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1. Introduction

Companies within the process industries rely on mathematical optimization for their operations to
remain competitive in an environment of increasingly stringent safety, environmental, and economic re-
quirements [31]. This gives rise to the field of enterprise-wide optimization (EWO) with the ultimate goal
to coordinate all decision-making within a company [32, 33]. EWO involves the integration of units across
1) all hierarchical levels of decision-making (from design, planning, scheduling, to control), and 2) all ge-
ographically distributed (plants, warehouses, etc.) or functional (sourcing, manufacturing, distribution)
units. Conventionally, these separate entities are solved sequentially via one-way information flow [20]. For
instance, higher-level planning might determine the setpoints of lower-level scheduling without explicitly
accounting for lower-level constraints; or geographically separated plants might adjust their operations to
accommodate the needs of other bottleneck plants in the value chain. These heuristics in coordinated
decision-making, while sometimes necessary for practicality and tractability, do not guarantee optimality
of the integrated problem. However, integrated model-based optimization traditionally requires the solu-
tion of a larger-scale centralized optimization model, which quickly becomes computationally intractable in
the number of decision variables and constraints [20]. A centralized formulation could also in practice be
obviated by organizational complexity (antitrust, privacy, ...).

One way to alleviate the computational burden of model-based integration is to relax constraints,
or replace detailed formulations with surrogate models that are easier to handle by numerical solvers
[9, 44, 10]. Usually, this would come at the expense of a degradation in solution quality. However, since
EWO aims to coordinate previously decoupled decision-making, the resulting optimization formulations
present mathematical structures that can be exploited. The resulting problems comprise few complicating
variables and constraints that lend themselves well to decomposition and distributed optimization schemes
[56]. Decomposition techniques consist of the iterative solution of a relaxed upper- and reduced-order lower-
level problem which can theoretically achieve the same solution quality as the original formulation, while
saving computational time. Bilevel [39, 21] and Benders decomposition [58, 72, 62] are among the most
prominent techniques for addressing complicating variables, and typically decompose problems over time,
and stochastic realizations of uncertainty respectively. Lagrangean decomposition is particularly useful for
tackling complicating constraints, as well as complicating variables by reformulation. As such, it is also
useful for decomposing problems by time, space, or products [40, 54, 70, 68].

Distributed optimization builds on the concepts of dual decomposition techniques (such as Lagrangean
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decomposition). It has many applications in problems that are separated by complicating constraints, such
as the integration of geographically dispersed warehouses or plants along a supply chain [67]. The Alter-
nating Direction Method of Multipliers (ADMM) has received special attention as a powerful tool enabling
considerable computational savings using minimal information exchange, especially in convex optimization
[13]. ADMM repeatedly iterates between the solution of private, localized, lower-level subproblems, and an
upper-level problem whose aim is to coordinate the solutions of the private subproblems. The possibility
for solving the subproblems in parallel gives rise to significant potential computational savings. Despite
often being applied in practice, ADMM loses its convergence guarantees on nonconvex problems [59]. An-
other drawback of ADMM is that the method practically only leads to computational savings compared to
the centralized solution under special conditions, namely when the problem is decomposed into numerous,
convex subproblems [13].

Similarly to how the convergence of first-order gradient descent solvers can be improved using acceler-
ation or momentum, there are several ways to speed up the convergence of ADMM using similar schemes
[14]. Houska et al. [37] have proposed ALADIN, an algorithm to address ADMM’s shortcomings: it speeds
up - and includes theoretical conditions for - global convergence to local minimizers on nonconvex problems.
ALADIN iterates between the parallel optimization of subproblems and sequential quadratic programming
(SQP) steps for the coordination around the local subproblem solutions.

While distributed optimization seems promising from a computational perspective, much of the litera-
ture discussing model-based integration in EWO with relevant solution techniques fails to consider commu-
nication and business considerations that could hinder their practical applicability [25, 71, 80]. Distributed
optimization is often approached using a top-down coordination approach: Starting from a centralized
model, a decomposition is applied that is expected to lead to computational savings. This presupposes that
previously decoupled decision-makers 1) are willing to share their local models; 2) accept the risk of fore-
going a certain degree of autonomy, flexibility, and Nash equilibria for the pursuit of the ‘social optimum’
of the centralized model; and 3) even have access to known, differentiable expressions as part of their opti-
mization model. Due to a significant increase in computational power over the past few decades, software
and organizational rather than numerical considerations might become the bottleneck in the integration of
computational decision-making [6]. In fact, current decision-making architectures were often established
within a legal and organizational framework when operations were (and often still are) guided by heuristics

rather than numerical optimization. As such, the considered problem is rendered into a multi-agent coor-
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dination problem where each agent might represent a separate legal entity with its own autonomy, agenda,
technical constraints, and organizational considerations [36, 22].

The organizational context matters when choosing the best coordination scheme. When all agents
are willing to collaborate and share differentiable model expressions, powerful distributed optimization
techniques can be leveraged for optimal numerical efficiency [23]. When coordinating (not necessarily
collaborating) agents only have access to black-box simulation tools for decision-making, ‘data-driven’ or
‘black-box’ optimization tools need to be adapted for the coordination. There are many reviews on data-
driven or derivative-free optimization algorithms [48, 3]. Some state-of-the-art methods have also been
benchmarked on typical process systems engineering (PSE) applications in [74], and have been introduced
to solve multilevel problems in [84, 8, 7]. van de Berg et al. [73] show that derivative-free optimization can
be used for the data-driven coordination of black-box subproblems in multi-objective problems arising in
PSE.

In this work, we build upon van de Berg et al. [73] to investigate whether derivative-free optimization
(DFO) can be used as a viable alternative to distributed optimization solvers in the following coordination
problems: each agent is willing to collaborate (i.e. sacrifice suboptimality in their own objective for a
‘greater good’) and has their own decision-making model, which does not have to be white-box - it could be
the black-box result of a third-party, proprietary simulation software. In the context of EWO, this problem
might arise when plants along the same value chain need to coordinate on material streams given that each
plant has a separate objective that they optimize with the help of third-party software. In this case, the
model is not readily exploitable for gradient information, such that solvers like ALADIN cannot be used as
it requires exact first-order gradient information of the subproblems for its SQP step. The question arises
if or data-driven optimization approaches perform best for these kinds of scenarios.

While the performance of different distributed optimization algorithms have been compared with each
other and with a centralized solution [69], we thoroughly investigate under which conditions data-driven
optimization outperforms typical distributed optimization solvers such as ADMM. As discussed in van de
Berg et al. [73], any (potentially imperfect) gradient information becomes increasingly valuable in higher-
dimensional decision spaces. Since ADMM’s upper-level coordination step involves subgradient information,
we only expect DFO to be competitive under specific conditions, i.e. when the number of complicating
variables is few relative to the number of private decision variables. Our aim is not to outperform centralized

solution methods. In the methods we compare, computational efficiency is sacrificed for agent privacy,



91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

autonomy, and flexibility.

This paper is organized as follows: In Section 2, we illustrate our data-driven methodology along with
conventional ADMM. We also explain our choice of DFO algorithms (CUATRO, Py-BOBYQA, DIRECT-
L and GPyOpt) for our data-driven coordination problems. In Section 3, we then introduce a motivating
mathematical test function and three case studiesIn Section 4, we then present and discuss the convergence
of all algorithms.We also investigate how algorithm convergence changes with the number of complicating

variables, the number of coordinating agents, and the topology of the subproblem solution space.

2. Methodology

2.1. Problem statement

We are interested in solving the equivalent of the following centralized, integrated coordination problem:

N
min 2; fi(%ip,2)
P

1
st.  gi(Xip,2) <0, i=1...N

where x € X C R"™ refers to the decision variable vector within feasibility set X. As such, x includes
not only the ‘local’, private decision variables x;, € X;, C R"i of all N agents, but also the ‘global’,
shared variables z within the feasibility set Z C R™*. As such, the complete decision vector comprises the
following elements: x = [X1,p,...,XnN,p,2]. The optimization is also subject to N local agent constraints
gi : R™i X R"* — R"9:,

This generic problem formulation also implicitly allows for the inclusion of equality constraints in Eq.
(1) through a reduction in the degrees of freedom of the decision variables, or through an equivalent
reformulation into two inequalities. Additionally, Eq. (1) also allows for the incorporation of global, or
shared, constraints and objectives. We would call any constraint ggioba; ‘shared’ if it only depends on the
shared variables z. Similarly, shared objective terms might either manifest as a separate term fgiopa: in a

single agent objective, or be incorporated into the objectives of any M < N agents as L"%l(z)

2.2. Problem reformulation

Problem (1) can be reformulated into:
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N
Wp L, 2 i) )
s.t. gi(Xip,2) <0

After fixing z, the problem becomes block separable, which makes the problem amenable to decom-
position and distributed optimization. This becomes evident when rewriting Eq. (2) as its equivalent
constrained (bi-level) optimization problem in (3). The coordination step involves an update in the shared
variables z. At each iteration, the subproblems are solved in private to find the optimal objective F;(z) and
set of private variables xj , corresponding to a set of shared variables z. Agents can maintain autonomy
and flexibility by deciding on their own objective and constraint functions which they do not need to share
with other agents. The only information that agents share with a third-party coordinator is the optimal
set of private variables and local copy of shared variables x; , and z; (2.3) or the optimal objective f*(-)
(2.4) corresponding to a suggested set of shared variables z. While for simplicity’s sake we assume that
the subproblems are solved to global optimality, we do not assume that the lower-level problems are solved
by exploiting known expressions - The subproblem optimization could involve black-box queries such as

proprietary simulations.

min F(z)

zEZ

st.  F(z)= Z Fi(z)
Z. 3)
Fi(z)= min  fi(Xip,2)

Xi,p€X;

s.t. gi(Xip,z) <0

2.8. ADMM by consensus

The conventional method that our proposed approach is benchmarked against is ADMM in its consensus
form as found in (D.4) and presented in Algorithm 1. After initialization (step 1), ADMM iterates over
steps 2-7 until the evaluation budget is exhausted: This involves the solution of subproblems in private
and parallel (steps 3-5) to get the local copy of shared variables z;, and an update in the shared variables
z and scaled dual variables u; based on z; (step 6).

In step 4, each agent optimizes their copy of shared/complicating variables z; that minimizes their

private objective function while penalizing any deviation from the suggested value of the complicating
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variables z*:

AT e RGE) —ammin fiopn) +Om -2 tulll st mpm) <0 ()
X, pr%i
where || - ||2 refers to the Frobenius norm, and u; to the scaled dual variables of agent i. £|z; —z" +uj||3 is

known as the proximal or penalty term and is useful for stabilizing convergence in the shared variables z. It
also makes the formulation robust against local constraints: when there is no feasible set of x; ;, that satisfy
all constraints for a given z*, the solution converges to the nearest feasible z; incurring a penalization in

the objective. After all subproblems are solved, the set of suggested complicating variables is then updated

k+

to z"*1 in the coordination step (step 6) by averaging the set of optimal complicating variables resulting

1

from the agent subproblems z¥. While the update in the shared variables z**! aims to ensure asymptotic

primal feasibility, the update in the dual variables uf“ aims to ensure asymptotic dual feasibility. Each

agent’s dual variables are updated to uf“ based on the difference between u¥ and the local copy of shared

k+1

variables z; ", and could be interpreted as an integral error term often encountered in control.

Algorithm 1: Alternating Direction Method of Multipliers (ADMM) by consensus

Input: Agent objectives f; and constraints g; x,k =1...mn4,,4=1... N, Initial shared variable

guess z°, Penalty parameter p, Maximum number of function evaluations N f,maz
1 Initialisation: Initial dual variables u? = [0,...,0]
2 for j=0...Nfmex—1do

3 for agent i =1...N in parallel do

4 xf;fl, zf“ + Fi(z"), by solving lower-level problem (4)
5 end
k1 1Nkt k+1 ko k+1 k+1 .
6 R D T e e e AR 7 ;
7 end

A common drawback of ADMM is that it can take many iterations to converge to a high-accuracy
solution [14, 30, 77]. This begs the question if the coordination step in z could be improved to speed up

the convergence or find a better solution quality for a given evaluation budget.

2.4. Data-driven coordination
Problem (3) views the coordination formulation as a bilevel optimization instance. Derivative-free

optimization (DFO) has already been used to solve for the upper-level variables in multilevel problems, and
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as such presents a promising alternative to ADMM’s subgradient update step. The difference between the
data-driven coordination framework and ADMM is illustrated in Figure 1 and the data-driven coordination
framework is illustrated in more detail in Algorithm 2: After initialization (step 1), our framework iterates
over steps 2-11 until the evaluation budget is exhausted: In step 3, the upper level aims to find the set
of complicating variables that minimize the objective function subject to the optimal solution in parallel of
the agent-level subproblems in the private variables (steps 4-9).
Step 3 uses a DFO algorithm to update the shared variables z with the aim to minimize the ‘black-box’
upper-level objective F'(z) in Eq. (3).
rz%ig F(z) (5)

where the decision variables z are subject to box-bound constraints Z. Any box-constrained derivative-
free, black-box, data-driven, or ‘zeroth-order’ optimization algorithm can be used for the solution of the
upper level [48, 3, 74]. Since the ‘black-box evaluations’ are the result of optimizations, these evaluations
are considered expensive. The number of evaluations nnezt that are sampled at each iteration in step 3
depends on the exploitation-exploration trade-off as well as sampling strategy of the DFO method used.

F(z) is obtained in steps 4-9 in a similar manner to Eq. (3). Fj(z) is treated as the result of private
black-box simulations and F'(z) is equivalent to the sum of all optimal subproblem solutions in Eq. (4),
with the exception that the objective omits any dual variables:

N

F(z) = ZFZ(Z) where F;(z) = ;ninz.vfi(xi,p,z,-) + §||zl — 2”3 st gi(xip,2) <0 (6)
ip2

1

The scaled dual is omitted as it only enhances convergence within the rigorous stability scheme of
ADMM [53], and can even degrade convergence performance. The proximal error term again ensures

robustness against local constraints.
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Algorithm 2: Data-driven coordination framework
Input: Agent objectives f; and constraints g; x,k =1...mn4,,4=1... N, Box-bound constraints

Z € R™= %2 on z, Initial shared variable guess z°, Penalty parameter p, Maximum number

of function evaluations Ny max

[y

Initialisation: Function evaluation counter ny := 1, Zpest = 2°, Ypest = F(2°) where F(-) is

obtained from (6), initial data scts (7 := {z°},y := {Ybest }

2 while (N mae > ny) do

3 Obtain nyezt samples Zpert from DFO update step at zpes: using (5) ;

4 for z; =2z1...2neat € Zneat do

5 for agenti=1...N in parallel do

6 Obtain F;(z;) from (6)

7 end

8 Update datasets: Z < {Z,2;},y < {¥, Ynewt }, Where ynear = va Fi(z5)

9 end
10 Update best iterate: ny <— nyf + Npewr, Yoest < MiN. Y, Zpest < argmin. y; ;

j=l..ny j=1l..ng

11 end

When the subproblems are solved to global optimality, the whole optimization problem can be solved
(heuristically or rigorously) to global optimality depending on the function evaluation budget and the con-
vergence certificate of the DFO solver. Since convergence is limited by the number of expensive subproblem
calls, we do not include overly exploratory methods, such as particle swarm methods. In the next section,
we explore any analogies to ‘data-driven” ADMM and ALADIN when quadratic surrogates (CUATRO) are
used for the DFO step. Additionally, we introduce the other DFO algorithms used, whose choice is informed
by van de Berg et al. [T4]: Py-BOBYQA as the trust region model-based method, DIRECT-L as the direct
method, and GPyOpt for Bayesian Optimization. Figure 2 shows our selection of data-driven as well as

distributed optimization algorithms, and their mutual relations.

2.4.1. Data-driven distributed optimization
While Formulation (6) is applicable for both direct and model-based DFO solvers, model-based DFO
methods, can address Problem (5) by introducing surrogates F(z) in two different ways: One option would

be to fit a single surrogate over the sum of the subproblem evaluations.
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N
min F(z) where F(z)= ; Fi(z) (7
A second alternative would be to allow for separate surrogates to be fitted for each subproblem before

the sum of surrogates is optimized in the upper level.

min ZE(Z) where  Fi(z) ~ Fi(z) (8)

zCZ

Similar to van de Berg et al. [73], we use convex quadratic surrogates (F'(z) = zTAz +bTz +¢, A=
0 € R™=%"= b € R™=*! ¢ € R) within the CUATRO framework. In this case, the approach used in Eq. (7)
is similar to [49], and could be loosely referred to as ‘Data~-driven ADMM’. The approach in (8) could then
be viewed as ‘Data-driven ALADIN’, with a crucial difference: ALADIN’s quadratic surrogate coefficients
are given by the gradient and Hessian (obtained via automatic differentiation) of a second-order Taylor
expansion around the local subproblem solutions, while in our data-driven counterpart, the surrogates are

obtained via quadratic regression based on the subproblem evaluations.

2.4.2. CUATRO

We modified CUATRO [74] - a quadratic trust-region surrogate-based DFO algorithm - to be used
within the ‘data-driven ADMM’ (ADMM_CUATRO) and ‘data-driven ALADIN’ (ALADIN_CUATRO)
framework. CUATRO is chosen as our quadratic surrogate-based DFO algorithm because it leverages 1)

semidefinite programming, 2) a trust region framework, and 3) explicit constraint handling. As such, the

CUATRO framework can be used flexibly.

Explicit constraint handling. When CUATRO is used with explicit constraint handling, the local copies of
the shared variables z; in the objective evaluation and constraints from (6) are replaced by the exact shared

variables z .

Ii(z) = min. fi(xip,2) st gi(Xip,2) <0 (9)

Xi,p
where F;(z) is a tuple consisting of the objective and binary feasibility evaluation: F; : R™* — Rx {0, 1}.
1 denotes if the evaluation for z is feasible. This makes the subproblem less robust to local constraints,
but by returning solver status as feasibility evaluations on top of objective evaluations, we can map the

feasibility space in CUATRO by quadratic discrimination and hence concentrate the search on the expected

10
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feasible space. ADMM_CUATRO and ALADIN_CUATRO are used with explicit constraint handling if a
feasible starting point can be found.

While we benchmark data-driven ADMM and ALADIN against conventional ADMM, we also bench-
mark them against other DFO algorithms for the upper-level coordination instead of CUATRO. Py-

BOBYQA and GPyOpt are only used within the single-surrogate data-driven framework (7).

2.4.3. Py-BOBYQA

On top of CUATRO, we include another trust-region based method. Trust-region frameworks focus on
exploitation as opposed to the more explorative Bayesian Optimization framework. van de Berg et al. [74]
show that Py-BOBYQA [16, 17] can be competitive with state-of-the-art Bayesian Optimization, especially
in higher-dimensional deterministic case studies. Py-BOBYQA is a Python implementation of Powell’s
BOBYQA. It iteratively constructs a linear-quadratic regression-interpolation model for the objective, and
determines the next step by minimizing said model within a trust-region framework. The user can manip-
ulate how many evaluations are used for each surrogate, determining if the surrogates used resemble more
linear or quadratic surrogates. We use Py-BOBYQA with its standard options but enable the multiple

restarts heuristic to avoid getting stuck in local minima.

2.4.4. GPyOpt

Apart from exploitative, trust-region model-based DFO solvers, we also include a Bayesian optimization
(BO) implementation. BO is generally regarded as the go-to framework for black-box optimization within
chemical engineering [66, 24, 55, 18, 57, 51] due to its data efficiency and ability to navigate the exploration-
exploitation trade-off. As such, BO manages to make significant progress in few evaluations. However, it is
known to scale poorly with the number of dimensions and evaluation budget [74]. Informed by Cartis et al.
[17], we are using GPyOpt as our implementation as we prioritize convergence within the low-accuracy
regime given by our tight budget. GPyOpt [5] is a Python open-source library of BO and builds on GPy,
a Python framework for Gaussian process modelling. We use GPyOpt with its default hyperparameters.
The interested reader is referred to Garnett [29] for more information on Gaussian Processes and Bayesian

Optimization.

11
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2.4.5. DIRECT-L

Finally, we also include a ‘direct’ (model-free) DFO method. Informed by van de Berg et al. [74], we
choose DIRECT-L as a competitive direct solver which displays consistency in convergence and a good
exploitation-exploration trade-off. This work’s randomized DIRECT-L implementation is taken from the
NLopt nonlinear optimization package library [41]. This implementation is based on the 1993 DIviding
RECTangles algorithm for global optimization, originally written in FORTRAN [42]. DIRECT is a Lips-
chitzian, deterministic search algorithm, based on systematic partitioning of the search space into smaller
hyperrectangles. Gablonsky and Kelley [27] then made the algorithm biased towards local search for prob-
lems that only have a few local minima. Johnson’s NLopt’s implementation uses a randomized version of
the locally-biased DIRECT, which involves randomness in deciding on the dimension to partition along

next when function evaluations are close.

2.5. Algorithms and software implementation

We use Pyomo [35, 15] as Python-based optimization software with the numerical solvers Tpopt [75]
or Gurobi [34] to optimize the continuous or mixed-integer lower-level subproblems given by (4, 6, or 9).
Information from these problem instances are then extracted to be used in the upper-level distributed
optimization or DFO. We use readily available Python packages for GPyOpt, Py-BOBYQA, and DIRECT-
L, and an in-house Python implementation of ADMM and CUATRO. The generalized framework for our
proposed framework and its comparison to ADMM is found in Figure 1, while Figure 2 illustrates how the
DFO methods fit into our framework. The code for the algorithms and benchmarking is available under

https://github.com/OptiMaL-PSE-Lab/Data-driven-coordination.

2.6. Game-theoretical and other considerations

Coordination problems are interdisciplinary in nature, and are rooted in a rich body of literature within
the field of game theory [26, 50]. While we are less interested in the game-theoretical underpinnings of
these problems, we need to state some assumptions that justify our proposed method and investigated
case studies. First, ADMM and our proposed ‘data-driven coordination’ techniques involve an upper-level,
centralized ‘coordination’ step. This presumes the existence of a coordinator agent or software that is acting
in good faith, which should be a reasonable assumption in EWO. We are also assuming that all agents are
honest-but-curious, i.e. that no agent is trying to trick the coordinator or launch any adversarial ‘attacks’,

which is the scope of a whole subfield of literature [4] .

12
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Finally, we want to acknowledge that coordination within business settings is subject to many different
kinds of other considerations: While we investigate algorithms that share as little information as possible,
the coordinator-agent and indirectly agent-agent exchange requires an involved legal framework and software
infrastrucutre [43]. While ADMM and our proposed data-driven coordination algorithms in principle allow
for privacy-preservation, this would in practice require a thorough investigation into differential privacy
and cryptography schemes. The interested reader is referred to Rodriguez-Barroso et al. [60] and [81] for a

thorough discussion.

3. Case studies

Data-driven coordination is expected to shine in applications that are low-dimensional and nonconvex.

As such, we start with a motivating example before presenting three EWO-specific examples.

3.1. Motivating example
We first consider the following synthetic toy problem:

min . (1’1 — 7)2 + (1’11’3 — 3)2 + (1’2 + 2)+(1’21'3 — 2)2

©1,@2,%3

s.t. r1 >0, x1+x3=>5 (10)
— 10 < z1,22,23 < 10

We can see that after fixing xs, the problem becomes trivially separable into 2 subproblems. This means

that this problem can be reformulated into a one-dimensional DFO problem. As such, we introduce z to

take the place of z3, and introduce local copies of z, namely z! and z!!. Then, we penalize the deviation

between z and its local copy using a proximal term in the objective:

1) Fi(z)= min, (21-7)+ (@2 —3)" + g(z’ —2)?
X1,z

st. 21>0, zi+2'=5 —10<uz,2' <10
(11)
2) Fa(2)= min. (22 +2)"+ (w223" —3)° + g(z” — 2)?
X2,z

s.t. — 10 < zo, P <10
Py-BOBYQA, DIRECT-L, GPyOpt aim to find z that optimizes Fi(z) + Fz2(z). ADMM uses the same

subproblems with the exception that the proximal term includes the addition of u’ and u'” following (4).
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For a trivial problem like this, we can find a feasible starting point in the upper-level variables for Problem
(10). We use z = 4.5 as starting point, for which we can find 21 and z2 in the subproblems that satisfy
all of the constraints. As such, we use ADMM_CUATRO and ALADIN_CUATRO in its constrained form,
meaning that we omit z; and 2’7 as decision variables, omit the proximal term in the subproblem objective,
replace z' and 2! with z in the objective and constraints, and return the solver status as a binary feasibility

evaluation on top of the objective as described in (9):

1) Fi(z)= min. (#1 —7)° + (x12 — 3)°

st. 120, z+2=5, —-10<z1,2<10
(12)
2) Fu(z) = min.(z2 +2)° + (z22 — 3)°
x2
s.t. —10 < 22,2 < 10
Figure 3, which plots the upper-level objective evaluation of the bilevel formulation (3) as a function

of the shared variable z, shows an inflection point around z = 3.75 which can hinder the convergence of

ADMM and hence call for our proposed methods.

3.2. Collaborative model training

3.2.1. Federated Learning

The first case study is motivated by Federated Learning (FL) [79]. FL is a subfield within Machine
Learning (ML), popularized by Google, where multiple clients collaborate under the supervision of a cen-
tralized coordinator to train a model while respecting privacy considerations. As such, the aim could be to
train a text prediction ML model on decentralized edge devices’ (i.e. phones) data while preserving user
privacy. For deep neural networks, this usually involves an iteration over the following steps as described
in the FedAVG and FedSGD [52] algorithms: The model is broadcast to a selection of training agents. The
agents perform a model parameter update on local data based on a stochastic gradient descent step obtained
by backpropagation. These model updates are then averaged among all participating agents, potentially
preceded by an encryption or differential privacy step. The interested reader is referred to Kairouz et al.

[43] for an overview of typical FL challenges.
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3.2.2. Cross-silo ‘learning’

We are more interested in a ‘cross-silo’ [43] rather than ‘cross-device’ setting, where the number of
participating agents is fewer but the primary bottleneck resides in the model update computation, rather
than in communication. Additionally, first-order methods such as stochastic gradient descent may not
always be applicable if models cannot be (cheaply) differentiated for gradient information (i.e. if the model
to be trained is constrained, dynamic, ...). As such, we investigate a generalized coordination scheme for
collaborative model training using distributed optimization or data-driven coordination. Similar to ADMM,
the conventional FL scheme also involves an averaging step of the model parameters as ‘shared variables’.
But as opposed to FedAVG [52], the subproblem local variable update cannot be obtained under closed

form. Instead, we fall back on the more general optimization formulation used in (4).

3.2.3. Case study
Our considered case study is based on [76, 78] and addresses collaborative linear regression with a
nonconvex truncated loss term augmented by a l-norm regularization term. The centralized problem is

trivially separable such that:

M;
(1 n (yi,; — 21%i5)°

) = mjn. i > s e e (1)

The truncated loss term is used to make the regression more robust against outliers, while the regularization
term penalizes non-sparsity in the regression coefficients. In the linear regression, x;; € R% denotes the
4" sample’s predictors of the i** agent, and are normally distributed. z denotes the regression coefficients.
yi,; € R denotes the j'" observed data sample of the i'" agent, and is synthesized according to y; =
z"Tx;,; + vi,; where v; ; is random Gaussian noise with standard deviation spanning a tenth of the number
of dimensions. z* denotes the ground truth model coeflicients, sampled uniformly from [—1,1]¢, where d
denotes the dimensionality of the problem, namely the number of model coefficients. We use 3,000 data
samples in total, such that each of the N agents has M; = 3,000/N data samples. ¢ and &, which control

the level of truncation and regularization are set to 3 and 0.01 respectively.

3.2.4. FExperiments
The subproblems do not contain any local constraints. The objectives in (13) are again tailored towards

the implementation of ADMM according to (4). CUATRO is used in its standard, non-constrained form
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because the problem itself is not constrained. Starting from an initial solution of z = [0, ..., 0]7, we investigate
the following configurations of the case studies: We explore how the comparison of the different algorithms
changes with increasing dimensionality (d = 2,10,50) at a fixed number of agents (N = 2). The second
set of experiments explores what happens when the number of agents is increased (N = 2,4, 8) when the

dimensionality of the prediction coefficients is fixed (d = 6).

3.3. Fuacility allocation

8.3.1. Value chains

A key part of EWO is the design and operation of supply chains [65]. In an idealized setting, all
stakeholders within a given value chain are willing to collaborate and share model information with a
centralized coordinator. In practice however, antitrust and game-theoretical considerations might prevent
stakeholders from fully collaborating. There is ample literature about ‘Stackelberg Leader-Follower games’
[82], where supply chain agents’ take the first step’ in deciding on the optimal location of their plants
subject to other players reacting optimally with respect to their private objective. Yet, there is much value
to be captured in moving away from these ‘Nash equilibria’, and approaching a coordinated optimum along
the ‘Pareto front’. To this end, a coordinator can optimize a (fairness-guided) game-theoretical operator
that scalarizes and trades off the conflicting criteria of competing stakeholders [19, 20, 83, 2, 46].

This is especially relevant for the design of emerging supply chains with distinct characteristics such as
biomass [61, 28] or (bio)pharmaceutical value chains [64, 63]. These ‘social optima’ are often obtained as
the result of centralized optimization formulations, which can be decomposed for numerical tractability, or

in our case to fit organizational considerations.

3.3.2. Case study

We consider a continuous facility location problem in two-dimensional continuous space, which belongs
to the general class of Capacitated Multi-facility Weber Problems. The objective is to find the location,
production, and connecting flows of all facilities that minimize a total cost. These ‘shared’ variables are
few relative to the number of private variables and parameters, the latter including local cost parameters,
technical upper and lower bounds, binary variables, and distances to/from facilities to name but a few.
We use the same formulation as Lara et al. [47] with some key differences. In particular, we assume the
presence of two suppliers and markets each. We fix the number of facilities to be built to either one or two,

which still gives rise to a Generalized Disjunctive Problem (GDP). We also define the distances between
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agents and facilities using the 1-norm, rather than the 2-norm for computational efficiency. The GDP is
finally reformulated into an MINLP using big-M constraints, implemented in Pyomo [35, 15], and solved

using Gurobi [34]. The entire formulation can be found in Appendix E.

3.3.3. Decomposition

We are considering two different decompositions, motivated by two separate business scenarios. In the
first scenario, the 2 types of nodes, suppliers and markets, each consisting of two nodes, are part of the
same legal entity and are able to share model information. For each problem, we need to find the following
shared variables: The two-dimensional location of the facilities (2K variables) and their production (K
variables). For our case, where the number of processing facilities is set to one or two (K = 1,2), the
problem contains either three or six shared variables and can be decomposed into two subproblems. The
exact decomposition can be found in Appendix E

In our second scenario, we consider all of the four nodes (supplier and customer) to be their own
separate legal entity with privacy considerations. As such, we need to decompose the problem into four.
Unfortunately, the presence of complicating constraints - linking the total amount transported to and from
a facility - prevent each agent from independently deciding on the amount that is transported between
their node and the facilities. As such, the transport variables f;, and fi,; become part of the set of
shared variables. This would in principle add another 4K shared variables. However, these complicating
constraints on the transport variables, only depending on the shared variables, can be used to reduce the
number of degrees of freedom in the shared variables, such that these problems involve five or ten shared
variables when one or two facilities are built respectively. The exact decompositions can again be found in

Appendix E.

3.4. Multi-objective coordination
3.4.1. Case study

We consider the same synthetic problem as van de Berg et al. [73] where two stakeholders want to
find the feedstock composition that optimizes a sum consisting of a cost and environmental impact term.
Since both stakeholders are secretive about the intricacies of their proprietary optimization and simulation
software, we can either use ADMM or data-driven coordination. In our considered case study, after fixing
the feedstock composition variables z, the problem becomes trivially decomposable. Agent A optimizes an

economic blending problem, while Agent B optimizes the output of an environmental input simulation.
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Fa(z) = min . Z(%IG + g(zf —2)%) (14a)

2Rz, ye{0,1}7=

Nz
5.t 2 =1, la <2 Aga < Ugua (14b)
i
Nz
0<z' <y, > 4:<Nim (14c)
7
Nz
. Qg
Fp(z) = min . Z(eiziH + Z ki + B(zzu —2)%) (15a)
z1I RNz ; i, 2

Essentially, the economic blending problem minimizes the feedstock cost given component costs Cj, as
well as upper and lower quality constraints (Uqual, lguar) for quality matrix Agyqr. Each dummy composition
variable z] is also subject to its binary variable y;, which is active if the associated feedstock is non-zero.
The number of active composition variables is constrained by N;n:. As such, Agent A’s formulation is
a mixed-integer convex quadratic problem. Agent B’s objective term is composed of a sum of linear or
quadratic terms (each feedstock variable has its own power a; € {1,2}). Additionally, each feedstock ¢ has
its sparse set of bilinear interactions J;. The cost, quality, and environmental data are adopted from an

animal feedstock database [1].

3.4.2. Black-box simulations in the subproblems
If the proximal term in the environmental subproblem is strongly penalized with a very high p, its

optimal solution tends towards the solution corresponding to z'!

= z. In this case, since the environmental
subproblem does not involve any local constraints, the solution to this problem could theoretically be the
result of a black-box simulation rather than optimization problem.

In practice, our data-driven alternatives could readily handle problems where the lower-level is obtained
via simulation instead of an optimization, since progress only relies on objective evaluations. ADMM how-
ever relies on an update in the local copies of the shared variables. If the lower-level is obtained via

a simulation, then z'!

is never updated from the suggested z. So at each iteration, z only approaches
z! rather than a compromise between z' and z!!, essentially omitting any environmental considerations.

Hence, for ADMM, the subproblems need to be given by optimization. For convergence towards a collabo-

18



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

rative optimum, z'! needs to slightly shift away from the suggested z towards the ‘selfish’ solution of the
environmental problem optimized without economic considerations.

As such, in Section 4.5, we do not include the case where the subproblem is given by simulation, as this
would bias the comparison between ADMM and the data-driven framework in favour of the data-driven

coordination.

3.4.3. Experiments

We perform the mixed-integer, nonconvex coordination problem given by (14) and (15) on an increasing
number of shared, feedstock variables (n. = 5, 10, 15, 20, 25). Additionally, we perform the same experiment
on a nonlinear but convex version of the previous problem. This is obtained by relaxing all mixed-integer
constraints in (14c), and by omitting the bilinear terms in the environmental problem (15).

In the next section, we discuss the observed general convergence results, before discussing the particu-

larities of each case study separately.

4. Results and Discussion

In the next section, we present general observed trends. These findings are then backed up in Figures
4 to 9 that present the convergence plots for each case study. Then, we investigate the relative algorithm

performance based on characteristics discussed in the next section.

4.1. General observations

A high-level comparison between the performance of the data-driven coordination framework and

ADMM based on problem considerations is summarised in Table 1.
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Table 1: Performance comparison between ADMM and data-driven coordination based on mathematical problem

and desired solution characteristics

Consideration

ADMM

Data-driven coordination

Number of shared
variables z

Scales better with higher dimen-
sions

Shines in lower dimensions

Convergence speed

Quick initial progress but de-
pendent on penalty parameter p

Can use exploitative DFO solver to
better fine-tune optimum

Convergence guar-
antee

Guaranteed for convex prob-
lems.

Depends on DFO solver e.g.
DIRECT-L for global convergence
guarantee

Solution
topology in z

space

Can get stuck at nonconvexities

Can use explorative DFO solver
to escape local minima

Organizational and
software

Requires numerical optimization
for the subproblem solution

More flexibility in the subprob-
lem solution (black-box simula-

tion, heuristic evaluation, ...)

ADMM. ADMM manages to converge to at least a local minimizer if given enough function evaluations.
If the proposed starting point is far from the optimum, initial progress with ADMM is generally fast.
However, ADMM is found to be ill-suited for fine-tuning near-optimal solutions, which is in line with

literature [13, 14].

Data-driven coordination. The performance of all data-driven coordination alternatives improves with re-
spect to ADMM the more ill-behaved the solution space and the lower the dimensionality in the shared
variables is. For the EWO case studies, we investigate a lower- and higher-dimensional configuration re-
spectively, where for the lower-dimensional case, there is always at least one DFO variant that outperforms
ADMM. Understanding the way these algorithms approach the exploration-exploitation trade-off is key to
this observation. The coordination step in ADMM is purely exploitative. It cheaply extracts subgradient
information from the subproblems to approach the coordinated optimum as quickly as possible. The relative
performance of DFO algorithms against ADMM and explorative versus exploitative methods is determined

by the mathematical properties of the case study.

DFO variants. Highly explorative frameworks like Bayesian Optimization perform well in lower-dimensional
applications, where thorough exploration is more likely to be rewarded by faster convergence to the opti-
mum. The exploration of some DFO algorithms can also be useful in escaping local optima. DIRECT-L,
as a global optimization algorithm, usually makes slow progress as its function evaluations are used to

thoroughly explore all partitions of the solution space, unless the optimum happens to be in the center
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of one of the initial partitions. CUATRO, with its decreasing trust region framework, encourages exten-
sive initial exploration and later exploitation. ADMM_CUATRO usually displays superior performance
over ALADIN_CUATRO. However, the choice between these two variants is in practice more motivated by

organizational considerations concerning the sharing of either agent-level objective or surrogate information.

Py-BOBYQA. The previously discussed DFO algorithms tend to outperform ADMM only in lower-dimensional

applications. Py-BOBY QA is the only DFO algorithm that has the potential to be competitive with ADMM
in higher-dimensional applications given its similar focus on exploitation. As such, Py-BOBYQA tends to
converge to the same local optima as ADMM. While ADMM displays faster convergence to low-accuracy
regimes of the solution, Py-BOBYQA can find higher-accuracy solutions at the expense of more function

evaluations.

Significance of the penalty parameter p. In theory, the value of the penalty parameter p should not influence
the quality of the solutions found. In fact, the penalty term should approach zero at the optimum, since the
local copies of the shared variables z; should approach the suggested shared variables z. In practice however,
the choice of the penalty parameter p influences the accuracy and speed of convergence. If p is too weak,
more deviation between z; and z is allowed at the theoretical optimum, which can lead to more infeasibility
in the returned solution. Some DFO variants find a better total evaluation than would theoretically be
possible from the centralized solution, which explains why some algorithms do not display monotonically
decreasing performance in the convergence plots. However, increasing p slows down convergence, since at
each iteration z; is bound closer to z. As such, the conclusions on the relative convergence of the considered
methods are influenced by p. There is ample literature on how p influences the convergence of ADMM [30].
There are multiple heuristics that can speed up ADMM, such as iteratively increasing p to allow for more
exploration and faster convergence initially while encouraging fine-tuning in later iterations [77]. However,
p is kept constant across our algorithm benchmarking since our analysis is based on comparing function
evaluations. For the DFO methods, changing p would introduce ‘noise’ into the system, as the same sample
would give different evaluations when sampled in later iterations with a higher p.

In Sections 4.2 to 4.5, we present best function evaluation versus number of function evaluation and con-
vergence to the centralized solution optimum versus number of function evaluation plots for all algorithms
on each considered case study configuration. ADMM and Py-BOBYQA do not involve any stochasticity.

Since the underlying subproblems are also deterministic, we only need to include a single realization. While
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CUATRO randomly samples function evaluations within the trust region, we also only include a single re-
alization of both CUATRO versions at the default seed. For DIRECT-L and GPyOpt however, we involve
5 realizations each on all case studies. We plot their median evaluation with their min-max range shaded.
While the best function evaluation plots illustrate low-accuracy convergence (especially relevant for a tight

function evaluation budget), convergence plots are needed to compare high-accuracy convergence.

4.2. Motivating example

The motivating example encompasses all of the properties that call for data-driven coordination. The
problem uses a penalty parameter p of 1,000, is one-dimensional with a starting point at z = 4.5, and an
inflection point around z = 3.5, which might hinder convergence of purely exploitative methods. Figure 4c
shows the solution space convergence of CUATRO and ADMM. While ADMM fails to pass the inflection
point, all data~-driven methods apart from ADMM converge to a near-optimal solution. The best function
evaluation plot (Figure 4a) shows that the DFO variants converge to a low-accuracy solution in the following
order from first to last: DIRECT-L, GPyOpt (Bayesian Optimization), Py-BOBYQA, ALADIN_CUATRO
and ADMM_CUATRO. In this one-dimensional case study, initial exploration in DIRECT-L and GPyOpt
encourages escaping the saddle point as quickly as possible. Figure 4b then shows that both CUATRO
versions achieve a convergence of around 108 and 107!° for the ADMM and ALADIN versions respectively,
while the other DFO variants only achieve a median convergence up to 1072 or 107>, This is due to the

small trust region radius of the two CUATRO versions in later iterations favouring fine-tuning.

4.3. Collaborative model training

In this section, we first discuss the effect that dimensionality has on a nonconvex truncated linear
regression problem when the number of agents is fixed to two. Then, we discuss the effect that an increase
in the number of participating agents has when the dimensionality is fixed to six. All configurations use a

penalty parameter p of 10.

4.8.1. Effect of the number of shared variables
Much of the algorithm convergence discussion in this section follows that of the motivating example
because both problems present a nonconvex objective. The DFO variants perform particularly well on the

lower two-dimensional case study (Figure 5a), taking up to 20 evaluations to converge compared to the

100 of ADMM. The convergence plot (Figure 5d) shows that Py-BOBYQA and both CUATRO variants
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converge to a high degree of accuracy in 20 evaluations, which takes DIRECT-L around 40 evaluations to
reach. ADMM and GPyOpt only reach a (median) convergence of 107° and 10" respectively compared to
107'° of the other three methods. Like in the motivating example, GPyOpt displays significant variance in
its final convergence.

Figure 5b shows that when the dimensionality is increased to ten, the CUATRO variants lose their
competitiveness with ADMM. Figure 5e illustrates how DIRECT-L displays a similar median convergence
speed to ADMM. Py-BOBQA and GPyOpt make substantial progress in the first 20 evaluations. The best
final convergence realization of GPyOpt matches that of ADMM (1077), while Py-BOBYQA is the best at
fine-tuning solution accuracy (107'9).

In the 50-dimensional case, we would expect ADMM to significantly outperform all DFO variants
given its competitive advantage as a subgradient method, which becomes increasingly important in higher
dimensions. However, in Figure 5c, we see that after around 100 evaluations, Py-BOBYQA is the only
variant to find the optimum. This makes sense given that the starting point of the case study z = [0, ..., 0]
is already quite close to the optimal solution. This gives exploitative methods (ADMM and Py-BOBYQA)
the upper hand. Finally, ADMM, despite making consistent progress, is slower at fine-tuning the optimum

than Py-BOBYQA.

4.3.2. Effect of the number of agents

Starting with a dimensionality of six and two coordinating agents, we observe a similar convergence
pattern in Figures 6a and 6d to the ten-dimensional case in the previous section (Figures 5b and 5e).
ADMM, Py-BOBYQA, ALADIN_CUATRO and GPyOpt display a similar relative performance, while
ADMM_CUATRO makes consistent progress and matches the convergence found for BO and Py-BOBYQA
in 35 and 55 evaluations respectively.

Overall, we observe that with an increasing number of coordinating agents, the optimality gap increases
between the final total function evaluation and the centralized optimum. There will always be small
numerical differences between z; and z, which are penalized in the proximal terms £||z; — z|[3. With
an increasing number of agents, the relative importance of these proximal terms is strengthened, which
becomes even more apparent when the optimal objective evaluation is close to the starting point as is the
case for these problems.

The relative performance of the DFO algorithms with respect to each other and ADMM does however

not seem to change with an increasing number of coordinating agents. ALADIN_CUATRO makes poor
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progress, DIRECT-L tracks the convergence of ADMM, while Py-BOBYQA and ADMM_CUATRO quickly
find the best function evaluations. GPyOpt again makes quick initial progress but displays a lot of variance
in best evaluation found. It is interesting to see that for this particular case, the convergence speeds of
Py-BOBYQA, ADMM_CUATRO, and GPyOpt tend to remain similar even with an increasing number of

agents.

4.4. Facility Location

In this section, we investigate the convergence and best function evaluation plots for the one- and two-
facility location problem where the decisions of the two suppliers and two customers are operated by a
single supplier and customer decision-maker each. We follow up this investigation with the case where all
two suppliers and two customers present their own separate decision-making agent. All configurations use

a penalty parameter p of 100,000.

4.4.1. 2 agents: supply and customer nodes belong to the same supply and demand decision-makers

Figure 7a shows that for the two-agent three-dimensional case, the exploitative methods ADMM and
Py-BOBYQA display a similar convergence speed and are the only methods to converge quickly to the opti-
mum. The two CUATRO versions converge to the same similar suboptimal point. The median DIRECT-L
run manages to find the same optimum as ADMM and Py-BOBYQA after around 90 evaluations. GPy-
Opt only makes little progress. Figure 7b then shows that in the six-dimensional case, Py-BOBYQA and
ADMM again outperform both CUATRO variants and Bayesian Optimization. As expected, the subgradi-
ent information of ADMM leads to faster convergence compared to Py-BOBYQA when the dimensionality
is increased. Interestingly, DIRECT-L outperforms both exploitative methods, suggesting that the opti-
mum is close to the center of one of the initial partitions used by DIRECT-L, which depends mostly on
the user-given box bounds on the shared variables. The convergence versus number of function evaluations
plots are omitted since they do not provide any additional information, as ADMM, Py-BOBYQA, and

DIRECT-L converge to around the same accuracy.

4.4.2. 4 agents: each supplier and customer node as a separate decision-maker
Figures 8a and 8b show a significantly different relative algorithm performance for the four-agent case
to that seen in the two-agent case of the last section. This is partially caused by the inclusion of additional

shared variables in the form of facility to agent node transport links that need to be coordinated between all
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supplier and customer nodes. Additionally, these shared variables introduce ill-behaviour in the new solution
space, which could be due to the way the shared variables are handled. In the multi-agent coordination case
study, the number of shared variables is kept the same, but any infeasibilities in the shared variables are
implicitly penalized through the proximal term. In this case study, complicating constraints are handled
by reducing the degrees of freedom in the shared variables using material balances on the facility nodes.
The choice on how best to handle complicating constraints is case study-specific. As a rule of thumb
however, reducing the degrees of freedom using constraints favours convergence for data-driven methods, as
ADMM struggles to deal with ill-behaved solution spaces. However, the DFO variants are not guaranteed
to outperform ADMM even in lower dimensions when constraints are handled this way.

In fact, for the lower-dimensional case in Figure 8a, only Py-BOBYQA manages to navigate the solution
space better than ADMM and is the only method to converge to the optimum. GPyOpt finds a similar
optimum to ADMM, while the other DFO variants display worse performance to ADMM. Figure 8b shows
a peculiar convergence pattern for the ten-dimensional case, apart for ALADIN_.CUATRO which again
makes no progress whatsoever. Py-BOBYQA displays similar convergence patterns to ADMM, and both
find a slightly better optimum than ADMM_CUATRO. GPyOpt’s final evaluations compete with ADMM.
DIRECT-L is the only method to converge to the optimum in its median evaluation but displays significant
variability in its convergence. Like in the higher-dimensional two-agent case, the solution space topology
and input-bounds give rise to partitions whose center is close to the optimum. Convergence versus number

of function evaluation plots are omitted again as they provide no additional information.

4.5. Multi-agent coordination

Figure 9 gives the best function evaluation and convergence plots for the 10- and 25-dimensional multi-
agent coordination problems in their convex and nonconvex variant. All configurations use a penalty
parameter p of 5,000.

Figures 9a and 9c¢ show that all methods manage to find at least a low-accuracy optimum in the convex
ten-dimensional variant. However, ADMM converges considerably faster than the fastest DFO variant
(20 and 200 evaluations for ADMM and Py-BOBYQA to achieve the same accuracy respectively). It
makes sense that both ADMM and Py-BOBYQA outperform more explorative methods for the considered
configuration given their purely exploitative behaviour. This case also highlights the respective strengths
of ADMM and Py-BOBYQA. ADMM is in general very fast to converge to a neighbourhood of a local

optimizer. However, ADMM struggles to fine-tune the optimum. When the evaluation budget allows for it,
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Py-BOBYQA takes more evaluations to find this neighbourhood, but is more efficient at finding a better
solution quality. Figure 9¢ shows that ADMM’s final convergence is orders of magnitude worse than that
of Py-BOBYQA (10% and 10° respectively). The discussion of the 25-dimensional convex configuration
follows that of the 10-dimensional convex one. The relative performance of the algorithms is very similar,
with the exception that ADMM’s final convergence still displays a considerable optimality gap (Figure 9b).
Py-BOBYQA is the only method to converge to a high-accuracy solution given its exploitative nature and
its ability for fine-tuning.

The ten-dimensional nonconvex configuration presents conditions that favour data-driven approaches.
The relative performance of the algorithms in Figure 9e is similar to that of its convex counterpart in
Figure 9a with two notable exceptions: ADMM and Py-BOBYQA - both purely exploitative methods -
converge to a local minimizer in 100 evaluations. ADMM is slightly quicker again, but Py-BOBYQA finds
a slightly better solution. ADMM_CUATRO and the median run of DIRECT-L, due to their extensive
initial exploration manage to escape a local minimizer and converge to a low-accuracy neighbourhood of
the global optimum. The discussion of the higher-dimensional nonconvex case again follows that of its
convex counterpart. ADMM and Py-BOBYQA are the only methods again to converge to at least a near-
optimal solution. Py-BOBYQA finds a better solution quality, but takes significantly longer than ADMM.

This emphasizes the importance of (sub)gradient information with increasing dimensionality.

5. Conclusion

Our proposed ‘data-driven’ framework is shown to be able to find the same solution as the equivalent
centralized formulation for optimization-based coordination problems. Our approach differs from ADMM
in that it uses derivative-free optimization (DFO) to find the shared variables that optimize lower-level
subproblem evaluations. We consider CUATRO, Py-BOBYQA, DIRECT-L, and GPyOpt as DIFO solvers
and benchmark them against ADMM as a distributed optimization solver on a motivating example and
three case studies with expensive subproblems. We examine the effect that dimensionality and solution
topology in the shared variables have on the relative algorithm performance. We also discuss organiza-
tional considerations and how they inform the choice of coordinating algorithm: autonomy and flexibility,
privacy, software, black-box subproblems, and organizational structure. We show that our approach out-
performs ADMM when the number of shared variables between agents is few, and when the shared variable

to shared objective evaluations call for exploration rather than exploitation. As opposed to distributed
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optimization, our method does not need the capacity for numerical optimization at the agent-level, since
the subproblems can also be obtained as the result of a black-box objective simulation. We argue that our
approach is especially relevant when the decomposition is limited by organizational rather than numerical
considerations.

Our work is the first to benchmark several ‘data-driven’ algorithms against distributed optimization
on multiple case studies relevant to enterprise-wide optimization. While the relative performance of DFO
algorithms is in line with current literature, there are several avenues for future work: A practical imple-
mentation of a ‘data-driven’ approach would require a more thorough investigation into privacy (differential
privacy, cryptography, ...) and into how much agent-level data could be inferred from optimal subproblem
evaluations or variables. ADMM loses its convergence guarantees when the subproblems are ill-behaved.
As such, our data-driven optimization approach might have a competitive advantage if the subproblem
evaluations are not solved to global optimality, if evaluations are noisy and potentially inconsistent, or if
they might change over time. This would be the case when objective evaluations are obtained by querying
human decision-makers as opposed to optimization or simulation software. This would enable coordination
between business units where some decision-makers still use expert-guided heuristics rather than numerical

optimization.
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Figure 1: We can solve an equivalent centralized formulation either by ADMM or data-driven coordination ({}). In
either case, a coordinator (0) iteratively sends an updated proposed set of shared variables z* (]) to all coordinating
agents . The coordinating agents (A) then optimize their private objective according to (*) or (**) for ADMM and
data-driven coordination respectively. The subproblems differ in whether they include the scaled dual variables uk"'1
- updated in the preceding step for ADMM - in their construction of the proximal term. Additionally, in ADMM, the
subproblems return the optimal local copies of the proposed shared variables zf“, whereas our framework returns

k+1

the optimal subproblem objective evaluations y; (1). In both frameworks, the penalty parameter p determines

the extent to which the deviation between the suggested z* and optimal set of private variables z; k1 ig penalized.

In the last step of the iteration, ADMM updates the proposed set of shared variables z*t1 by averaging its local
copies zf‘”, while our data-driven framework updates z*t1 using derivative-free optimization (DFO) and shared
variable z*T1 to optimal evaluation yf“ input-output data. In this case, we only show 2 coordinating agents, but
this scheme can be generalized to any number of coordinating agents.
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Figure 2: Classification of considered algorithms with associated problem formulations in parentheses: We can decide
to solve our equivalent centralised formulation either via distributed optimization, namely ADMM, or via our pro-
posed data-driven coordination framework. Within our framework, we can choose any derivative-free optimization
(DFO) algorithm. We choose DIRECT-L as a direct DFO algorithm. Among model-based DFO algorithms, we con-
sider Py-BOBYQA and CUATRO as quadratic trust region frameworks and GPyOpt as Bayesian Optimization. We
also distinguish between ADMM_CUATRO and ALADIN_CUATRO in the way quadratic surrogates are formulated.
Each CUATRO version also has the choice of explicit constraint satisfaction
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Figure 3: Upper-level objective of the motivating example as a function of the shared variable
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with shaded min-max range is given over 5 runs
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Figure 5: Effect of the number of shared variables on the truncated regression case study. For DIRECT-L and
GPyOpt, the median best evaluation with shaded min-max range is given over 5 runs
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Figure 6: Effect of the number of agents on the truncated regression case study. For DIRECT-L and GPyOpt, the
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Figure 7: Facility location convergence plots with two decision-makers. For DIRECT-L and GPyOpt, the median
best evaluation with shaded min-max range is given over 5 runs
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Figure 9: Multi-agent coordination convergence plots. For DIRECT-L and GPyOpt, the median best evaluation
with shaded min-max range is given over 5 runs
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