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Abstract

The generic nonlocal fractal calculus scheme have been formulated in this work. A unified derivative operator which employs

an interpolated characteristic between the generic nonlocal derivative in Riemann–Liouville and Caputo senses has also been

derived. For being generic, an arbitrary kernel function has been adopted. The condition on fractional order has been derived

so that it is not related to the γ-dimension of the fractal set. The fractal Laplace transforms of our operators have been derived.

A simple illustrative example and practical ones have been presented. Unlike the previous power law kernel-based nonlocal

fractal calculus operators, ours are generic, consistent with the local fractal derivative and employ higher degree of freedom. The

inverse relationships between our derivative and integral operators can be achieved. The results obtained from the examples

are significantly different from such previous operator-based counterparts and significantly depended on the kernel function.

The unified operator displays an interpolated characteristic as expected.

Hosted file

Rawid_B (main-text).docx available at https://authorea.com/users/484844/articles/575536-the-

generic-nonlocal-fractal-calculus

Hosted file

Fig 1.docx available at https://authorea.com/users/484844/articles/575536-the-generic-

nonlocal-fractal-calculus

Hosted file

Fig 2.docx available at https://authorea.com/users/484844/articles/575536-the-generic-

nonlocal-fractal-calculus

Hosted file

Fig 3.docx available at https://authorea.com/users/484844/articles/575536-the-generic-

nonlocal-fractal-calculus

1

https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus
https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus
https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus
https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus
https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus
https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus
https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus
https://authorea.com/users/484844/articles/575536-the-generic-nonlocal-fractal-calculus


P
os
te
d
on

A
u
th
or
ea

4
J
u
l
20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
65
69
10
94
.4
02
01
35
5/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

 
 
Fig. 1: i(t) vs. t: The proposed generic nonlocal fractional calculus (blue line) and Golmankhaneh-Baleanu nonlocal 
fractal calculus (red-dashed line)         
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Fig. 2: x(t) vs. t: (2) (based on 𝑘(𝑡; 𝛽,𝑚) as given by (3) (green line)) and (30)-(32) (based on 𝑘(𝑡; 𝛽,𝑚) as given by 
(5) (magenta-dashed line))     
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Fig. 3: f(t) vs. t: The unified generic nonlocal fractal derivative (blue line), The generic nonlocal Caputo fractal 
derivative (red dashed-line), the generic nonlocal Riemann–Liouville fractal derivative (green-dashed line)         
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Abstract  

The generic nonlocal fractal calculus scheme have been formulated in this 
work. A unified derivative operator which employs an interpolated 
characteristic between the generic nonlocal derivative in Riemann–Liouville 
and Caputo senses has also been derived. For being generic, an arbitrary 
kernel function has been adopted. The condition on fractional order has been 
derived so that it is not related to the γ-dimension of the fractal set. The fractal 
Laplace transforms of our operators have been derived. A simple illustrative 
example and practical ones have been presented. Unlike the previous power 
law kernel-based nonlocal fractal calculus operators, ours are generic, 
consistent with the local fractal derivative and employ higher degree of 
freedom. The inverse relationships between our derivative and integral 
operators can be achieved. The results obtained from the examples are 
significantly different from such previous operator-based counterparts and 
significantly depended on the kernel function. The unified operator displays 
an interpolated characteristic as expected.  

Keywords –fractal Laplace transform, fractal set, kernel, local fractal 
calculus, nonlocal fractal calculus.    

I. INTRODUCTION  

In the fractal concept related physical phenomena e.g., the 
anomalous diffusion in fractal structure [1], [2], the charge 
transportation in porous media [3], [4] and the 
electromagnetism in fractal time/space [5]-[7], the 
conventional derivative become invalid. This is because the 
associated functions are nondifferentiable and thus the fractal 
set dedicated derivative such as the local fractal calculus [8], 
[9] and local fractional calculus [10], [11] become necessary. 
The local fractional derivative has been successfully applied 
to the studies of the abovementioned electromagnetism in 
fractal time/space [12], the vibration in fractal media [13] and 
the analyses of electrical circuits defined on fractal set          
[14]-[19]. On the other hand, the local fractal derivative has 
also been widely applied to many fractal concept related issues 
e.g., the fractal Fokker-Planck equation [20], the fractal 
stochastic processes [21], the diffusion in fractal structure [22] 
and of course the analyses of fractal set defined electrical 
circuits [23]-[25].  

However, both local fractal derivative and local fractional 
derivative are local operators thus they are inapplicable to any 
system with memory effect e.g., seismograph [26], ground 
water in the confined aquifer [27] and the electrochemical 
double layer capacitor (EDLC) [28], [29] etc. This is because 
they employ non-conservative features involving the 
irreversible dissipative effects such as ohmic friction, thermal 
memory and nonlinearities due to the effects of the electric 
and magnetic fields [30]. Since the nonlocality like that of the 
fractional calculus is necessary for modelling such memory 
effect, the nonlocal fractal derivatives have been introduced 
by Golmankhaneh and Baleanu [31], [32] based on the 
classical Riemann-Liouville and Caputo fractional derivatives 
which employ a power law-based kernel. These nonlocal 
fractal derivatives have been successfully applied to various 
applications e.g., the mathematical modelling of fractional 

Brownian motion with fractal support [21] and the analysis of 
fractional electrical circuits defined on fractal set [23], [33] 
etc. However, they are inconsistent with the local fractal 
derivative as will be shown later unlike the fractional 
derivative that is consistent with the conventional operator. 
Their order also employs a γ-dimension related condition 
which in turn limits the degree of freedom. 

Therefore, the novel nonlocal fractal derivatives defined 

in both Riemann–Liouville and Caputo senses without such 

inconsistency and limited condition thus employ more degree 
of freedom, have been proposed in this work. Motivated by 
the generality of those fractional derivatives with arbitrary 
kernel [34]-[37], the arbitrary kernel function defined on 
fractal set has been assumed for our operators. As a result, an 
even more degree of freedom has been obtained.  In addition, 
the associated nonlocal fractal integral has been formulated 
and the fractal Laplace transforms of these newly developed 
nonlocal fractal calculus operators have also been derived. A 
simple illustrative example and the analyses of a fractional 
electrical and mechanical systems defined on fractal set by 
means of the nonlocal fractal integrodifferential equation 
based on these novel nonlocal fractal calculus operators have 
been presented. The obtained results have been found to be 
different from their previous nonlocal fractal calculus 
operator-based counterparts. Finally, motivated by the 
interpolated characteristic between the Riemann-Liouville 
and Caputo fractional derivatives of the Hilfer fractional 
derivative [38], [39], a unified generic nonlocal fractal 
derivative which employs an interpolated characteristic 
between the proposed nonlocal fractal derivatives in 

Riemann–Liouville and Caputo senses has also been 

presented. In summary, a novel nonlocal fractal calculus 
scheme has been proposed in this work. The associated 
operators are generic, consistent with the local ones and also 
employ higher degree of freedom than their predecessors. 

II. PRELIMINARIES 

Definition 1 [8]: Let 𝐹 ⊂ ℜ be a fractal set and f(t) be 
defined on F such that 𝑡 ∈ 𝐹. If f(t) is F-integrable on [b1, b2] 
where 𝑏 ∈ 𝐹 and 𝑏 ∈ 𝐹 then the local fractal integral of f(t) 
from b1 to b2 can be given by  

 

∫ 𝑓(𝑡) 𝑑 𝑡  

   = 𝑠𝑢𝑝
[ , ]

∑ 𝑚 𝑓, 𝐹, [𝑡 , 𝑡 ] 𝑆 (𝑡 ) − 𝑆 (𝑡 )   

   = 𝑖𝑛𝑓
[ , ]

∑ 𝑀[𝑓, 𝐹, [𝑡 , 𝑡 ]](𝑆 (𝑡 ) − 𝑆 (𝑡 ))         

 
     where  
 



𝑀[𝑓, 𝐹, [𝑏 , 𝑏 ]] =

𝑠𝑢𝑝
∈ ∩[ , ]

𝑓(𝑡) 𝜅 ∩ [𝑏 , 𝑏 ] ≠ {}

0             𝜅 ∩ [𝑏 , 𝑏 ] = {}

 

 

𝑚[𝑓, 𝐹, [𝑏 , 𝑏 ]] =

𝑖𝑛𝑓
∈ ∩[ , ]

𝑓(𝑡) 𝜅 ∩ [𝑏 , 𝑏 ] ≠ {}

0              𝜅 ∩ [𝑏 , 𝑏 ] = {}

 

 
    Note also that 0 ≤ 𝛼 < 1  and 𝑆 (𝑡)  denote the                        
γ-dimension of F [32] and integral staircase function 
respectively.  

Definition 2 [8]: The local fractal derivative of f(t) can be 
given by  

 

                     𝐷 , [𝑓(𝑡)] =
𝐹 𝑙𝑖𝑚

′→

( ′) ( )

( ′) ( )
 𝑡 ∈ 𝐹

0                  𝑡 ∉ 𝐹

      

  

Theorem 1[8]: If  𝑓(𝑡) = ∫ 𝑔(𝜏) 𝑑 𝜏   then we have  
 

𝐷 , [𝑓(𝑡)] = 𝑔(𝑡)𝜒 (𝑡) 
 
where as  
 

𝜒 (𝑡) =
1      𝑡 ∈ 𝐹

0  𝑡 ∉ 𝐹
 

 
Theorem 2[8]: If f(t) is F-continuous on 𝐹 ∩ [𝑎, 𝑏]  and       

F-differentiable such that 
 

  𝑔(𝑡)𝜒 (𝑡) = 𝐷 , [𝑓(𝑡)] 
 
then we have  
 

∫ 𝑔(𝑡) 𝑑 𝑡 = 𝑓(𝑏) − 𝑓(𝑎)  
 
See [8] for the proofs of these theorems.   

 Definition 3 [31], [32], [40]: The fractal Laplace 
transform of f(t) can be given by  

 
    𝐹 (𝑠) = ℒ [𝑓(𝑡)] = ∫ 𝑓(𝑡)

∞
exp[ − 𝑆 (𝑠)𝑆 (𝑡)]𝑑 𝑡      

  
Corollary 1[40]:  
 

        ℒ 𝐷 , [𝑓(𝑡)] = 𝑆 (𝑠)𝐹 (𝑠) − 𝑓(0) 

  
 See [40] for the proof. 

 
Corollary 2[24], [25]:  
 

   ℒ ∫ 𝑓(𝜏) 𝑑 𝜏 =
( )

( )
 

 
 See [25] for the proof. 

Corollary 3 [31],[32]: If g(t) is defined on F and  
 
ℎ(𝑡) = 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑆 (𝑡) − 𝑆 (𝜏)) 𝑔(𝜏)𝑑 𝜏  
 

then we have  
 
             𝐻 (𝑠) = ℒ [ℎ(𝑡)] = 𝐹 (𝑠)𝐺 (𝑠) 
 
See [31] and [32] for the proof. 

III. THE GENERIC NONLOCAL FRACTAL CALCULUS 

A. Generic nonlocal fractal derivative 

Definition 4.1: Let 𝑚 ∈ ℤ , 𝑚 − 1 ≤ 𝛽 ≤ 𝑚  and 
 𝑘(𝑡; 𝛽, 𝑚)  be arbitrary function defined on F 
where lim

→
𝑘(𝑡; 𝛽, 𝑚) = 1 and lim

→
ℒ [𝑘(𝑡; 𝛽, 𝑚)] =

lim
→

𝐾 (𝑠; 𝛽, 𝑚) = 1. The βth order generic nonlocal fractal 

derivative in the Riemann– Liouville sense of f(t) can be     

given by 
   

𝐷 [𝑓(𝑡)] = 𝐷 , [∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏](1) 
 

Definition 4.2: The βth order generic nonlocal fractal 
derivative in the Caputo sense of f(t) can be given by 

  

𝐷 [𝑓(𝑡)] = ∫ 𝐷 , [𝑓(𝜏)] 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏](2) 
 
At this point, it should be mentioned here that the right 

generic nonlocal fractal derivative can also be defined by 

these definitions yet with −𝐷 , [ ]  and ∫ [ ]𝑑 𝜏  where     
𝑇 ∈ 𝐹  instead. In addition, our nonlocal fractal derivatives 
employ a higher degree of freedom than the previous ones. 
Firstly, this is because such previous nonlocal fractal 
derivatives strictly assume a power law-based kernel which 
can be given here by  

 

𝑘 (𝑡; 𝛽, 𝑚) =
( ) ( )

( )
  

 
where Γ ( ) denotes the Gamma function defined on F 

[32]. 
Secondly, the previous nonlocal fractal derivatives 

assume (𝑚 − 1)𝛼 ≤ 𝛽 ≤ 𝑚𝛼  thus 𝛽 > 𝑚 − 1  and 𝛽 < 𝑚 
definitely as 𝛼 < 1.  This is unlike our fractal derivatives 
which 𝛽 = 𝑚 − 1  and 𝛽 = 𝑚  are possible due to our 
allowed range of 𝛽. In addition, it has been shown that the 
assumed range 𝛽 of the previous operators causes a serious 
flaw in the Hamiltonian formalism-based analysis (Banchuin, 
2021). 

According to definitions 4.1 and 4.2, 𝑘(𝑡; 𝛽, 𝑚) can be 
freely chosen as long as both lim

→
𝑘(𝑡; 𝛽, 𝑚) = 1 and 

lim
→

𝐾 (𝑠; 𝛽, 𝑚) = 1  are satisfied. As an example, a 

fractional power law based-kernel as given by (3) which its 
fractal Laplace transform can be given by (4), can be chosen 
for modelling any system with a fractional power law-based 
memory effect e.g., the practical electrical circuit component 
such as the EDLC [28], [29] etc. This is because such 
fractional power law based-kernel simultaneously satisfies 

lim
→

𝑘(𝑡; 𝛽, 𝑚) = 1  and lim
→

𝐾 (𝑠; 𝛽, 𝑚) = 1  as can be 

immediately seen from (3) and (4) that 
 



    𝑘(𝑡; 𝛽, 𝑚) =
|  [ ( )]|

|  [ ]|

( )

( )
        (3) 

 

    𝐾 (𝑠; 𝛽, 𝑚) =
|  [ ( )]|

|  [ ]|
𝑆 (𝑠)            (4) 

 
In addition, motivated by a Caputo-Fabrizio fractional 

derivative [41] which is suitable to diffusion process [42] and 
most transport phenomena in practice e.g., the flow of ground 
water in confined aquifer [27] etc., due to their exponential 
memory effects [43], we introduce another example of 
possible kernels as given by (5) where 𝑀(0) = 𝑀(1) = 1. 
Its fractal Laplace transform can be given by (6). Obviously, 
this Caputo-Fabrizio fractional derivative-based kernel also 
satisfies both lim

→
𝑘(𝑡; 𝛽, 𝑚) = 1  and 

lim
→

𝐾 (𝑠; 𝛽, 𝑚)    = 1.  

 

𝑘(𝑡; 𝛽, 𝑚) =
( )

exp −
( ) ( )

       (5) 

 

 𝐾 (𝑠; 𝛽, 𝑚) =
( )

( )
                  (6) 

 
Now, it is worthy to introduce the following lemmas. 
 

Lemma 1:      𝐷 [𝑓(𝑡)] = 𝐷 ,
( )

[𝑓(𝑡)]        (7) 
 

Lemma 2:      𝐷 [𝑓(𝑡)] = 𝐷 ,
( )

[𝑓(𝑡)]       (8) 
 
Proof: 1) 
 

 𝐷 [𝑓(𝑡)] = 𝐷 , [∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝑚 − 1, 𝑚)𝑑 𝜏] 
 

Since lim
→

𝑘(𝑡; 𝛽, 𝑚) = 1, we have 

 

    𝐷 [𝑓(𝑡)] = 𝐷 ,
( )

[𝐷 , [∫ 𝑓(𝜏) 𝑑 𝜏]]  
 
i.e.,  
 

                 𝐷 [𝑓(𝑡)] = 𝐷 ,
( )

[𝑓(𝑡)]  
 
 which completes the proof lemma 1, due to theorem 1 

because 𝑡 ∈ 𝐹.  
 
2) 

𝐷 [𝑓(𝑡)] = ∫ 𝐷 , [𝑓(𝜏)] 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝑚 − 1, 𝑚)𝑑 𝜏  

                         = ∫ 𝐷 ,
( )

𝐷 , [[𝑓(𝜏)]]𝑑 𝜏  

                         = 𝐷 ,
( )

[∫ 𝐷 , [𝑓(𝜏)]]𝑑 𝜏  
 

Thus, by keeping in mind that 𝑡 ∈ 𝐹, we have 
 

              𝐷 [𝑓(𝑡)] = 𝐷 ,
( )

[𝑓(𝑡)] 
 

which completes the proof lemma 2, due to theorem 2. 
Before we proceed further, it should be mentioned here 

that the previous nonlocal fractal derivatives are 
unfortunately unable to satisfy these lemmas even 
though  𝑚 − 1 ≤ 𝛽 ≤ 𝑚 has been allowed because  
 

lim
→

𝑘 (𝑡; 𝛽, 𝑚) = 𝑆 (𝑡)( )( ) ≠ 1 

 
B. Generic nonlocal fractal integral 

Definition 5: Let 𝑙(𝑡; 𝛽, 𝑚)  be defined on F such that                          

∫ 𝑘(𝜏; 𝛽, 𝑚) 𝑙(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏 =
( )

( )
. The βth 

order generic nonlocal fractal integral of f(t) can be given by 
 

     𝐽 [𝑓(𝑡)] = ∫ 𝑓(𝜏) 𝑙(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏    (9) 
 
In order to formulate 𝑙(𝑡; 𝛽, 𝑚) , corollary 3 must be 

invoked. As a result, 𝑙(𝑡; 𝛽, 𝑚)  can be obtained from the 
inverse fractal Laplace transformation of 𝐿 (𝑠; 𝛽, 𝑚) =
ℒ [𝑙(𝑡; 𝛽, 𝑚)] whereas  

 

               𝐿 (𝑠; 𝛽, 𝑚) =
( ) ( ; , )

                 (10) 

 
Therefore, we have 
 

              𝑙(𝑡; 𝛽, 𝑚) =
|  [ ]|

|  [ ( )]|

( )

( )
                  (11) 

 

  𝑙(𝑡; 𝛽, 𝑚) =
( ) ( ) ( )( ) ( )

( ) ( )
     (12) 

 
for 𝑘(𝑡; 𝛽, 𝑚) as given by (3) and (5) respectively. 

C. Fractal Laplace transforms of generic nonlocal fractal 
calculus operators 

Lemma 3:   
 

ℒ 𝐷 [𝑓(𝑡)]          (13) 

 = 𝐾 (𝑠; 𝛽, 𝑚)(𝑆 (𝑠) 𝐹 (𝑠)  

            − →
∑ ( ) ,

( )
∫ ( ) ( ) ( ); ,

( ; , )
)  

 
Lemma 4:  
 

     ℒ 𝐷 [𝑓(𝑡)]          (14) 

= 𝐾 (𝑠; 𝛽, 𝑚)(𝑆 (𝑠) 𝐹 (𝑠) −

                                  𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

[𝑓(𝑡)])  

 

Lemma 5:         ℒ 𝐽 [𝑓(𝑡)] =
( )

( ) ( ; , )
        (15) 

 
Proof: 3) 

 

         ℒ 𝐷 [𝑓(𝑡)]  

           = ℒ [𝐷 , ∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏 ]    

 
According to the conjugacy of the fractal and 

conventional calculus (Parvate & Gangal, 2011), the 
corollary 1 can be extended as  
 
ℒ 𝐷 , [𝑓(𝑡)] = 𝑆 (𝑠) 𝐹 (𝑠) − 𝐹_ lim

→
∑ 𝑆 (𝑠) 𝐷 ,

( )[𝑓(𝑡)]       

                                                                                                                (16) 
 
 



As a result, we have 

 
ℒ 𝐷 [𝑓(𝑡)]  = 𝑆 (𝑠) ℒ ∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏  

−𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏   

 
Then, after applying corollary 3, we obtain   
 

      ℒ 𝐷 [𝑓(𝑡)] = 𝑆 (𝑠) 𝐹 (𝑠)𝐾 (𝑠; 𝛽, 𝑚) 

       −𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏   

 
therefore, we have 
 

ℒ 𝐷 [𝑓(𝑡)]  

       = 𝐾 (𝑠; 𝛽, 𝑚)(𝑆 (𝑠) 𝐹 (𝑠) 

       − →
∑ ( ) ,

( )
∫ ( ) ( ) ( ); ,

( ; , )
)  

 
right after some algebraic manipulation thus completes 

the proof lemma 3.    
4) 
 

          ℒ 𝐷 [𝑓(𝑡)]  

   = ℒ [∫ 𝐷 , [𝑓(𝜏)] 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏]  
 
By recalling corollary 3, we have 
 

ℒ 𝐷 [𝑓(𝑡)] = 𝐾 (𝑠; 𝛽, 𝑚)ℒ 𝐷 , [𝑓(𝜏)]    

 
i.e., 

 

ℒ 𝐷 [𝑓(𝑡)]           

= 𝐾 (𝑠; 𝛽, 𝑚)(𝑆 (𝑠) 𝐹 (𝑠) −

                                  ∑ 𝑆 (𝑠) 𝐹 lim
→

𝐷 ,
( )

[𝑓(𝑡)])  

 
due to (16) thus completes the proof lemma 4. 
5) 

 

ℒ 𝐽 [𝑓(𝑡)] = ℒ [∫ 𝑓(𝜏) 𝑙 𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚 𝑑 𝜏]  

 
By recalling corollary 3, we have 

 

ℒ 𝐽 [𝑓(𝑡)] = 𝐹 (𝑠)𝐿 (𝑠; 𝛽, 𝑚)  

 
i.e., 

  

ℒ 𝐽 [𝑓(𝑡)] =
𝐹 (𝑠)

𝑆 (𝑠) 𝐾 (𝑠; 𝛽, 𝑚)
 

 
according to (10) thus completes the proof lemma 5.   
At this point, we are ready to introduce the following 

lemmas 
Lemma 6:      𝐷 [𝑓(𝑡)] = 𝐷 , [𝑓(𝑡)]                    (17) 
 
Lemma 7:      𝐷 [𝑓(𝑡)] = 𝐷 , [𝑓(𝑡)]         (18) 
 
 

Proof: 6) 
 

𝐷 [𝑓(𝑡)] = 𝐷 , [∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝑚, 𝑚)𝑑 𝜏]  
 

Therefore, by applying lemma 3, we have 
 

ℒ 𝐷 [𝑓(𝑡)]       

 = 𝐾 (𝑠; 𝑚, 𝑚)(𝑆 (𝑠) 𝐹 (𝑠)  

            − →
∑ ( ) ,

( )
∫ ( ) ( ) ( ); ,

( ; , )
)  

 
Since lim

→
𝐾 (𝑠; 𝛽, 𝑚) = 1 , 𝑘(𝑡; 𝑚, 𝑚) = 𝛿 (𝑡)  and 

thus 
 

ℒ 𝐷 [𝑓(𝑡)]  

= 𝑆 (𝑠) 𝐹 (𝑠) − ∑ 𝑆 (𝑠) 𝐹_ lim
𝑡→0

𝐷𝐹,𝑡
𝛼(𝑘−1)

[𝑓(𝑡)]  

 
i.e., 
 

ℒ 𝐷 [𝑓(𝑡)] = ℒ 𝐷 , [𝑓(𝜏)]  

 
according to (16). As a result, it has been found that 

 
𝐷 [𝑓(𝑡)] = 𝐷 , [𝑓(𝑡)] 

 
which completes the proof lemma 6. 
 
7) 

 

𝐷 [𝑓(𝑡)] = ∫ 𝐷 , [𝑓(𝜏)] 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝑚, 𝑚)𝑑 𝜏  
 

Thus, by applying lemma 4 and keeping in mind that 
lim

→
𝐾 (𝑠; 𝛽, 𝑚) = 1, we have 

 
ℒ 𝐷 [𝑓(𝑡)]  

= 𝑆 (𝑠) 𝐹 (𝑠) − ∑ 𝑆 (𝑠) 𝐹−
𝛼 lim

𝑡→0
𝐷𝐹,𝑡

𝛼(𝑘−1)
[𝑓(𝑡)]   

 
i.e.,   
 

𝐷 [𝑓(𝑡)] = 𝐷 , [𝑓(𝑡)] 
 

which completes the proof lemma 7, after applying (16) 
and taking the inverse fractal Laplace transformation to both 
sides of the equation. 

Unlike our generic nonlocal operators, the 
Golmankhaneh-Baleanu nonlocal fractal derivatives are 
unable to satisfy lemmas 6 and 7 albeit  𝑚 − 1 ≤ 𝛽 ≤ 𝑚 has 
been allowed because 
 

lim
→

ℒ [𝑘 (𝑡; 𝛽, 𝑚)] =
(( ) )

( ) ( )( ) ≠ 1  

 
By the satisfactions of lemmas 1, 2, 6 and 7, it can be 

stated that our generic nonlocal fractal derivatives are 
consistent with the local one unlike the previous nonlocal 
fractal derivatives as they fail to do so. This consistency is 
another advantage of our generic operators beside their higher 
degree of freedom.  



At this point, it is worthy to introduce the following 

relationship between 𝐷 [𝑓(𝑡)] and 𝐷 [𝑓(𝑡)]. 
Lemma 8:  

 
𝐷 [𝑓(𝑡)]          (19) 

= 𝐷 [𝑓(𝑡)] − 𝐹 lim
→

∑
 ,

( )
[ ( )] ∫ ( ) ( ) ( ); ,

( )
  

 
Proof: Firstly, we rewrite lemma 4 as 
 

ℒ 𝐷 [𝑓(𝑡)] = 𝐾 (𝑠; 𝛽, 𝑚)𝑆 (𝑠) 𝐹 (𝑠) 

                                   −𝐹 lim
→

∑ 𝐾 (𝑠; 𝛽, 𝑚)𝑆 (𝑠) 𝐷 ,
( )[𝑓(𝑡)]  

 
i.e., 
 

ℒ 𝐷 [𝑓(𝑡)] = 𝐾 (𝑠; 𝛽, 𝑚)𝑆 (𝑠) 𝐹 (𝑠) 

−𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏   

+𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏   

− 𝐹 lim
→

∑ 𝐾 (𝑠; 𝛽, 𝑚)𝑆 (𝑠) 𝐷 ,
( )[𝑓(𝑡)]  

 
Thus, we have 
 

ℒ 𝐷 [𝑓(𝑡)]  

= ℒ 𝐷 [𝑓(𝑡)] − 𝐹 lim
→

∑ 𝐾 (𝑠; 𝛽, 𝑚)𝑆 (𝑠) 𝐷 ,
( )[𝑓(𝑡)]  

   +𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

∫ 𝑓(𝜏) 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏   

 

according to lemma 3. 
After taking the inverse fractal Laplace transformation to 

both sides of the equation, we obtain 
 

𝐷 [𝑓(𝑡)] 

= 𝐷 [𝑓(𝑡)] − 𝐹 lim
→

∑
 ,

( )[ ( )] ∫ ( ) ( ) ( ); ,

( )
   

      +𝐹 lim
→

∑
 ,

( )
∫ ( ) ( ) ( ); , ( )

( )
  

 
Since 𝑆 (0) = 0, we have 
 

𝐷 [𝑓(𝑡)] 

= 𝐷 [𝑓(𝑡)] − 𝐹 lim
→

∑
 ,

( )
[ ( )] ∫ ( ) ( ) ( ); ,

( )
  

 

thus completes the proof. 

Finally, the following lemmas which show that 𝐽 [ ] 

can serve as the inverse of 𝐷 [ ] and 𝐷 [ ],  are worthy of 
mentioned before we proceed to the subsesequent section. 

Lemma 9: If 𝐹_ lim
→

𝑘(𝑡; 𝛽, 𝑚) = 0 then     

 

𝐷 𝐽 [𝑓(𝑡)] = 𝑓(𝑡)                    (20) 
 
Lemma 10:  If 𝐹_ lim

→
𝑘(𝑡; 𝛽, 𝑚) = 0 then  

       

  𝐽 𝐷 [𝑓(𝑡)] = 𝑓(𝑡)         (21) 

 

Lemma 11:   If 𝐹 lim
→

𝐷 ,
( )

𝐽 [𝑓(𝑡)] = 0 then 

 

 𝐷 𝐽 [𝑓(𝑡)] = 𝑓(𝑡)                    (22) 

 

Lemma 12:  If  𝐹 lim
→

𝐷 ,
( )

𝐽 [𝑓(𝑡)] = 0 then  

 

                𝐽 𝐷 [𝑓(𝑡)] = 𝑓(𝑡)         (23) 

 
Proof: 9) 
 
By recalling lemmas 3 and 5, we can formulate 
 

ℒ 𝐷 𝐽 [𝑓(𝑡)] = 𝐹 (𝑠) 

−𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

∫ 𝐽 [𝑓(𝑡)] 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏   

 
Thus, after taking the inverse fractal Laplace 

transformation, we have 
 

𝐷 𝐽 [𝑓(𝑡)] = 𝑓(𝑡) −

𝐹 lim
→

∑
( )

( )
𝐷 ,

( )
∫ 𝐽 [𝑓(𝑡)] 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏   

 
i.e., 
 

𝐷 𝐽 [𝑓(𝑡)] = 𝑓(𝑡) 
 

if 𝐹 lim
→

𝑘(𝑡; 𝛽, 𝑚) = 0  therefore completes the proof 

lemma 9. 
 10) 
 
By also recalling lemmas 3 and 5, we can formulate 
 

ℒ 𝐽 𝐷 [𝑓(𝑡)]  

= 𝐹 (𝑠) − →
∑ ( ) ,

( )
∫ ( ) ( ( ) ( ); , )

( ; , )
  

 
Thus, if 𝐹 lim

→
𝑘(𝑡; 𝛽, 𝑚) = 0 then we have 

 

ℒ 𝐽 𝐷 [𝑓(𝑡)] = 𝐹 (𝑠) 

 
i.e., 

  

𝐽 𝐷 [𝑓(𝑡)] = 𝑓(𝑡) 

which completes the proof lemma 10. 
11) 
 
By recalling lemmas 4 and 5, we can derive 
 

 ℒ 𝐷 𝐽 [𝑓(𝑡)]  

= 𝐹 (𝑠) − 𝐾 (𝑠; 𝛽, 𝑚)𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

𝐽 [𝑓(𝑡)]    

 

Thus, if 𝐹 lim
→

𝐷 ,
( )

𝐽 [𝑓(𝑡)] = 0 then we have 

 
 

ℒ 𝐷 𝐽  [𝑓(𝑡)] = 𝐹 (𝑠) 

 
 



i.e., 
 

  𝐷 𝐽 [𝑓(𝑡)] = 𝑓(𝑡) 

 
which completes the proof lemma 11. 
 
12) 
 
By recalling lemmas 4 and 5, we can derive 

 

    ℒ 𝐽 𝐷 [𝑓(𝑡)]  

     = 𝐹 (𝑠) − 𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

[𝑓(𝑡)]   

Therefore, after taking the inverse fractal Laplace 
transformation, we have 

 

𝐽 𝐷 [𝑓(𝑡)]  

             = 𝑓(𝑡) − 𝐹 lim
→

∑
( ) ,

( )
[ ( )]

( )
  

i.e., 
 

𝐽 𝐷 [𝑓(𝑡)] = 𝑓(𝑡) 

 

if 𝐹 lim
→

𝐷 ,
( )

[𝑓(𝑡)] = 0  thus completes the proof 

lemma 11. 
 

IV. EXAMPLES 

A. A simple illustrative example 

Consider a generic nonlocal fractal derivative based 
differential equation as  
 

   𝐷 [𝑓(𝑡)] + 𝑓(𝑡) = 0      (24) 
 

where 0 ≤ 𝛽 ≤ 1.  
Since 𝑘(𝑡; 𝛽, 𝑚)  can be arbitrarily chosen unless 

lim
→

𝑘(𝑡; 𝛽, 𝑚) = 1  and lim
→

𝐾 (𝑠; 𝛽, 𝑚) = 1  are 

violated, we may choose 𝑘(𝑡; 𝛽, 𝑚) as given by (5) as both 
lim
→

𝑘(𝑡; 𝛽, 𝑚) = 1  and lim
→

𝐾 (𝑠; 𝛽, 𝑚) = 1  are 

satisfied. Thus, by keeping in mind that m = 1 due to the given 
range of 𝛽, we have 
 

            
( ) ( ) ( ) ( )

( )
+ 𝐹 (𝑠) = 0  

i.e., 
 

 𝐹 (𝑠) =
( )

(
( )

) ( )
( )

  

As a result, 𝑓(𝑡) can be found as 
 

         𝑓(𝑡) =
( ) ( )

( )
exp −

( )

( )
      (25) 

which is totally different from the previous 
Golmankhaneh-Baleanu nonlocal fractal derivative-based 
counterpart (see [31]) that is in terms of a fractal Mittag-
Leffler function. This is because 𝑘 (𝑡; 𝛽, 𝑚) is based on a 
fractional power law unlike the chosen 𝑘(𝑡; 𝛽, 𝑚). 

B. Fractional electrical circuit  

Now, consider a source free series fractional RLC circuit 
defined on F. By applying the KVL, the following generic 
nonlocal fractal calculus-based differential equation in the 
Caputo sense can be obtained 
  

         𝐿 𝐷 [𝑖(𝑡)] + 𝑅𝑖(𝑡) + 𝐽 [𝑖(𝑡)] = 0      (26) 

 
Since the practical electrical circuit component employ a 

fractional power law-based memory effect as 
abovementioned, we choose 𝑘(𝑡; 𝛽, 𝑚) as given by (3) as it 
is based on a fractional power law and obeys 

lim
→

𝑘(𝑡; 𝛽, 𝑚) = 1  and lim
→

𝐾 (𝑠; 𝛽, 𝑚) = 1 . Based on 

the experimental data (see [30]), we let 0 ≤ 𝛽 ≤ 1 . As a 
result, we have 

 
( )

|  [ ]|
(𝑆 (𝑠)𝐼 (𝑠) − 𝑖(0)) + 𝑅𝐼 (𝑠) +

|  [ ]| ( )

( )
= 0  

 
i.e., 

 

𝐼 (𝑠) =
( ) ( )

( )
| [ ]|

( )
| [ ]|

  

 
Therefore, i(t) can be found as 

 

 𝑖(𝑡) = 𝑖(0) ∑ ∑
(

| [ ]|
) (

| [ ]|
)

( ( ) )

∞∞ 𝑛 + 𝑘
𝑘

𝑆 (𝑡) ( ) (27) 

 
By let F be a Cantor ternary set thus 𝛼 = 0.6309  and 

assuming that i(0) = 1 A, R = 1 Ω, L = 1 H, C = 1 F                      
and 𝛽 = 0.6309, i(t) can be approximately simulated based on 
(27) up to n = k = 99 via MATHEMATICA as depicted in      
Fig. 1 where a significantly different dynamic from that of its 
Golmankhaneh-Baleanu nonlocal fractal calculus-based 
counterpart obtained from the previous analysis of fractional 
RLC circuit on fractal set (see [33]) which has also been 
depicted in this figure, can be observed. Such disagreement is 
also caused by the different between the assumed 𝑘(𝑡; 𝛽, 𝑚) 
and 𝑘 (𝑡; 𝛽, 𝑚).  

C. Fractional mechanical system 

In practice, the mechanical system also employs the 
memory effect as in the case of the seismograph [26]. 
Therefore, the nonlocal fractal calculus become necessary 
whenever such system is defined on F. Now, consider a mass-
spring-damper system defined on F. After applying the 
Newton’s 2nd law, the following generic nonlocal fractal 
calculus-based differential equation in the Riemann–
Liouville sense can be obtained 
 

     𝑚 𝐷 [𝑥(𝑡)] + 𝜉 𝐷 [𝑥(𝑡)] + 𝑘𝑥(𝑡) = 𝑓(𝑡)   (28) 



where k, m and 𝜉 denote the spring constant, mass and 
damping coefficient respectively. Note also that 𝑥(𝑡) and f(t) 
stand for the displacement and the forcing function. 

Since we assume 0 ≤ 𝛽 ≤ 1 and null initial values, it can 
be seen from lemma 3 that 
 

ℒ 𝐷 [𝑥(𝑡)] = 𝐾 (𝑠; 𝛽, 1)𝑆 (𝑠)𝑋 (𝑠) 

 

ℒ 𝐷 [𝑥(𝑡)] = 𝐾 (𝑠; 2𝛽, 2)𝑆 (𝑠) 𝑋(𝑠) 

 
Thus, for 𝑓(𝑡) = 𝑓, we have 

 
𝑚𝐾 (𝑠; 2𝛽, 2)𝑆 (𝑠) 𝑋 (𝑠) + 𝜉𝐾 (𝑠; 𝛽, 1)𝑆 (𝑠)𝑋 (𝑠) + 𝑘𝑋 (𝑠) =

( )
  

 
i.e., 

 

𝑋 (𝑠) =
( )( ( ; , ) ( ) ( ; , ) ( ) )

  

 
If we choose a fractional power law-based 𝑘(𝑡; 𝛽, 𝑚)  

which is given by (3), we have 
 

𝐾 (𝑠; 𝛽, 1) =
( )

|  [ ]|
  

 

𝐾 (𝑠; 2𝛽, 2) =
( ) ( )

|  [ ]|
  

 
and thus 
 

      𝑋 (𝑠) =
| [ ]| ( )

( ) ( ) | [ ]|
  

 
According to [8], 𝑋 (𝑠) can be approximated as 

 

       𝑋 (𝑠) ≈
| [ ]|

| [ ]|
      (29) 

 
On the other hand, if we choose 𝑘(𝑡; 𝛽, 𝑚) as given by (5) 

which is based on an exponential function, we have 
 

𝐾 (𝑠; 𝛽, 1) =
( )

( )
  

 

𝐾 (𝑠; 2𝛽, 2) =
( )

( )
  

 
i.e., 
 

𝑋 (𝑠) = ( )
( )

( )

( )
( )

( )
( )

  

 
which in turn can be approximated as 

 

              𝑋 (𝑠) ≈ ( ) ( )       (30) 

 
Note also that we let 
 

𝑀(𝛽) =
; 0 ≤  𝛽 < 1

; 𝛽 = 1
       (31) 

 

             𝑀(2𝛽 − 1) =
; 0 ≤  𝛽 < 1

; 𝛽 = 1
      (32) 

 
which clearly satisfy 𝑀(0) = 𝑀(1) = 1. 
By assuming that f = 12 N, k = 800 N/m, m = 3 kg, 𝜉 = 20 

Nsec/m, 𝛼 = 0.85 and  𝛽 = 0.85 , x(t) can be approximately 
simulated based on the numerical inverse Laplace transforms 
of (29) and (30)-(32) as depicted in Fig. 2 which shows that 
x(t) due to the fractional power law-based kernel and its 
exponential function kernel-based counterpart employ 
significantly different dynamics. 
   

V. THE UNIFIED GENERIC NONLOCAL FRACTAL DERIVATIVE 

Motivated by the interpolated characteristic between the 
Riemann-Liouville and Caputo fractional derivatives of the 
Hilfer fractional derivative, a unified generic nonlocal fractal 
derivative which employs an interpolated characteristic 
between both generic nonlocal fractal derivatives in 

Riemann–Liouville and Caputo senses will be defined in this 

section. Firstly, we introduce the following fractal 
convolution integral operator 

 

           𝐼 [ ] = ∫ [ ] 𝑘(𝑆 (𝑡) − 𝑆 (𝜏); 𝛽, 𝑚)𝑑 𝜏       (33) 
 

Therefore, 𝐷 [𝑓(𝑡)] and 𝐷 [𝑓(𝑡)] can be 

respectively given in terms of 𝐼 [  ] as 
 

𝐷 [𝑓(𝑡)] = 𝐷 , [ 𝐼 [ 𝑓(𝑡)]] 
 

𝐷 [𝑓(𝑡)] = 𝐼 [𝐷 , [𝑓(𝑡)] ] 
 
Since lim

→
𝐾 (𝑠; 𝛽, 𝑚) = 1, we have 

 
 lim

→
𝑘(𝑆 (𝑡); 𝛽, 𝑚) = 𝛿 (𝑡) 

 
where 𝛿 (𝑡) stands for a fractal impulse function. Thus, 

by the conjugacy between the fractal and conventional 
calculus, 𝐼 [  ] is an identity fractal convolution integral 

operation i.e., 𝐷 [𝑓(𝑡)] and 𝐷 [𝑓(𝑡)]  can be 
alternatively given by 
 

  𝐷 [𝑓(𝑡)] = 𝐼 𝐷 , 𝐼 [ 𝑓(𝑡)]       

 
    𝐷 [𝑓(𝑡)] = 𝐼 𝐷 , 𝐼 [ 𝑓(𝑡)]        

 
As a result, the unified generic nonlocal fractal derivative 

can be finally defined as follows 
Definition 6: Let 𝑚 − 1 ≤ 𝛽 ≤ 𝑚  and                            

𝑚 − 1 ≤ 𝛽 ≤ 𝑚 , the unified generic nonlocal fractal 
derivative of f(t) can be given by 

 



         𝐷
,

[𝑓(𝑡)] = 𝐼 𝐷 , 𝐼 [ 𝑓(𝑡)]          (34) 

 

Remark 1: 𝐷
,  [𝑓(𝑡)] = 𝐷 [𝑓(𝑡)]. 

 

Remark 2: 𝐷  , [𝑓(𝑡)] = 𝐷 [𝑓(𝑡)]. 
 

Lemma 13: 𝐷  , [𝑓(𝑡)] = 𝐷 , [𝑓(𝑡)]. 
 
Lemma 14:   

 

 ℒ 𝐷
, [𝑓(𝑡)]         (35) 

  = 𝐾 (𝑠; 𝛽 , 𝑚)(𝑆 (𝑠) 𝐾 (𝑠; 𝛽 , 𝑚)𝐹 (𝑠) −

                               𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

𝐼 [ 𝑓(𝑡)] )  

 
 
Proof: 13)  
 

𝐷  , [𝑓(𝑡)] = 𝐼 𝐷 , 𝐼 [ 𝑓(𝑡)]  

 
Since 𝐼 [  ] is an identity fractal convolution integral 

operation, we have 
 

𝐷  , [𝑓(𝑡)] = 𝐷 , [𝑓(𝑡)] 
 
which completes the proof lemma 13. 
14) 
 

  ℒ 𝐷
, [𝑓(𝑡)] = ℒ 𝐼 𝐷 , 𝐼 [ 𝑓(𝑡)]  

 
By applying (33) and corollary 3, it has been found that 
 

ℒ 𝐷
, [𝑓(𝑡)] = 𝐾 (𝑠; 𝛽 , 𝑚)ℒ 𝐷 , 𝐼 [ 𝑓(𝑡)]    

 
due to corollary 3.  

By applying (16) to ℒ 𝐷 , 𝐼 [ 𝑓(𝑡)] , 

ℒ 𝐷
, [𝑓(𝑡)]  become 

 

ℒ 𝐷
, [𝑓(𝑡)]  

= 𝐾 (𝑠; 𝛽 , 𝑚)(𝑆 (𝑠) ℒ 𝐼 [ 𝑓(𝑡)] − 𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

𝐼 [ 𝑓(𝑡)] )  

 

Now, we apply (33) and corollary 3 to ℒ 𝐼 [ 𝑓(𝑡)] . As 

a result, we have 
 
ℒ 𝐷

, [𝑓(𝑡)]  

= 𝐾 (𝑠; 𝛽 , 𝑚)(𝑆 (𝑠) 𝐾 (𝑠; 𝛽 , 𝑚)𝐹 (𝑠) − 𝐹 lim
→

∑ 𝑆 (𝑠) 𝐷 ,
( )

𝐼 [ 𝑓(𝑡)] )  

 
which completes the proof lemma 14. 
At this point, the interpolated characteristic of the unified 

generic nonlocal fractal derivative will be demonstrated. In 
order to do so, the simple example presented in the previous 

section will be reconsidered here yet with 𝐷 [𝑓(𝑡)] 

replaced by 𝐷
, [𝑓(𝑡)]. Thus, we now have 

 

𝐷
, [𝑓(𝑡)] + 𝑓(𝑡) = 0      (36) 

 
where 0 ≤ 𝛽 ≤ 1 and 0 ≤ 𝛽 ≤ 1 i.e., 𝑚 = 1. 
After applying the fractal Laplace transformation and 

lemma 14, (36) become 
 
𝐾 (𝑠; 𝛽 , 1)(𝑆 (𝑠) 𝐾 (𝑠; 𝛽 , 1)𝐹 (𝑠) − 𝐹 lim

→
𝐼 [ 𝑓(𝑡)]

 
) + 𝐹 (𝑠) = 0 

 

Since we now choose 𝑘(𝑡; 𝛽, 𝑚) as given by (3), we have 
 

𝐾 (𝑠; 𝛽 , 1) =
( )

|  [ ]|
  

 

𝐾 (𝑠; 𝛽 , 1) =
( )

|  [ ]|
  

 
i.e., 
 

𝐹 (𝑠) =
( )|  [ ]| ( )

( ) |  [ ]||  [ ]|
 

  

 

where 𝐹 (0) = 𝐹 lim
→

𝐼 [ 𝑓(𝑡)]  with 𝑘(𝑡; 𝛽, 𝑚)  as 

given by (3) and 𝑚 = 1.  
As a result, the following solution can be obtained. 

 
𝑓(𝑡) = 𝐹 (0)|cos[2𝜋𝛽 ]|𝑆 (𝑡)

 
      (37) 

       𝐸 , , −|cos[2𝜋𝛽 ]||cos[2𝜋𝛽 ]|𝑡  
 
where 𝐸 , , [  ]  is a generalized two parameter 

Mittag-Liffler function defined on F [32]. 
For demonstrating such interpolated characteristic, it is 

worthy to introduce the benchmarking generic nonlocal 

Riemann–Liouville and Caputo fractal derivative based 

solutions which can be respectively given by 
 
                𝑓(𝑡) = 𝐹

 
(0)|cos[2𝜋𝛽]| 𝑆 (𝑡)        (38) 

                               𝐸 ,  ,  
−|cos[2𝜋𝛽 ]|𝑡   

 
               𝑓(𝑡) = 𝑓(0)𝐸 ,  

[−|cos [2𝜋𝛽]|𝑡 ]                   (39) 
 

where  𝐹
 
(0) = →

∫  ( )( ( ) ( ))        

|  [ ]| ( )
 and 

where 𝐸 ,  
[  ]  is a generalized standard Mittag- Liffler 

function defined on F [31]. 
Based on (37)-(39), the unified generic nonlocal fractal 

derivative, the generic nonlocal Riemann–Liouville fractal 

derivative and the generic nonlocal Caputo fractal derivative 
based 𝑓(𝑡)’s can be simulated as depicted in Fig. 3 where 
𝑓(0) = 𝐹

 
(0) = 𝐹 (0) = 1  and 𝛼 = 𝛽 = 𝛽 = 𝛽 =

0.6309 have been assumed. Obviously, the unified generic 
nonlocal fractal derivative based solution displays an 
interpolated characteristic between the generic nonlocal 

Riemann–Liouville and Caputo fractal derivative based 

counterparts. 
 

VI. CONCLUSION  

Motivated by the capability to model memory effect in the 
fractal time-space of nonlocal fractal calculus and the 



generality of general fractional calculus such as that of 
Kochubei [34], [35], a generic nonlocal fractal calculus 
scheme has been proposed in this work.  Both generic 

nonlocal fractal derivatives in Riemann–Liouville and Caputo 

senses are consistent with the local one and employ higher 
degree of freedom than the previous nonlocal fractal calculus. 
The fractal Laplace transforms of our novel nonlocal fractal 
calculus operators have also been derived. The consistency 
with local fractal calculus and inverse relationships between 
our nonlocal fractal derivatives and integral have been 
mathematically validated.  

In addition, a simple illustrative example and the analyses 
of a fractional RLC circuit and a fractional mass-spring-
damper system defined on a fractal set have been presented. 
The obtained results have been found to be significantly 
different from their previous power law kernel-based 
nonlocal fractal calculus-based counterparts and also 
depended on the specifically chosen kernel function. Finally, 
a unified generic nonlocal fractal derivative which employs 
an interpolated characteristic between the proposed generic 

nonlocal fractal derivative in Riemann–Liouville and Caputo 

senses has also been presented. By the generality, consistency 
with the local fractal calculus and higher degree of freedom, 
the nonlocal fractal calculus scheme proposed in this work 
has been found to be more preferable than its predecessors. 
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Fig. 1: i(t) vs. t: The proposed generic nonlocal fractional calculus (blue line) 
and Golmankhaneh-Baleanu nonlocal fractal calculus (red-dashed line)         
 
Fig. 2: x(t) vs. t: (2) (based on 𝑘(𝑡; 𝛽, 𝑚) as given by (3) (green line)) and    
(30)-(32) (based on 𝑘(𝑡; 𝛽, 𝑚) as given by (5) (magenta-dashed line))     
 
Fig. 3: f(t) vs. t: The unified generic nonlocal fractal derivative (blue line), The 
generic nonlocal Caputo fractal derivative (red dashed-line), the generic 
nonlocal Riemann–Liouville fractal derivative (green-dashed line)         

 


