Andres Garcia ${ }^{1}$ and Andrés García ${ }^{2}$

${ }^{1}$ Affiliation not available
${ }^{2}$ Grupo de Investigacion en Multifísica Aplicada (GIMAP), Universidad Tecnológica Nacional-FRBB

July 1, 2022

On the asymptotic behaviour of difference equations: piecewise-linear analysis

Andrés García ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ Grupo de Investigacion en Multifísica Aplicada
(GIMAP)-Universidad Tecnológica Nacional-FRBB, 11 de Abril 461, Bahía Blanca, Buenos Aires, Argentina

June 30, 2022

Abstract

In this paper, general one-dimensional difference equations (DE) are studied. In fact, the asymptotic behaviour of such DE's will be studied via an algebraic closed-form condition plus a linear DE. Some examples are presented including the Collatz sequence, proving the existence of at most one invariant set surrounding the number 1: $\{1,2,4\}$. Some conclusions will be also depicted.

Keywords: Difference equations, asymptotic solutions, piecewise-linear

1 Introduction

In this short note, the asymptotic behaviour of the following general onedimensional difference equations (DE) will be studied:

$$
\begin{equation*}
x(k+1)=g(x(k)), \quad k \in \mathbb{N} \cup 0, \quad g: \Omega \subset \Re \rightarrow \Omega \subset \Re \tag{1}
\end{equation*}
$$

A sufficient condition for the asymptotic analysis of the given DE will be provided based on a closed-form formula plus a linear DE.

1.1 Asymptotic solutions of Difference Equations

The asymptotic behaviour of one-dimensional DE's given in (1) can be studied via the following main theorem:

[^0]Theorem 1.1 Given a one-dimensional DE (1), if the following condition is satisfied:

$$
\begin{array}{r}
\Omega_{1}=\left\{x: \frac{1}{a} \cdot \ln \left(\frac{g(x)+\frac{1}{a}}{x+\frac{1}{a}}\right)>0, a=1\right\}, \\
\Omega_{2}=\left\{x: \frac{1}{a} \cdot \ln \left(\frac{g(x)+\frac{1}{a}}{x+\frac{1}{a}}\right)>0, a=-1\right\} \\
\Omega_{1} \cup \Omega_{2}=\Omega
\end{array}
$$

Then, the asymptotic behaviour: $\lim _{k \rightarrow \infty} x(k)$ is captured by:

- Bounded trajectories:

$$
\begin{array}{rr}
x(k)<\infty \sim \text { Fixed point } & (k \rightarrow \infty) \\
& \text { or/and } \\
x(k)<\infty \sim \text { An invariant set containing } \pm 1 & (k \rightarrow \infty)
\end{array}
$$

- Unbounded trajectories:

$$
x(k) \rightarrow \infty \Leftrightarrow z(k+1)=b \cdot z(k), \quad z(k) \rightarrow \infty, \quad b=\lim _{x \rightarrow \infty} \frac{g(x)}{x}
$$

Proof 1.2 Let's consider a piecewise linear 2-D system as follows:

$$
\left\{\begin{array}{l}
\dot{x_{1}}=x_{2} \tag{2}\\
\dot{x_{2}}=a \cdot x_{2}+1, \quad a= \pm 1
\end{array}\right.
$$

Then, defining an impact curve or a curve where parameter a changes from $a=+1$ to $a=-1$ and vice-versa (piecewise linear changing rule): $x_{1}=\phi\left(x_{2}, k\right)$, with the initial condition:

$$
x_{1}(0)=\phi\left(x_{2}(0), 0\right)
$$

It is possible to write the consecutive impact's location of system's (2) over the curve $x_{1}=\phi\left(x_{2}, k\right)$ as time goes on:

$$
\left\{\begin{array}{l}
x_{1}(k+1)-\frac{x_{2}(k+1)}{a}=-\frac{1}{a} \cdot T_{k}+\left(x_{1}(k)-\frac{x_{2}(k)}{a}\right) \tag{3}\\
x_{2}(k+1)=e^{a \cdot T_{k}} \cdot x_{2}(k)+\left(e^{a \cdot T_{k}}-1\right) \cdot \frac{1}{a}
\end{array}\right.
$$

Where $\left\{x_{1}(k), x_{2}(k)\right\}$ denotes the points: $x_{1}\left(T_{k}\right)=\phi\left(x_{2}\left(T_{k}\right), k\right)$ with T_{k} the successive flying times from $x_{1}\left(T_{k-1}\right)=\phi\left(x_{2}\left(T_{k-1}\right), k-1\right)$ to the next $x_{1}\left(T_{k}\right)=$ $\phi\left(x_{2}\left(T_{k}, k\right)\right)$ and a alternating from $a=+1$ to $a=-1$.

Rewriting (3) as follows:

$$
\left\{\begin{array}{l}
T_{k}=-a \cdot\left(x_{1}(k+1)-x_{1}(k)\right)+\left(x_{2}(k+1)-x_{2}(k)\right) \\
x_{2}(k+1)=e^{a \cdot T_{k}} \cdot x_{2}(k)+\left(e^{a \cdot T_{k}}-1\right) \cdot \frac{1}{a}
\end{array}\right.
$$

Taking into account that $x_{1}(k+1)=\phi\left(x_{2}(k+1), k+1\right), x_{1}(k)=\phi\left(x_{2}(k), k\right)$:

$$
\left\{\begin{array}{l}
T_{k}=-a \cdot \underbrace{\left(\phi\left(x_{2}(k+1), k+1\right)-\phi\left(x_{2}(k), k\right)\right.}_{\Delta \phi}+\underbrace{\left(x_{2}(k+1)-x_{2}(k)\right)}_{\Delta x_{2}} \tag{4}\\
x_{2}(k+1)=e^{a \cdot T_{k}} \cdot x_{2}(k)+\left(e^{a \cdot T_{k}}-1\right) \cdot \frac{1}{a}
\end{array}\right.
$$

In other words:

$$
\begin{array}{r}
T_{k}=-a \cdot \Delta \phi+\Delta x_{2} \geq 0, \quad \forall x \in \Omega \subset \Re \\
\ln \left(\frac{x_{2}(k+1)+\frac{1}{a}}{x_{2}(k)+\frac{1}{a}}\right)=a \cdot T_{k} \tag{6}
\end{array}
$$

Where $\ln ($.$) is the natural logarithm function. Eliminating T_{k}$ from the equation:

$$
\Delta \phi=\frac{\Delta x_{2}}{a}-\ln \left(\frac{x_{2}(k+1)+\frac{1}{a}}{x_{2}(k)+\frac{1}{a}}\right)
$$

These DE can be made to exactly match the given: $x(k+1)=g(x(k))$ by replacing $x \rightarrow x_{2}$, if and only if, a solution to this DE exists for the function $\phi\left(x_{2}, k\right)$. Moreover, such a solution can be obtained in closed form to be:

$$
\phi\left(x_{2}, k\right)=\frac{x_{2}}{a}-\ln \left(x_{2}+\frac{1}{a}\right)+r(k)
$$

Where $r(k) \in \mathbb{C}$ is a (possible) complex function matching the given $D E$ $x(k+1)=g(x(k))$.

Once the existence solution is proved, continuous impacts over the curve $x_{1}=\phi\left(x_{2}, k\right)$ must be also ensured, so replacing into (6), the flying times T_{k} must be positive:

$$
\begin{equation*}
T_{k}=\frac{1}{a} \cdot \ln (\frac{\underbrace{x(k+1)}_{g(x)}+\frac{1}{a}}{x+\frac{1}{a}}) \geq 0, \quad \forall x \in \Omega \subset \Re \tag{7}
\end{equation*}
$$

This is not more than the sufficient condition to satisfy. On the other hand, the possible scenarios for the impact curve $x_{1}(k)=\phi\left(x_{2}(k)\right)$ as $k \rightarrow \infty$ are as follows:

- $x_{1}(k) \rightarrow \infty, \quad x_{2}(k)<\infty, \quad k \rightarrow \infty$
- $x_{1}(k) \rightarrow \infty, \quad x_{2}(k) \rightarrow \infty, \quad k \rightarrow \infty$
- $x_{1}(k)<\infty, \quad x_{2}(k) \rightarrow \infty, \quad k \rightarrow \infty$
- $x_{1}(k)<\infty, \quad x_{2}(k)<\infty, \quad k \rightarrow \infty$

The case $x_{1}(k) \rightarrow \infty, \quad x_{2}(k)<\infty, \quad k \rightarrow \infty$

$$
x_{1}(k)=\phi\left(x_{2}, k\right)=\frac{x_{2}}{a}-\ln \left(x_{2}+\frac{1}{a}\right)+r(k) \sim r(k) \quad(k \rightarrow \infty)
$$

That means:

$$
\Delta \phi\left(x_{2}\right) \sim 0 \quad(k \rightarrow \infty)
$$

Recalling (5):

$$
T_{k} \sim \Delta x_{2}
$$

On the other hand and from (2):

$$
\Delta x_{2}=\int_{0}^{T_{k}}\left(a \cdot x_{2}+1\right) \cdot d t=\rho\left(T_{k}\right)-\rho(0)
$$

Where $\rho(t)=\int_{0}^{t}\left(a \cdot x_{2}+1\right) \cdot d \sigma$. Finally:

$$
T_{k} \sim \Delta x_{2}=\rho\left(T_{k}\right)-\rho(0)
$$

That means:

$$
\rho(t) \sim t \Rightarrow \frac{d \rho(t)}{d t}=1 \sim a \cdot x_{2}+1
$$

In other words: $x_{2}(k) \sim 0 \quad(k \rightarrow \infty)$.
The case $x_{1}(k)<\infty, x_{2}(k)<\infty, \quad k \rightarrow \infty$:
On the other hand: $\dot{x_{1}}=x_{2}$, looking for invariant sets (x_{1} and x_{2} bounded), three possible scenarios come across:

- $x_{2}<-1$
- $x_{2} \in[-1,1]$
- $x_{2}>1$

The first and third cases are not possible for bounded orbits: $\dot{x_{1}}=x_{2}<0$ or $\dot{x_{1}}=x_{2}>0$ respectively, so: $x_{1} \rightarrow \infty$ (unbounded).

The second possibility above implies the dynamics $\dot{x_{2}}=a \cdot x_{2}+1$ increases $x_{2}(t)$ until reaching the border $x_{2}=+1$. In conclusion, fixed points $(+1)$ or invariant sets containing the points ± 1 are possible (under appropriate switching conditions).

The case $x_{2}(k) \rightarrow \infty, \quad k \rightarrow \infty$:
In this case, from (4):

$$
x_{2}(k+1)=e^{a \cdot T_{k}} \cdot x_{2}(k)+\frac{\left(e^{a \cdot T_{k}}-1\right)}{a} \Rightarrow \frac{x_{2}(k+1)}{x_{2}(k)}=e^{a \cdot T_{k}}+\frac{\left(e^{a \cdot T_{k}}-1\right)}{a \cdot x_{2}(k)}
$$

Then, two sub cases are in order:

$$
T_{k}<\infty \Rightarrow \frac{x_{2}(k+1)}{x_{2}(k)} \sim e^{a \cdot T_{k}}<\infty
$$

Taking into account $x_{2}(k+1)=g\left(x_{2}(k)\right): \frac{g\left(x_{2}(k)\right)}{x_{2}(k)} \sim e^{a \cdot T_{k}}<\infty$, if unbounded orbits do exists, these orbits are captured by:

$$
\begin{array}{r}
x_{2}(k+1) \sim b \cdot x_{2}(k) \quad\left(x_{2} \rightarrow \infty\right) \\
b=\lim _{x_{2} \rightarrow \infty} \frac{g\left(x_{2}\right)}{x_{2}}
\end{array}
$$

It turns out that in cases where this asymptotic DE posses no unbounded orbits, then the analysis return to previous cases.

The second possibility leads:

$$
\begin{array}{r}
T_{k} \rightarrow \infty \Rightarrow \frac{x_{2}(k+1)}{x_{2}(k)} \sim 0, \quad a=-1 \\
T_{k} \rightarrow \infty \Rightarrow \frac{x_{2}(k+1)}{x_{2}(k)} \sim e^{T_{k}} \cdot\left(1+\frac{1}{x_{2}(k)}\right), \quad\left(x_{2} \rightarrow \infty\right), \quad a=1
\end{array}
$$

Recalling (7), then:

$$
\frac{x_{2}(k+1)}{x_{2}(k)} \sim \frac{\left(\frac{x_{2}(k+1)+1}{x_{2}(k)+1}\right)^{\frac{1}{a=1}}}{x_{2}(k)} \quad\left(x_{2} \rightarrow \infty\right)
$$

Finally:

$$
\frac{x_{2}(k+1)}{x_{2}(k)} \sim \frac{x_{2}(k+1)}{x_{2}(k)^{2}} \Leftrightarrow x_{2}(k) \sim 1
$$

In other words: bounded trajectories or a contradiction to the unbounded hypothesis. This completes the proof.

2 Examples

2.1 An example from [1]

Considering the Example 6.1 in [1]:

$$
x(k+1)=x(k)^{2}, \quad x(k) \in \Re
$$

The sufficient condition in Theorem 1.1 reads as follows:

$$
\frac{1}{a} \cdot \ln \left(\frac{x^{2}+\frac{1}{a}}{x+\frac{1}{a}}\right)>0, \quad a= \pm 1 \quad \forall x \in \Omega
$$

In fact, for $a=+1$:

$$
\ln \left(\frac{x^{2}+1}{x+1}\right)>0 \Leftrightarrow \frac{x^{2}+1}{x+1}>1, \forall x>-1
$$

Notice that, for $x \leq-1$ nothing can be said with this theorem. Once this condition is satisfied, unbounded trajectories are concluded:

$$
x(k) \rightarrow \infty \Leftrightarrow z(k+1)=\infty \cdot z(k), \quad z(k) \rightarrow \infty, \quad \lim _{x \rightarrow \infty} \frac{x^{2}}{x}=\infty
$$

This result agrees with the conclusions in [1]

2.2 The Collatz sequence

The Collatz sequence can be recast as a DE as follows (see for instance [4] and [3]):

$$
\begin{aligned}
x(k+1) & =(3 \cdot x(k)+1) \cdot \phi(x(k))+\frac{x(k)}{2} \cdot(1-\phi(x(k))), \quad x \in \mathbb{N} \\
\text { where } \phi(x) & =\left\{\begin{array}{ll}
1, & x=\text { odd } \\
0, & x=\text { even }
\end{array} .\right. \text { Then, the sufficient condition in Theorem }
\end{aligned}
$$

1.1 leads:

$$
\frac{1}{a} \cdot \ln \left(\frac{(3 \cdot x+1) \cdot \phi(x)+\frac{x}{2} \cdot(1-\phi(x))+\frac{1}{a}}{x+\frac{1}{a}}\right)>0, \quad a= \pm 1 \quad \forall x \in \mathbb{N}
$$

That is:

$$
\begin{aligned}
& \ln \left(\frac{(3 \cdot x+1)+1)}{x+1}\right)>0, \quad a=+1 \Leftrightarrow \frac{3 \cdot x+2}{x+1}>1 \quad \forall x(\text { odd }) \in \mathbb{N} \\
& \quad-\ln \left(\frac{\frac{x}{2}-1}{x-1}\right)>0, \quad a=-1 \Leftrightarrow \frac{\frac{x}{2}-1}{x-1}<1 \quad \forall x(\text { even }) \geq 2 \in \mathbb{N}
\end{aligned}
$$

Once this condition is satisfied $\forall x \in \mathbb{N}$, the asymptotic behaviour can be examined:

Bounded trajectories:

Since no equilibrium points are possible in this DE:

$$
x(k)<\infty \sim \text { An invariant set containing } \pm 1 \quad(k \rightarrow \infty)
$$

The only invariant set for this DE is in fact: $\{1,4,2\}$

Unbounded trajectories:

In this case:

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{3 \cdot x+1}{x}=3 \\
\lim _{x \rightarrow \infty} \frac{\frac{x}{2}}{x}=\frac{1}{2}
\end{array}
$$

The asymptotic equivalent DE looks like: $z(k+1)=\left\{3, \frac{1}{2}\right\} \cdot z(k), \quad(k \rightarrow \infty)$. On the other hand, given $x=2 \cdot p+1, \quad p \in \mathbb{N}$ (odd number):

$$
x(k+1)=3 \cdot(2 \cdot p+1)+1=6 \cdot p+4=2 \cdot(3 \cdot p+2) \Leftrightarrow(\text { even })
$$

This conclusion means that, given an odd number $x(k)$, the next number $x(k+1)$ will be even, so the sequence $\left\{3, \frac{1}{2}\right\}$, is out of at least one number $\frac{1}{2}$ for each number 3 , so the only possible case asymptotically equivalent to infinity is the sequence: $\left\{3, \frac{1}{2}, 3, \frac{1}{2}, \ldots\right\}$ (otherwise, the product $3 \cdot \frac{1}{2} \cdot \frac{1}{2} \ldots<1$ and the equivalent DE tends to zero, see for instance [5], Theorem 6).

That is:

$$
x(k+1)=\frac{3 \cdot x(k)+1}{2}, \quad \forall x(0) \quad \text { Odd }
$$

This linear DE can be solved in closed-form as follows (see for instance [2], pp. 452):

$$
x(k)=\left(\frac{3}{2}\right)^{k} \cdot x(0)+\sum_{i=0}^{k-1}\left(\prod_{j=i}^{k-1}\right) \cdot \frac{1}{2}
$$

Equivalently:

$$
x(k)=\frac{3^{k} \cdot(x(0)+1)-2^{k}}{2^{k}}
$$

It is not difficult to prove that these sequence obtaining only odd numbers can not continue for ever. Moreover, let's denote the number iteration from $x(0)$ odd to reach an even number by L, then:

$$
x(L)=2^{s} \cdot w=\frac{3^{L} \cdot(x(0)+1)-2^{L}}{2^{L}}
$$

Where $2^{s} \cdot w$ is the primer decomposition of the even number $x(L)$ and w is an odd number. That is:

$$
2^{s} \cdot 2^{L} \cdot w=3^{L} \cdot(x(0)+1)-2^{L} \Leftrightarrow 2^{L} \cdot\left(2^{s} \cdot w+1\right)=3^{L} \cdot(x(0)+1)
$$

However, 3^{L} is an odd number, so: $2^{L}=x(0)+1$, then L is a finite number given by the initial number $x(0)$. This completes the proof that the Collatz DE is asymptotically equivalent (with $k \rightarrow \infty$) to the invariant set $\{1,4,2\}$.

3 Conclusions

In this short paper, a new asymptotic analysis method has been presented base upon impacts over a non-linear border collision curve using a 2-D piecewise linear continuous ODE for DE equations.

The main theorem provides a ready to use sufficient condition, thus checking for asymptotic invariant sets or unbounded trajectories.

Some example were examined including the well-known Collatz sequence written as DE, proving the existence of only invariant set: $\{1,4,2\}$.

The methodology can be used to check bounded/unbound trajectories existence for any non-linear DE on the basis of a simple algebraic condition and a linear asymptotic DE.

Acknowledgement(s)

The author would like to acknowledge María de los Angeles, María de los Angeles and Alicia for their constant support.

Disclosure statement

The author declares no any conflict of interest.

Funding

The present work is supported by Please provide your acknowledgements ...and Universidad Tecnológica Nacional under the PID project TC 5122.

4 References

References

[1] J. Edwards and N. Ford, Boundedness and stability of solutions to difference equations, Journal of Computational and Applied Mathematics 140 (2002), pp. 275-289.
[2] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley and Sons, Inc., 1972.
[3] J.C. Lagarias, The $3 x+1$ problem and its generalizations, The American Mathematical Monthly 92 (1985), pp. 3-23.
[4] S. Letherman, D. Schleicher, and R. Wood, The 3n+l-problem and holomorphic dynamics, Experimental Mathematics 8 (1999), pp. 241-251.
[5] H. Lin and P.J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control 54 (2009), pp. 308-322.

[^0]: * CONTACT Andrés garcía. Email: andresgarcia@frbb.utn.edu.ar

