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Abstract

In this paper, we consider the Sturm-Liouvillve problems with the general separated boundary conditions and weight functions.

The analytic continuation and the poles of the spectral zeta function of the problems are studied by using the WKB method.
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1 Introduction

In this paper, we will consider the Sturm-Liouvillve eigenvalue problems with the general

separated boundary conditions

− (py′)′ + qy = λwy, y = y(x), x ∈ (a, b); (1)

cosαy(a)− sinα(py′)(a) = 0 = cosβy(b)− sinβ(py′)(b), α, β ∈ [0, π), (2)

where 1/p, q, w ∈ L1[a, b], p(x) > 0, w(x) ≥ 0 a.e. x ∈ [a, b] and
∫ b
a w > 0. Here q is

called a potential function, w is called a weight function and λ is called an eigenvalue if the

problem (1) with the boundary condition (2) has a nontrivial solution (cf., [11]).
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By the spectral theory (cf., [1, 2, 13]), it is known that eigenvalue problems (1) and (2)

have only discrete real eigenvalues and the eigenvalues are lower bounded. Denote λn the

n-th eigenvalue of the problem (1). In the paper, without loss of generality, by translating

the potential function q, we can suppose that all the eigenvalues of (1) and (2) are greater

than zero. We have

0 < λ1 < · · · < λn < · · · , λn →∞, n→∞. (3)

And Weyl’s law tells us (cf., [1, (1.5)]) that

λn =
n2π2(∫ b

a

√
w/p

)2 (1 + o(1))→∞, n→∞. (4)

Then for Sturm-Liouville problem (1) with the boundary condition (2), we can define

its spectral zeta function as (cf., [12])

ζ(s) :=

∞∑
n=1

1

λsn
. (5)

Thanks to Weyl’s law (4), we know that ζ(s) converges at the half-plane <(s) > 1/2. Let us

consider a special case of the problem (1) with Dirichlet boundary condition, see Example

3.2,

−y′′ = λy, on (0, π), y(0) = y(π) = 0. (6)

Then the n−th eigenvalue of (6) is λn = n2, for any n ≥ 1 and its spectral zeta function is

exactly Riemann zeta function
∑∞

n=1 1/n2s, that arises out of the number theory (cf., [8],

[5, §16]).

Recently, many papers have studied the properties and applications of spectral zeta

functions of specific operators. G. Fucci, C. Graham and K. Kirsten [3] provided an analysis

of the analytic continuation of spectral zeta functions without weight functions and the

coefficients of the asymptotic expansion of the associated heat kernel are given by using this

analytical continuation. F. Gesztesy and K. Klaus [4] studied the trace of the resolvent,

Fredholm determinant by the properties of spectral zeta functions. Using the connection

with the mentioned spectral functions, K. Kirsten [6] provide a method for the calculation

of heat-kernel coefficients of Laplace-like operators on Riemannian manifolds. In this paper,
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the spectral zeta function ζ(s) of (1) will be analytically continued to the whole complex

plane, and the values of the simple poles will be determined.

The rest of this paper is organized as follows. In Section 2, by using the properties of

the differential equations and WKB method, the asymptotic estimates of the solution of

the Cauchy problem of (1) with respect to the complex parameter λ tending to 0 and ∞

are given. Moreover, in Subsection 2.2, in order to extend the zeta function ζ(s), a simple

integral representation of ζ(s) is given. In Section 3, we give the analytic continuation of

ζ(s) and determine the positions of the simple poles of ζ(s).

2 Preliminary

For convenience of the following calculation, we can assume that p ≡ 1 in (1). In fact, by

Sturm transform, set (cf., [9, §2], [10, §1])

x̃ =

∫ x

a

1

p
=: f(x), x ∈ [a, b] and q̃(x̃) := p(x)q(x), w̃(x̃) := p(x)w(x),

then x̃ ∈ [0, B] with B :=
∫ b
a 1/p and x = f−1(x̃). It follows from

∫ B
0 |w̃(x̃)|dx̃ =

∫ b
a w,∫ B

0 |q̃(x̃)|dx̃ =
∫ b
a q and w, q ∈ L1[a, b] that w̃, q̃ ∈ L1[0, B]. Hence differential equations

(1) can be rewritten as

−φ′′(r, x) + q(x)φ(r, x) = λw(x)φ(r, x) =: r2w(x)φ(r, x), on (a, b), (1’)

where r2 := λ and φ′(r, x) := ∂φ(r, x)/∂x.

For any r ∈ C, we choose the solutions of (1’), φr, such that they satisfy the following

initial conditions:

φ(r, a) = sinα, φ′(r, a) = cosα. (7)

Set

ω(r) := cosβφ(r, b)− sinβφ′(r, b), (8)

where α, β ∈ [0, π) are from (2). Then ω(·) is an analytic function on C (see [10, §1.7]) and

λ = r2 is an eigenvalue of (1’) and (2) if and only if Ω(r) = 0. Then all zeros of function

ω(·) are

0 < r1 =
√
λ1 < r2 =

√
λ2 < · · · . (9)
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Note that for any r ∈ C, both φ(r, ·) and φ(−r, ·) satisfy the differential equation (1’)

and Cauchy condition (7). Hence φ(r, ·) = φ(−r, ·) and

ω(r) = ω(−r), r ∈ C. (10)

The equation (10) means that ω(·) is an even function. Moreover, since the conditions (2)

are separated boundary conditions, r is an algebraic simple zero of function ω(·) (see [7,

Theorem 5.4]), as λ = r2 is any eigenvalue of (1) and (2), i.e.,

ω(r) = 0 and ω′(r) 6= 0. (11)

Hence by using Cauchy’s residue theorem, we can get that for any eigenvalue λn = r2n > 0,

n ≥ 1, and for the appropriate s ∈ C, we have

1

λsn
=

1

r2sn
=

1

2πi

∫
Cn

1

r2s
d

dr
lnω(r)dr,

where Cn is a contour on the complex plane that only encircles rn in the counterclockwise

direction. Moreover, we have

ζ(s) =

∞∑
n=1

1

r2sn
=

1

2πi

∫
C

1

r2s
d

dr
lnω(r)dr, (12)

where C is a contour on the complex plane that encircles in the counterclockwise direction

all the roots of ω(·), cf., [6, Figure 1].

Since we assume that all eigenvalues of problems (1), (2) are are greater than 0, see (9),

we can choose the contour C in the right half complex plane. Hence for convenience, we

can take appropriate connected branches so that the right half complex plane belongs to

the same connected branch. In the next, we will select the appropriate contour to calculate

(12), see Figure 1.

2.1 Some estimates of function ω

Select contour C as shown in Figure 1. Set

C := CR + I(ε,R) + Cε :=
−−−−−→
−iRRiR+

(−−→
iRiε+

−−−−−−→
−iε− iR

)
+
−−−−−→
iεε− iε.

4



To take the limit of integral (12), as ε→ 0 and R→ +∞, we must first make some estimates

of the function ω(·).

0

iε

−iε

iR

−iR

R

Rr1 rm· · · · · · rnrm+1 · · ·

Figure 1: The contour C.

Since ω(r) = ω(−r), r ∈ C by (10), we have that

ω(r)− ω(0) ∼ cr2, as r → 0,

where c is a complex constant, i.e., the linear terms in r are not present in a neighborhood

of r = 0. Moreover, ω(0) 6= 0 can lead that

d

dr
lnω(r) =

ω′(r)

ω(r)
=

2cr

ω(0)
, as r → 0. (13)

This implies that for any s ∈ C, <(s) < 1, the integration in (12) on the contour Cε converges

to 0, ∫
Cε

1

r2s
d

dr
lnω(r)dr = 0, as ε→ 0. (14)

For judging that the convergence of the integration in (12) on the contour CR either

converges to 0, as R→ +∞, we will use WKB analysis (cf., [3]) to estimate

ω(r) = ω(z1 + iz2), r = z1 + iz2, z1, z2 ∈ R, as z2 → +∞.
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Firstly, the second-order linear equation (1) is transformed into a first-order nonlinear

equation, and then we can obtain the behavior of the solutions as z2 → +∞, by using

WKB expansion. In the following, power series expansion is needed, hence we assume that

q, w ∈ C∞[a, b] and w(x) > 0 a.e. on x ∈ [a, b],

For any r = z1 + iz2, z2 6= 0, set φ(r, ·) as the solutions of (1’), i.e.,

−φ′′(r, x) + q(x)φ(r, x) = z2w(x)φ(r, x) on (a, b), (15)

and set the changing of variables,

ψ(r, x) := φ′(r, x)/φ(r, x), x ∈ (a, b). (16)

The rationality of the changing variables of (16) needs to be explained.

In fact, if there exists b0 ∈ (a, b] such that φ(r, b0) = 0, then r2 and φ(r, ·) are a pair

of eigenvalue and eigenfunction of the self-adjoint operator (1) on [a, b0] with the boundary

condition

cosαφ(a)− sinαφ′(a) = 0 = φ(b0).

If z1 6= 0, then we obtain a non-real eigenvalue of the self-adjoint operator, r2 = z21 − z22 +

2iz1z2 ∈ C\R. It is a contradiction.

If z1 = 0, then r2 = −z22 . For any φ ∈ C∞[a, b], we have

∫ b0

a
|φ′|2 +

∫ b0

a
q|φ|2 ≥ min{q(x) : x ∈ [a, b]}

max{w(x) : x ∈ [a, b]}

∫ b0

a
w|φ|2 =: −M

∫ b0

a
w|φ|2.

Hence the eigenvalue r = −z22 must satisfy −z22 ≥ −M . This fact can lead that for any

z2 > M , φ(r, x) 6= 0, x ∈ (a, b), and hence (16) is reasonable.

Using the changing variables (16), we obtain a first order nonlinear differential equation

for ψ(r, ·),

ψ′(r, x) = q(x)− r2w − ψ2(r, x). (17)

Since differential equation (15) has two linearly independent solutions, and a first order

nonlinear differential equation (17) also has two corresponding solutions.

By the properties of the coefficients of (17), for |r| → ∞, we can assume that ψ(r, x)
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has an asymptotic expansion

ψ(r, x) = ψ−1(x)r +
∞∑
j=0

ψj(x)

rj
. (18)

Plugging this expansion into (17), we can obtain

ψ±−1(x) = ±i
√
w(x), ψ±0 (x) = −1

2

d

dx
ln(ψ±−1(x)),

ψ±1 (x) =
1

2ψ±−1(x)
[q(x)− (ψ±0 )2(x)− (ψ±0 (x))′],

and for any j ≥ 1,

ψ±j+1(x) = − 1

2ψ±−1(x)

[
(ψ±j (x))′ +

j∑
k=0

ψ±k ψ
±
j−k(x)

]
.

The different signs correspond to the two solutions ψ+(r, x) and ψ−(r, x) to (17).

Note that

ψ+
−1 = −ψ−−1, ψ

+
0 = ψ−0 , · · · , ψ

+
k = (−1)kψ−k , · · · . (19)

Then the general solution of (15) is obtained by the linear combination of the increasing

and decaying terms as follows,

φ(r, x) = Ae
∫ x
a ψ

+(r,t)dt +Be
∫ x
a ψ
−(r,t)dt, (20)

where A, B are determined by the initial conditions (7). From ψ±−1(x) = ±i
√
w(x) and

(18), we know for r = z1 + iz2 ∈ C,

ψ±−1(x)r = ±i
√
w(x)r = ∓

√
w(x)z2 ± i

√
w(x)z1. (21)

And hence the asymptotic behavior of φ(r, x) for z2 → −∞ (resp., +∞) is obtained by

the asymptotic increase of the term Ae
∫ x
a ψ

+(r,t)dt (resp., Be
∫ x
a ψ
−(r,t)dt) and the asymptotic

decay of the term Be
∫ x
a ψ
−(r,t)dt (resp., Ae

∫ x
a ψ

+(r,t)dt). Hence

e
∫ b
a ψ
−(r,t)dt = ε(r)e

∫ b
a ψ

+(r,t)dt, as z2 → −∞,

e
∫ b
a ψ

+(r,t)dt = ε(r)e
∫ b
a ψ
−(r,t)dt, as z2 → +∞,

(22)

7



where ε(r) is exponentially small contributions in z2.

Input the cauchy condition (7) in (20) to obtain

A = −sinαψ−(r, a)− cosα

ψ+(r, a)− ψ−(r, a)
, B =

sinαψ+(r, a)− cosα

ψ+(r, a)− ψ−(r, a)
.

By (22) and substituting these equations into (8), we can get the next estimates,

ω(r) = cosβφ(r, b)− sinβφ′(r, b)

= [cosβ − sinβψ+(r, b)]Ae
∫ b
a ψ

+(r,t)dt + [cosβ − sinβψ−(r, b)]Be
∫ b
a ψ
−(r,t)dt

= [cosβ − sinβψ+(r, b)]Ae
∫ b
a ψ

+(r,t)dt(1 + ε(r)), as z2 → −∞;

or = [cosβ − sinβψ−(r, b)]Ae
∫ b
a ψ
−(r,t)dt(1 + ε(r)), as z2 → +∞,

and hence by (18), we know that for r = z1 + iz2 ∈ C,

lnω(r) = c1 + c2 ln r + c3r +

∞∑
j=1

Mj

rj
, as |z2| → ∞. (23)

The estimate (23) implies that

∣∣∣∣ d

dr
lnω(r)

∣∣∣∣ < c3 + 1, as |z2| → ∞.

This fact can lead to that for any s ∈ C, <(s) > 1/2, the integration in (12) on the contour

CR can converge to 0,

∫
CRn

1

r2s
d

dr
lnω(r)dr = 0, as n→ +∞, (24)

where Rn := (rn + rn+1)/2 ∈ (rn, rn+1), see Figure 1.

Using the two estimates (14) and (24), we can obtain an simple representation of the

spectral zeta function ζ.

2.2 An representation of the spectral zeta function

Recall the contour integral (12), we have

n∑
m=1

1

λsm
=

1

2πi

∫
C

1

r2s
d

dr
lnω(r)dr =

1

2πi

∫
CRn+I(ε,Rn)+Cε

1

r2s
d

dr
lnω(r)dr.
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Using (14), (24), and letting ε→ 0, n→ +∞, we can get that for any s ∈ C, 1 > <(s) > 1/2,

ζ(s) =
∞∑
n=1

1

λsn
=

1

2πi

∫ −∞
+∞

1

(iz)2s
d

d(iz)
lnω(iz)d(iz), (25)

where the changing variable r = iz is made.

First, we need to verify the convergence of the integral (25). Let us recall (13), the

estimate of d
dr lnω(r) at r = 0,

d

dr
lnω(r) =

2cr

ω(0)
, as r → 0. (26)

Therefore, as 1 > <(s), the integral (25) is convergence in the neighborhood of 0. Similarly,

using (23) again, we can obtain that as <(s) > 1/2, (25) is convergence at ±∞. Hence as

1 > <(s) > 1/2, the integral (25) is convergence.

Furthermore, we need to simplify the integral (25).

1

2πi

∫ 0

+∞

1

(iz)2s
d

d(iz)
lnω(iz)d(iz) = − i

−2s−1

2π

∫ +∞

0

1

z2s
d

dz
lnω(iz)dz.

Note that ω(·) is an even function by (10), hence ω(iz) = ω(−iz) ∈ R. This fact can lead

to

1

2πi

∫ −∞
0

1

(iz)2s
d

d(iz)
lnω(iz)d(iz) =

i−2s−1

2π

∫ −∞
0

1

z2s
d

dz
lnω(iz)dz

=
i−2s−1

2π

∫ +∞

0

1

(−z)2s
d

d(−z)
lnω(−iz)d(−z)

=
(−1)−2si−2s−1

2π

∫ +∞

0

1

z2s
d

dz
lnω(iz)dz.

0

iR

Rr1 r2 · · · rn · · ·

Figure 2: The simpler contour.
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Using the above two equations and noting the relationship

<(i−2s−1) = <(e−i
π
2
(2s+1)) = − sin(sπ),

we can get a simple representation of (25) (cf., [3], [6, §2]). For any s ∈ C, 1 > <(s) > 1/2,

we have

ζ(s) =
sinπs

π

∫ ∞
0

1

z2s
d

dz
lnω(iz)dz. (27)

See Figure 2. Moreover, let us recall the spectral zeta function associated with (1),

ζ(s) =

∞∑
n=1

1

λsn
=

∞∑
n=1

1

r2sn
, (28)

which is convergent, due to Weyl’s estimate (4), in the semi-plane <(s) > 1/2.

In the following, we will use (27) to analytically continue the spectral zeta function ζ(·)

to a region extending to the left of the semi-plane 1/2 < <(s). Finally, the spectral function

will be analytically continued to the whole complex plane.

3 Analytic continuation of the spectral zeta function

Now we can give the analytic continuation of the spectral zeta function. (27) can be

conveniently rewritten as

ζ(s) =
sinπs

π

∫ 1

0

1

z2s
d

dz
lnω(iz)dz +

sinπs

π

∫ ∞
1

1

z2s
d

dz
lnω(iz)dz. (29)

By (13), we know that the first integral is an analytic function for <(s) < 1, and the second

one defines an analytic function for <(s) > 1/2, by (23). In order to analytically continue

ζ(·) to a region extending to the left of the strip 1/2 < <(s) < 1, we need to extend the

second integral. Inputting the first L+ 3 terms of (23) to the second integral (29), we can

rewrite the spectral zeta function as

ζ(s) = Z(s) +
sinπs

π

 c2
2s

+
c3

2s− 1
−

L∑
j=1

jMj

2s+ j

 , (30)

where Z(s) is analytic in <(s) > −L/2, L ≥ 0. For any even number j, sin(πs/2) = 0,

as s = j/2, hence ζ(s) is a meromorphic function of s with simple poles at points s =

10



1/2, −1/2, −3/2, · · · . Hence we have obtained the next theorem,

Theorem 3.1. Suppose p, q, w ∈ C∞[a, b], p(x), w(x) > 0 a.e. x ∈ [a, b]. Then the

spectral zeta functions ζ(s) of problems (1) and (2) can be analytically continued to the

whole complex plane and be with simple poles at points s = 1/2, −1/2, −3/2, · · · .

Riemann zeta function
∑∞

n=1 1/n2s is the most important special case of spectral zeta

functions.

Example 3.2. Let us consider a special case of (1) with the Dirichlet boundary condition,

−y′′ = λy, on (0, π), y(0) = y(π) = 0.

Then the n-th eigenvalue and eigenfunction are λn = r2n = n2 and sin(nx). By (18), we

can obtain that

ψ±(x, z) ≡ ∓z, and ψ±−1 = ±i, ψ±j = 0, j ≥ 0. (31)

By substituting (31) into (23), we obtain that

lnω(iz) = c1 + c2 log z + c3z, as z → +∞,

and

ζ(s) = Z(s) +
sinπs

π

[
c2
2s

+
c3

2s− 1

]
.

In fact, ω(iz) = 1
2z (ez − e−z) and

lnω(iz) = − ln(2z) + ln(ez − e−z) = − ln 2− ln z + z, as z → +∞.

Hence the Riemann zeta function ζ(s) =
∑∞

n=1 1/λsn =
∑∞

n=1 1/n2s has been analytically

continued to a meromorphic function on C and be with a simple pole only at point s = 1/2.
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