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Abstract

This paper is about the investigation of exact solutions of important economic model; Ivancevic option pricing model (IOPM)

with M-fractional derivative. To achieve this aim, three different methods; expa function method, extended Sinh-Gordon

equation expansion method (EShGEEM) and extended (G’/G)-expansion method are used. Obtained solutions consisting of

trigonometric, hyperbolic trigonometric, rational and exponential. The obtained solutions are new than the existing solutions in

the literature. The got solutions are also verified by using Mathematica tool. Graphically justification are also done by plotting

2-D,3-D and contour graphs. The importance of this paper is that M-fractional derivative is first time use for this model. On

the bases of achieved results it is suggested that these methods are simple, reliable and fruitful than the other methods.
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Abstract

This paper is about the investigation of exact solutions of important economic
model; Ivancevic option pricing model (IOPM) with M-fractional derivative. To achieve
this aim, three different methods; expa function method, extended Sinh-Gordon equa-
tion expansion method (EShGEEM) and extended (G′/G)-expansion method are used.
Obtained solutions consisting of trigonometric, hyperbolic trigonometric, rational and
exponential. The obtained solutions are new than the existing solutions in the lit-
erature. The got solutions are also verified by using Mathematica tool. Graphically
justification are also done by plotting 2-D,3-D and contour graphs. The importance of
this paper is that M-fractional derivative is first time use for this model. On the bases
of achieved results it is suggested that these methods are simple, reliable and fruitful
than the other methods.

Keywords: Ivancevic option pricing model; M-fractional derivative; expa function method;
EShGEEM; Extended (G′/G)-expansion method; Exact solutions.

1 Introduction

Many mathematical models have been developed in these areas in the form of nonlinear
partial differential equations (NLPDEs). Numerous schemes are made to gain exact so-
lutions of NLPDEs like; generalized exponential rational function scheme (GERFS) [1–3],

*Corresponding author: mraheelmphil.math@gmail.com
�Corresponding author: khalidkaram2012@azhar.edu.eg
�Corresponding author: asimzafar@hotmail.com
§Corresponding author: bekirahmet@gmail.com
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Liu’s extended trial function method (LETFM) [4], generalized unified method (GUM) [5],
sine-Gordon expansion technique (SGET) [6], enhanced modified simple equation scheme
[7],unified technique [8], extended tanh function scheme [9], Lie symmetry technique [10],
symbolic computational method, Hirota’s simple method and long wave technique [11], Ja-
cobi elliptic function expansion scheme [12], Elzaki transform decomposition technique [13],
(m + 1

G)-expansion and adomian decomposition schemes [14], new generalized expansion
method [15], simplest equation and kudryashov’s new function techniques [16], modified
simple equation scheme [17], modified kudryashov simple equation technique [18], first
integral technique [19], Bäcklund transformation scheme [20], extended jacobi elliptic func-
tion expansion technique [21], extended (G/G)-expansion and improved (G′/G)-expansion
schemes [30] etc.
There are three other methods; expa function, extended Sinh-Gordon equation expansion
(EShGEE) and extended (G′/G)-expansion methods. These methods have various appli-
cations. Likely, some new kind of analytical results of perturbed Gerdjikov-Ivanov model
(pGIM) has been achieved by using expa function and extended tanh function expansion
methods in [31]. By applying expa function and hyperbolic function methods, various
types of wave solutions of two non-linear Schrödinger equations are gained in [32]. New
trigonometry and hyperbolic function type soliton solutions of (2+1)-dimensional hyper-
bolic and cubic-quintic non-linear Schrödinger equations are achieved by applying extended
sinh-Gordon equation expansion scheme in [33]. Bright, dark and bright-dark soliton solu-
tions of generalized non-linear Schrödinger equation has been determined by implementing
extended sinh-Gordon equation expansion method in [34]. Some exact solitons of (2+1)-
dimensional improved Eckhaus equation have been calculated by using extended (G′/G)-
expansion technique in [35]. Various kinds of wave solutions of time-fractional parabolic
equations have been obtained by applying the extended (G′/G)-expansion scheme in [36].
Fractional calculus have gained much importance due to its various applications in differ-
ent fields. Therefore, different definition of derivatives have been used like; conformable
fractional derivative [37,38], beta derivative [39], caputo-Fabrizio fractional derivative [40],
truncated M-fractional derivative [41,42] etc.
Our considering model is one of the important and interesting economical model named as;
Ivancevic option pricing model (IOPM). In the literature, few techniques have been used on
this model to get different exact solutions. For example, new solutions have been achieved
of this model by applying the fractional reduced differential transform technique in [43].
Dark, bright, dark-bright, complex, travelling, periodic, trigonometric ,hyperbolic function
solutions have been gained with the help of rational sine-Gordon expansion method and
modified exponential method in [44]. Rogue wave and dark wave solitons of Ivancevic op-
tion pricing equation have been obtained with the use of trial function technique in [45].
The basic focus of the work is to investigate exact wave solutions of truncated M-fractional
Ivancevic option pricing model based on expa function method, extended Sinh-Gordon
equation expansion and extended (G′/G)-Expansion methods.
Paper have different sections; Section 2: truncated M-fractional derivative and its charac-
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teristics, Section 3: model description, Section 4: description of methodologies, Section 5:
mathematical treatment of model and exact solutions of model. Section 6: Illustrations
with graphics. Section 7: conclusion.

2 Truncated M-derivative:

2.1 Definition:

Suppose u(t) : [0,∞) → R, then truncated M-derivative of u of order ϵ is given [22]:

Dϵ,ϱ
M,tu(t) = lim

τ→0

u (t Eϱ(τt
1−ϵ))− u(t)

τ
, 0 < ϵ < 1, ϱ > 0, (1)

where Eϱ(.) shows truncated Mittag-Leffler function of one parameter that is defined as [23]:

Eϱ(z) =

i∑
j=0

zj

Γ(ϱj + 1)
, ϱ > 0 and z ∈ C. (2)

2.2 Characteristics

Let ϵ ∈ (0, 1]1, ϱ > 0, r, s ∈ ℜ, and g, f ϵ−differentiable at a point t > 0, then by [22]:

(i) Dϵ,ϱ
M,t(rg(t) + sf(t)) = rDϵ,ϱ

M,tg(t) + sDϵ,ϱ
M,tf(t). (3)

(ii) Dϵ,ϱ
M,t(g(t).f(t)) = g(t)Dϵ,ϱ

M,tf(t) + f(t)Dϵ,ϱ
M,tg(t). (4)

(iii) Dϵ,ϱ
M,t(

g(t)

f(t)
) =

f(t)Dϵ,ϱ
M,tg(t)− g(t)Dϵ,ϱ

M,tf(t)

(f(t))2
. (5)

(iv) Dϵ,ϱ
M,t(A) = 0, where A is a constant. (6)

(v) Dϵ,ϱ
M,tg(t) =

t1−ϵ

Γ(ϱ+ 1)

dg(t)

dt
. (7)

3 Model Description:

Let’s assume M-fractional Ivancevic option pricing model(IOPM) [45] given as follows:

ι Dϵ,ϱ
M,tq +

δ

2
D2ϵ,ϱ

M,2sq +Ω q|q|2 = 0, ι =
√
−1. (8)

This model was first time developed by Ivancevic [24] to fulfill both behavioral and efficient
markets. Where q = q(s, t) shows the option price wave profile. While t is the time variable
and s is asset price of model. Parameter δ represents the volatility which shows either

3



stochastic process itself or only a constant. Where Ω = Ω(r, ω) is called Landau coefficient
which describes adaptive market potential. In nonadaptive simplest case Ω and r become
equal which shows the interest rate while in adaptive case Ω(r, ω) may be connected to
market temperature and it depends on the set of tractable parameters {Wi}. In third term
|q|2 shows the probability density function which denotes the potential field.

3.1 Summary of expa function scheme:

Here, we will give complete concept of this scheme.
Assuming the non-linear PDE;

G(q, q2qt, qx, qtt, qxx, qxt, ...) = 0. (9)

Eq.(9) transformed in non-linear partial differential equation:

Λ(Q,Q
′
, Q

′′
, ..., ) = 0. (10)

By using following transformations:

q(x, y, t) = Q(ζ), ζ = ax+ by + rt. (11)

Considering root of Eq. (10) is shown in [25–28]:

Q(ζ) =
α0 + α1d

ζ + ... + αmdmζ

β0 + β1dζ + ...+ βmdmζ
, d ̸= 0, 1. (12)

where αi and βi(0 ≤ i ≤ m) are undetermined. Positive integral value of m is calculate
by utilizing homogeneous balance technique into Eq.(10). Putting Eq. (12) into Eq. (10),
gives

℘(dζ) = ℓ0 + ℓ1d
ζ + ...+ ℓtd

tζ = 0. (13)

Taking ℓi (0 ≤ i ≤ t) in Eq. (13) equal to 0, a system of algebraic equations is achieved as
fellows.

ℓi = 0, where i = 0, ..., t. (14)

By using the got solutions, we achieve the exact results of Eq.(9).

3.2 Presentation of EShGEEM:

In this part, there are some fundamental steps of this method:
Step 1:
Assuming the NLPDE shown as follow:

G(q,Dα,γ
M,tq, q

2qx, qy, qyy, qxx, qxy, ...) = 0, (15)

4



where q = q(x, y, t) represents wave function.
Supposing the wave transform given as follow:

q(x, y, t) = Q(ζ), ζ = x− νy +
Γ(γ + 1)

α
(κtα). (16)

Inserting Eq. (16) into Eq. (15), resulting ordinary differential equation shown as follows:

Λ(Q(ζ), Q2(ζ)Q
′
(ζ), Q

′′
(ζ), ...) = 0. (17)

Step 2:
Let’s assume the root of Eq. (16) in the form:

Q(p) = α0 +
m∑
i=1

(βi sinh(p) + αi cosh(p))
i, (18)

where α0, αi, βi (i = 1, 2, 3, ..., m) are undetermined. A new function p of ζ that fulfill
the following equation:

dp

dζ
= sinh(w). (19)

Positive integral value of m may be obtained with the use of homogenous balance method.
Eq. (19) is achieved from sinh-Gordon equation given as follows:

qxt = κ sinh(v). (20)

Resultantly given in [29], one may get the roots of Eq. (20) shown as:

sinh p(ζ) = ± csch(ζ) or cosh p(ζ) = ± coth(ζ), (21)

and
sinh p(ζ) = ±ι sech(ζ) or cosh p(ζ) = ± tanh(ζ), (22)

where ι =
√
−1.

Step 3:
Substituting Eq. (18) along Eq. (20) into Eq. (17), result in the form of algebraic expressions
in p

′k(ζ) sinhl p(ζ) coshm p(ζ) (k = 0, 1; l = 0, 1; m = 0, 1, 2, ...). Putting each coefficient
of p

′k(ζ) sinhl p(ζ) coshm p(ζ) equal to 0, to obtain a set of algebraic equations having
ν, κ, α0, αi and βi(i = 1, 2, 3, ...,m).
Step 4:
By manipulating the gained set of algebraic equations by using Mathematica software, one
may get the results of unknowns, ν, κ, α0, αi and βi.
Step 5:

5



With the help of obtained solutions and Eqs. (21) and (22), we may achieve the roots of
Eq. (17) shown as:

Q(ζ) = α0 +
m∑
i=1

(±βi csch(ζ)± αi coth(ζ))
i. (23)

and

Q(ζ) = α0 +
m∑
i=1

(±ιβisech(ζ)± αi tanh(ζ))
i. (24)

3.3 Presentation of Extended (G′/G)−expansion Method:

In this part, there are some fundamental steps of this method given in [30].
Step 1: Supposing the NLPDE shown as follows:

G(q,Dα,γ
M,tq, q

2qx, qy, qyy, qxx, qxy, ...) = 0, (25)

where q = q(x, y, t) show the wave function.
Assuming the wave transform shown as follows:
Step 2:

q(x, y, t) = Q(ζ), ζ = x− νy +
Γ(γ + 1)

α
(κtα). (26)

Putting Eq. (26) into Eq. (25), results in the form of ODE shown as:

Λ(Q(ζ), Q2(ζ)Q
′
(ζ), Q

′′
(ζ), ...) = 0. (27)

Step 3:
Considering toots of Eq. (27) in the form given as:

Q(ζ) =

m∑
i=−m

αi

(
G′(ζ)

G(ζ)

)i

. (28)

In Eq. (28), α0 and αi, (i = ±1,±2,±3, ...,±m) are unknowns and αi ̸= 0. Using ho-
mogenous balance method into Eq. (27), one can calculate positive integer m. Function
G = G(ζ) fulfill the Riccati differential equation shown as follows:

dGG′′ − aG2 − bGG′ − c(G′)2 = 0, (29)

where a, b, c and d are constants.
Step 4:
Suppose Eq. (29) have results shown as:

6



Case 1: if b ̸= 0 and b2 + 4ad− 4ac > 0, then(
G′(ζ)

G(ζ)

)
=

b

2(d− c)

+

√
−4ac+ 4ad+ b2

2(d− c)

C1 sinh
(
ζ
√
−4ac+4ad+b2

2d

)
+ C2 cosh

(
ζ
√
−4ac+4ad+b2

2d

)
C1 cosh

(
ζ
√
−4ac+4ad+b2

2d

)
+ C2 sinh

(
ζ
√
−4ac+4ad+b2

2d

)
 .

(30)

Case 2: if b ̸= 0 and b2 + 4ad− 4ac < 0, then(
G′(ζ)

G(ζ)

)
=

b

2(d− c)

+

√
4ac− 4ad− b2

2(d− c)

C2 cos
(
ζ
√
4ac−4ad−b2

2d

)
− C1 sin

(
ζ
√
4ac−4ad−b2

2d

)
C1 cos

(
ζ
√
4ac−4ad−b2

2d

)
+ C2 sin

(
ζ
√
4ac−4ad−b2

2d

)
 .

(31)

Case 3: if b ̸= 0 and b2 + 4ad− 4ac = 0, then(
G′(ζ)

G(ζ)

)
=

b

2(d− c)
+

dD

(d− c)(C −Dζ)
. (32)

Case 4: if b = 0 and ad− ac > 0, then

(
G′(ζ)

G(ζ)

)
=

√
ad− ac

(d− c)

C1 sinh
(
ζ
√
ad−ac
d

)
+ C2 cosh

(
ζ
√
ad−ac
d

)
C1 cosh

(
ζ
√
ad−ac
d

)
+ C2 sinh

(
ζ
√
ad−ac
d

)
 . (33)

Case 5: if b = 0 and ad− ac < 0, then

(
G′(ζ)

G(ζ)

)
=

√
ac− ad

d− c

C2 cos
(
ζ
√
ac−ad
d

)
− C1 sin

(
ζ
√
ac−ad
d

)
C1 cos

(
ζ
√
ac−ad
d

)
+ C2 sin

(
ζ
√
ac−ad
d

)
 . (34)

where a, b, c, d, C1 and C2 are constants.
Step 5:
Substituting Eq. (28) along Eq. (29) into Eq. (27) and collecting coefficients of each power

of
(
G′(ζ)
G(ζ)

)
. Putting each coefficient equal to zero, we achieve a set of algebraic equations

involving ν, κ, αi, (i = 0,±1,±2, ...,±m) and other parameters.
Step 6:
Solving the obtained set of equations by using Mathematica software.
Step 7:
Putting the gained solutions into Eq. (28) and we get exact solutions of Eq. (25).
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4 Mathematical Treatment of the Model:

Let’s suppose the travelling wave transform given as follows;

q(s, t) = Q(ζ)×exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ+ρ

Γ(ϱ+ 1)

ϵ
tϵ)), ζ = λ

Γ(ϱ+ 1)

ϵ
sϵ+τ

Γ(ϱ+ 1)

ϵ
tϵ. (35)

where Q(ζ) shows the amplitude of wave function while ρ and τ represent the time velocity.
Parameters µ and λ are obtaining from asset price of the product.
Inserting Eq.(35) into Eq.(8), result in the form of real and imaginary parts given as follows:
Real part:

2ΩQ3 + δλ2Q′′ −
(
δµ2 + 2ρ

)
Q = 0. (36)

Imaginary part:
(δµλ+ τ)Q

′
= 0. (37)

From Eq.(37), we get the velocity of wave function given as follows:

τ = −δµλ. (38)

Applying the homogenous balance method into Eq.(36), we get m = 1
Now we will gain the exact solutions of Eq.(36) by using above mentioned three methods.

5 Exact Solutions Through expa function Method:

For m = 1, Eq.(12) changes into:

Q(ζ) =
α0 + α1d

ζ

β0 + β1dζ
. (39)

Inserting Eq.(39) into Eq.(36) and solving the system of equations, we obtain different
solution sets given as follows:
Set 1:{

α0 = − iβ0
√
δλ log(d)

2
√
Ω

, α1 =
iβ1

√
δλ log(d)

2
√
Ω

, ρ = −1

4
δ
(
λ2 log2(d) + 2µ2

)}
. (40)

From Eqs.(40), (39) and (35), we get

q(s, t) = − i
√
δλ log(d)

2
√
Ω

(
β0 − β1d

ζ

β0 + β1dζ

)
× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 log2(d) + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(41)
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Set 2:{
α0 =

iβ0
√
δλ log(d)

2
√
Ω

, α1 = − iβ1
√
δλ log(d)

2
√
Ω

, ρ = −1

4
δ
(
λ2 log2(d) + 2µ2

)}
. (42)

From Eqs.(42), (39) and (35), we get

q(s, t) =
i
√
δλ log(d)

2
√
Ω

(
β0 − β1d

ζ

β0 + β1dζ

)
× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 log2(d) + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(43)

where ζ = λΓ(ϱ+1)
ϵ sϵ − δµλΓ(ϱ+1)

ϵ tϵ.

5.1 Exact Solutions Through EShGEEM:

For m = 1, Eq. (23), Eq. (24) and Eq. (16) become:

Q(ζ) = α0 ± β1 csch(ζ)± α1 coth(ζ). (44)

Q(ζ) = α0 ± ιβ1sech(ζ)± α1 tanh(ζ). (45)

Q(ζ) = α0 + β1 sinh(p) + α1 cosh(p). (46)

where α0, α1 and β1 are unknowns. Subtituting Eq. (46) into Eq. (36), we obtain the
algebraic equations having α0, α1, β1 and other parameters. Now with the help of software,
we get different solution sets given as:
Set 1: {

α0 = 0, α1 = − i
√
δλ√
Ω

, β1 = 0, ρ = −1

2
δ
(
2λ2 + µ2

)}
. (47)

From Eqs.(47), (44) and (35), we get

q1(s, t) = ∓ i
√
δλ√
Ω

coth(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ − 1

2
δ
(
2λ2 + µ2

) Γ(ϱ+ 1)

ϵ
tϵ)). (48)

From Eqs.(47), (45) and (35), we get

q2(s, t) = ∓ i
√
δλ√
Ω

tanh(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ − 1

2
δ
(
2λ2 + µ2

) Γ(ϱ+ 1)

ϵ
tϵ)). (49)

Set 2: {
α0 = 0, α1 =

i
√
δλ√
Ω

, β1 = 0, ρ = −1

2
δ
(
2λ2 + µ2

)}
. (50)

9



From Eqs.(50), (44) and (35), we get

q1(s, t) = ± i
√
δλ√
Ω

coth(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ − 1

2
δ
(
2λ2 + µ2

) Γ(ϱ+ 1)

ϵ
tϵ)). (51)

From Eqs.(50), (45) and (35), we get

q2(s, t) = ± i
√
δλ√
Ω

tanh(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ − 1

2
δ
(
2λ2 + µ2

) Γ(ϱ+ 1)

ϵ
tϵ)). (52)

Set 3: {
α0 = 0, α1 = − i

√
δλ

2
√
Ω
, β1 = − i

√
δλ

2
√
Ω
, ρ = −1

4
δ
(
λ2 + 2µ2

)}
. (53)

From Eqs.(53), (44) and (35), we get

q1(s, t) = ∓ i
√
δλ

2
√
Ω
(coth(ζ) + csch(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(54)

From Eqs.(53), (45) and (35), we get

q2(s, t) = ∓ i
√
δλ

2
√
Ω
(ιsech(ζ) + tanh(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(55)
Set 4: {

α0 = 0, α1 =
i
√
δλ

2
√
Ω
, β1 = − i

√
δλ

2
√
Ω
, ρ = −1

4
δ
(
λ2 + 2µ2

)}
. (56)

From Eqs.(56), (44) and (35), we get

q1(s, t) =
i
√
δλ

2
√
Ω
(± coth(ζ)∓ csch(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(57)
From Eqs.(56), (45) and (35), we get

q2(s, t) =
i
√
δλ

2
√
Ω
(± tanh(ζ)∓ ι sech(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(58)
Set 5: {

α0 = 0, α1 = − i
√
δλ

2
√
Ω
, β1 =

i
√
δλ

2
√
Ω
, ρ = −1

4
δ
(
λ2 + 2µ2

)}
. (59)

10



From Eqs.(59), (44) and (35), we get

q1(s, t) = − i
√
δλ

2
√
Ω
(± coth(ζ)∓ csch(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(60)
From Eqs.(59), (45) and (35), we get

q2(s, t) = − i
√
δλ

2
√
Ω
(± tanh(ζ)∓ ιsech(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(61)
Set 6: {

α0 = 0, α1 =
i
√
δλ

2
√
Ω
, β1 =

i
√
δλ

2
√
Ω
, ρ = −1

4
δ
(
λ2 + 2µ2

)}
. (62)

From Eqs.(62), (44) and (35), we get

q1(s, t) = ± i
√
δλ

2
√
Ω
(coth(ζ) + csch(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(63)
From Eqs.(62), (45) and (35), we get

q2(s, t) = ± i
√
δλ

2
√
Ω
(ιsech(ζ) + tanh(ζ))× exp(ι(µ

Γ(ϱ+ 1)

ϵ
sϵ − 1

4
δ
(
λ2 + 2µ2

) Γ(ϱ+ 1)

ϵ
tϵ)).

(64)
Set 7: {

α0 = 0, α1 = 0, β1 = − i
√
δλ√
Ω

, ρ =
1

2
δ
(
λ2 − µ2

)}
. (65)

From Eqs.(65), (44) and (35), we get

q1(s, t) = ∓ i
√
δλ√
Ω

csch(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ +

1

2
δ
(
λ2 − µ2

) Γ(ϱ+ 1)

ϵ
.tϵ)) (66)

From Eqs.(65), (45) and (35), we get

q2(s, t) = ±
√
δλ√
Ω

sech(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ +

1

2
δ
(
λ2 − µ2

) Γ(ϱ+ 1)

ϵ
tϵ)). (67)

Set 8: {
α0 = 0, α1 = 0, β1 =

i
√
δλ√
Ω

, ρ =
1

2
δ
(
λ2 − µ2

)}
. (68)

From Eqs.(68), (44) and (35), we get

q1(s, t) = ± i
√
δλ√
Ω

csch(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ +

1

2
δ
(
λ2 − µ2

) Γ(ϱ+ 1)

ϵ
tϵ)). (69)
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From Eqs.(68), (45) and (35), we get

q2(s, t) = ∓
√
δλ√
Ω

sech(ζ)× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ +

1

2
δ
(
λ2 − µ2

) Γ(ϱ+ 1)

ϵ
tϵ)), (70)

where ζ = λΓ(ϱ+1)
ϵ sϵ − δµλΓ(ϱ+1)

ϵ tϵ.

5.2 Exact Solutions Through Extended (G′/G)-expansion Method:

For m = 1, Eq. (28) becomes:

Q(ζ) = α−1

(
G′(ζ)

G(ζ)

)−1

+ α0 + α1

(
G′(ζ)

G(ζ)

)
, (71)

where α−1, α0 and α1 are unknowns.
Inserting Eq. (71) along Eq. (29) into Eq. (36) and solving the system for α−1, α0, α1 and
other parameters, we gain different solution sets given as:
Set 1:{

α−1 = − ia
√
δλ

d
√
Ω

, α0 = − ib
√
δλ

2d
√
Ω
, α1 = 0, ρ = −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

}
. (72)

From Eqs.(72), (71), (30) and (35), we get

q(s, t) = − i
√
δλ

d
√
Ω
(
b

2
+ a(

b

2(d− c)

+

√
−4ac+ 4ad+ b2

2(d− c)
(
C1 sinh(

ζ
√
−4ac+4ad+b2

2d ) + C2 cosh(
ζ
√
−4ac+4ad+b2

2d )

C1 cosh(
ζ
√
−4ac+4ad+b2

2d ) + C2 sinh(
ζ
√
−4ac+4ad+b2

2d )
))−1)

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (73)

From Eqs.(72), (71), (31) and (35), we get

q(s, t) = − i
√
δλ

d
√
Ω
(
b

2
+ a(

b

2(d− c)

+

√
4ac− 4ad− b2

2(d− c)

C2 cos
(
ζ
√
4ac−4ad−b2

2d

)
− C1 sin

(
ζ
√
4ac−4ad−b2

2d

)
C1 cos

(
ζ
√
4ac−4ad−b2

2d

)
+ C2 sin

(
ζ
√
4ac−4ad−b2

2d

)
)−1)

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (74)
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From Eqs.(72), (71), (33) and (35), we get

q(s, t) = − ia
√
δλ

d
√
Ω

√
ad− ac

(d− c)

C1 sinh
(
ζ
√
ad−ac
d

)
+ C2 cosh

(
ζ
√
ad−ac
d

)
C1 cosh

(
ζ
√
ad−ac
d

)
+ C2 sinh

(
ζ
√
ad−ac
d

)
−1

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (75)

From Eqs.(72), (71), (34) and (35), we get

q(s, t) = − ia
√
δλ

d
√
Ω

√
ac− ad

d− c

C2 cos
(
ζ
√
ac−ad
d

)
− C1 sin

(
ζ
√
ac−ad
d

)
C1 cos

(
ζ
√
ac−ad
d

)
+ C2 sin

(
ζ
√
ac−ad
d

)
−1

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (76)

Set 2:{
α−1 =

ia
√
δλ

d
√
Ω

, α0 =
ib
√
δλ

2d
√
Ω
, α1 = 0, ρ = −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

}
. (77)

From Eqs.(77), (71), (30) and (35), we get

q(s, t) =
i
√
δλ

d
√
Ω
(
b

2
+ a(

b

2(d− c)

+

√
−4ac+ 4ad+ b2

2(d− c)
(
C1 sinh(

ζ
√
−4ac+4ad+b2

2d ) + C2 cosh(
ζ
√
−4ac+4ad+b2

2d )

C1 cosh(
ζ
√
−4ac+4ad+b2

2d ) + C2 sinh(
ζ
√
−4ac+4ad+b2

2d )
))−1)

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (78)

From Eqs.(77), (71), (31) and (35), we get

q(s, t) =
i
√
δλ

d
√
Ω

(
b

2
+ a(

b

2(d− c)

+

√
4ac− 4ad− b2

2(d− c)

C2 cos
(
ζ
√
4ac−4ad−b2

2d

)
− C1 sin

(
ζ
√
4ac−4ad−b2

2d

)
C1 cos

(
ζ
√
4ac−4ad−b2

2d

)
+ C2 sin

(
ζ
√
4ac−4ad−b2

2d

)
)−1

)

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (79)
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From Eqs.(77), (71), (33) and (35), we get

q(s, t) =
ia
√
δλ

d
√
Ω

√
ad− ac

(d− c)

C1 sinh
(
ζ
√
ad−ac
d

)
+ C2 cosh

(
ζ
√
ad−ac
d

)
C1 cosh

(
ζ
√
ad−ac
d

)
+ C2 sinh

(
ζ
√
ad−ac
d

)
−1

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (80)

From Eqs.(77), (71), (34) and (35), we get

q(s, t) =
ia
√
δλ

d
√
Ω

√
ac− ad

d− c

C2 cos
(
ζ
√
ac−ad
d

)
− C1 sin

(
ζ
√
ac−ad
d

)
C1 cos

(
ζ
√
ac−ad
d

)
+ C2 sin

(
ζ
√
ac−ad
d

)
−1

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (81)

Set 3:{
α−1 = 0, α0 = − ib

√
δλ

2d
√
Ω
, α1 = − i

√
δλ(c− d)

d
√
Ω

, ρ = −
δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

}
.

(82)
From Eqs.(82), (71), (30) and (35), we get

q(s, t) =
−i

√
δλ

d
√
Ω

(
b

2
− (

b

2

+

√
−4ac+ 4ad+ b2

2
(
C1 sinh(

ζ
√
−4ac+4ad+b2

2d ) + C2 cosh(
ζ
√
−4ac+4ad+b2

2d )

C1 cosh(
ζ
√
−4ac+4ad+b2

2d ) + C2 sinh(
ζ
√
−4ac+4ad+b2

2d )
)))

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (83)

From Eqs.(82), (71), (31) and (35), we get

q(s, t) = − i
√
δλ

d
√
Ω
(
b

2

+ (c− d)(
b

2(d− c)
+

√
4ac− 4ad− b2

2(d− c)
(
C2 cos(

ζ
√
4ac−4ad−b2

2d )− C1 sin(
ζ
√
4ac−4ad−b2

2d )

C1 cos(
ζ
√
4ac−4ad−b2

2d ) + C2 sin(
ζ
√
4ac−4ad−b2

2d )
)))

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (84)
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From Eqs.(82), (71), (33) and (35), we get

q(s, t) = − i(c− d)
√
δλ

d
√
Ω

√
ad− ac

(d− c)

C1 sinh
(
ζ
√
ad−ac
d

)
+ C2 cosh

(
ζ
√
ad−ac
d

)
C1 cosh

(
ζ
√
ad−ac
d

)
+ C2 sinh

(
ζ
√
ad−ac
d

)


× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (85)

From Eqs.(82), (71), (34) and (35), we get

q(s, t) = − i(c− d)
√
δλ

d
√
Ω

√
ac− ad

d− c

C2 cos
(
ζ
√
ac−ad
d

)
− C1 sin

(
ζ
√
ac−ad
d

)
C1 cos

(
ζ
√
ac−ad
d

)
+ C2 sin

(
ζ
√
ac−ad
d

)


× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (86)

Set 4:{
α−1 = 0, α0 =

ib
√
δλ

2d
√
Ω
, α1 =

i
√
δλ(c− d)

d
√
Ω

, ρ = −
δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

}
. (87)

From Eqs.(87), (71), (30) and (35), we get

q(s, t) =
i
√
δλ

d
√
Ω
(
b

2
+ (c− d)(

b

2(d− c)

+

√
−4ac+ 4ad+ b2

2(d− c)
(
C1 sinh(

ζ
√
−4ac+4ad+b2

2d ) + C2 cosh(
ζ
√
−4ac+4ad+b2

2d )

C1 cosh(
ζ
√
−4ac+4ad+b2

2d ) + C2 sinh(
ζ
√
−4ac+4ad+b2

2d )
)))

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (88)

From Eqs.(87), (71), (31) and (35), we get

q(s, t) =
i
√
δλ

d
√
Ω
(
b

2
+ (c− d)(

b

2(d− c)

+

√
4ac− 4ad− b2

2(d− c)
(
C2 cos(

ζ
√
4ac−4ad−b2

2d )− C1 sin(
ζ
√
4ac−4ad−b2

2d )

C1 cos(
ζ
√
4ac−4ad−b2

2d ) + C2 sin(
ζ
√
4ac−4ad−b2

2d )
)))

× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + b2λ2 + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (89)
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From Eqs.(87), (71), (33) and (35), we get

q(s, t) =
i(c− d)

√
δλ

d
√
Ω

√
ad− ac

(d− c)

C1 sinh
(
ζ
√
ad−ac
d

)
+ C2 cosh

(
ζ
√
ad−ac
d

)
C1 cosh

(
ζ
√
ad−ac
d

)
+ C2 sinh

(
ζ
√
ad−ac
d

)


× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (90)

From Eqs.(87), (71), (34) and (35), we get

q(s, t) =
i(c− d)

√
δλ

d
√
Ω

√
ac− ad

d− c

C2 cos
(
ζ
√
ac−ad
d

)
− C1 sin

(
ζ
√
ac−ad
d

)
C1 cos

(
ζ
√
ac−ad
d

)
+ C2 sin

(
ζ
√
ac−ad
d

)


× exp(ι(µ
Γ(ϱ+ 1)

ϵ
sϵ −

δ
(
4aλ2(d− c) + 2d2µ2

)
4d2

Γ(ϱ+ 1)

ϵ
tϵ)). (91)

where ζ = λΓ(ϱ+1)
ϵ sϵ − δµλΓ(ϱ+1)

ϵ tϵ for all above mentioned solutions.

6 Illustrations with graphics

Here, we show some two-dimensional and three-dimensional figures to help clarify the
solutions we presented. Figures 1-3 depict some of the analytical solutions. In Figure
1, we use our method to introduce the graph of (41) at δ = 0.5, λ = 0.3, ϱ = 0.1, µ =
2,Ω = 0.7, β0 = 0.1, β1 = 0.1, d = 0.1, ϵ = 1. In addition, Figure 2 shows the graph of
(48) δ = 0.5, λ = 0.1, ϱ = 0.5, µ = 1,Ω = 0.1, ϵ = 1. Finally, the graph of (73) at δ =
0.3, λ = 0.4, ϱ = 0.5, µ = 6,Ω = 0.4, d = 0.17, a = 0.1, c = 0.01, b = 0.4, C1 = 0.4, C2 = 0.5
presented in Figure 3.

7 Conclusion

We have succeed to obtain the modernistic exact solutions of M-fractional Ivancevic option
pricing model by utilizing expa function, extended Sinh-Gordon equation expansion and
extended (G′/G)-Expansion methods. The gained solutions are also verified and demon-
strated through graphs by using MATHEMATICA software. The obtained results are also
explained graphically by 2-D,3-D and contour plots. Finally, it is suggested, to deal the
other non-linear PDEs, the expa function, extended Sinh-Gordon equation expansion and
extended (G′/G)-Expansion methods are very helpful, reliable and straight forward. Re-
sults achieved in this paper may useful for the progress in the supplementary analyzing of
this model. Fractional derivatives (local, comformable, truncated M-fractional, beta frac-
tional, caputo-Fabrizio fractional derivative,...) have attracted extensive attention in the
field of mathematical physics. How to apply the proposed methods to study the fractional
PDEs will be the focus of our future research.
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Figure 1: Structure of (41) at δ = 0.5, λ = 0.3, ϱ = 0.1, µ = 2,Ω = 0.7, β0 = 0.1, β1 =
0.1, d = 0.1, ϵ = 1

-10 -5 0 5 10

0.22

0.24

0.26

0.28

0.30

0.32

0.34

s

|q
(s
,t)
|

t=2

t=1

t=0

-10 -5 0 5 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

s

|q
(s
,t)
|

ϵ=1.0

ϵ=0.9

ϵ=0.8

-10 -5 0 5 10

0

1

2

3

4

5

Figure 2: Structure of (48) at δ = 0.5, λ = 0.1, ϱ = 0.5, µ = 1,Ω = 0.1, ϵ = 1
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Figure 3: Structure of (73) at δ = 0.3, λ = 0.4, ϱ = 0.5, µ = 6,Ω = 0.4, d = 0.17, a =
0.1, c = 0.01, b = 0.4, C1 = 0.4, C2 = 0.5.
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