τ2)ds1G
−1(0, tf )(xf − η), t ∈ [τ2, 2τ2),

and

u(t) =CTXT (t)G−1(0, tf )(xf − η)

+ CT

∫ t−τ2

0

XT (s1)B̃
T
2 X

T (t− s1 − τ2)ds1G
−1(0, tf )(xf − η)

+ CT

∫ t−τ2

τ2

∫ s1

τ2

XT (s2 − τ2)B̃
T
2 X

T (s1 − s2)B̃
T
2 X

T (t− s1 − τ2)ds2ds1

×G−1(0, tf )(xf − η), t ∈ [2τ2, tf ],

where η is defined by (17).

η =X(tf + τ1)φ(−τ1) +

∫ 0

−τ1

X(tf − s)(φ′(s)− Ãφ(s))ds

+

∫ tf+τ1−τ2

0

X(tf + τ1 − τ2 − s1)B̃2X(s1)ds1φ(−τ1)

+

∫ tf+τ1−τ2

τ2

∫ s1

τ2

X(tf + τ1 − τ2 − s1)B̃2X(s1 − s2)B̃2X(s2 − τ2)ds2ds1φ(−τ1)

+

∫ 0

−τ1

∫ tf−s−τ2

0

X(tf − s− s1 − τ2)B̃2X(s1)(φ
′(s)− Ãφ(s))ds1ds

+

∫ 0

−τ1

∫ tf−s−τ2

τ2

∫ s1

τ2

X(tf − s− s1 − τ2)B̃2X(s1 − s2)B̃2X(s1 − τ2)(φ
′(s)− Ãφ(s))ds2ds1ds.

Other parameters are taken as a1 = 0.2, a2 = 0.5, a3 = 0.8, a4 = 0.12, b1 = 0.18, b2 = 0.3, b3 = 0.5,

b4 = 0.16, c1 = 0.8, c2 = 0.1, c3 = 0.7, c4 = 0.15, w12 = 0.12, w13 = 0.21, w14 = 0.2, w21 = 0.18,

w23 = 0.15, w31 = 0.1, w32 = 0.12, w41 = 0.3, p11 = 0.24, p22 = 0.2, p32 = 0.3, p41 = 0.18. If we

select the terminal time tf = 7, then the determinant of G(0, tf ) in (16) is 56.89 and the rank of Q̂ in

(25) is 4, thus from Theorems 4.2 and 4.6, respectively, we have that (36) is relatively controllable.

Simulations are shown in Fig. 2–3. Fig. 2 is the trajectories of the four agents, all of which are

steered to the arbitrary given terminal states. Fig. 3 is the control inputs.

6. Conclusion

Relative controllability of leader-follower multi-agent systems with two kinds of delays in dynam-

ics is considered in this paper. Neighbor-based protocols are used to realize the communication of

the group of agents. Solution of two-delayed differential equation without pairwise matrices permu-

tation is presented by improving the fundamental solution matrix in literature and further Gramian
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Figure 1: The communication topology of multi-agent systems.
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Figure 2: The four states of agents.

criterion is established. Derivative of the fundamental solution matrix up to any order is presented

by a matrix sequence and a sufficient condition that rank deficiency or not of controllability matrix

determines directly relative controllability of the two-delayed system is presented. Simulation of an

example is shown to explain our work. For more information about solutions and controllability of

delay differential equations we refer readers to Khusainov et al. [27] and Medved et al. [32].
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