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Abstract

This paper explores the extraction of the temporal source term in the fractional diffusion-wave
equation. Addressing a complex inverse problem, it incorporates a non-local damping term featuring
a two parameter Mittag-Leffler type function and a set of Samarskii-Ionkin boundary conditions. To
validate the solution’s existence, we establish estimates for infinite series involving the convolution
of a three parameter Mittag-Leffler function. Our research contributes valuable insights at the
intersection of mathematical analysis and fractional calculus providing a robust foundation for
understanding and solving complex problems in this domain.

Keywords: Caputo fractional derivative, Non-self-adjoint operator, Bi-orthogonal systems, Three
parameter Mittag-Leffler function

2010 MSC: 00-01, 99-00

1. Introduction and Problem Formulation

Integro-differential fractional operators have attracted the attention of scientists due to their vast
applications in the diverse field of engineering and sciences. Mathematicians who played their role
in the theoretical development of fractional calculus and pioneers who initiated its first applications
are nicely summarized in [I]. In a review article [2], authors have gathered some novel applications
of non-integer (fractional) order operators. The nonlocal nature of the fractional operator is the
main reason for the success of these operators, as they are ideal to model memory dependent
phenomenon that arise frequently in physical processes.

When we talk about any physical system, some factors are compelling the system to produce

certain effects, the inverse problem is the study of these effects, such problems arise in many cutting-
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edge applications where required information can not be obtained from direct measurements. There
are numerous applications of inverse problems e.g., magnetic resonance imaging [3, 4], medical
imaging [5], computerized tomography [6], signal processing [7] and many other applications
[8,19].

Let us provide a brief literature review on the inverse problems associated with the fractional
differential equations. In [I0], authors discussed two inverse problems one inverse evolutionary
problem and other inverse source problem for time fractional differential equation, while the in-
verse coefficient problem and inverse source problem are considered in [I1] and [12], respectively.
Usually, the reconstruction of the spectral source term is based on the overdetermination condition
at final time [13| [I4], while the temporal source term is reconstructed from additional boundary
measurements [I5] or from integral type condition [16],[I7]. Investigation of the inverse spectral
problems for the fractional diffusion equation was done by Tuan in [I8] [19].

The partial differential equations involving nonlocal damping terms arise in different fields of
sciences such as fiberglass, boron, and graphite composites [20, 21]. Non-Existence of the fractionally
damped fractional differential problem is considered in [22]. Our current research investigation is
motivated by the study of [23] in which they presented the analytical solution to the direct problem
associated with fractional diffusion-wave equation involving nonlocal damping.

We are going to investigate the inverse problem for the following time fractional diffusion-wave

equation involving nonlocal damping:
Dy ul(@,t) + e ¢ (5 w) % o (2,1) = e (2, 1) + alt) f(2,1), (1.1)
associated with the nonlocal family of boundary datum
u(0,8) =0, uy(0,t) = uy(1,t) + au(l,t), a>0, te (0,7, (1.2)
the initial conditions
u(z,0) = p(z), u(z,0) = Y(x), z€(0,1), (1.3)
and the overdetermination condition
/01 u(x,t)de = h(t), te (0,T], (1.4)

where (z,t) € IT:= (0,1)x (0, 17, CDO’8+¢ represents left-sided 3 ordered Caputo fractional derivative;

1<f8<2,u0>0,0<y<E&<1, and “«” represents the Laplace convolution.
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The main characteristics of this research article are as follows:

e For 4 =0 and 8 = 1, the Equation (1.1 reduces to the classical diffusion equation

ou

a(l‘,t) = Uzw(‘r7t) + a(t)f(.’l),t),

with the initial condition

u(z,0) = p(x), z€(0,1),
overdetermination condition given by (1.4)).

e While for = 0 and 8 = 2, it represents the integer order wave equation

0%u
w(l‘,t) - Umm(xﬂt) = a(t)f(x,t),

alongside the initial and overdetermination conditions given by (|1.3|) and (|L.4]) respectively.
e Presence of nonzero parameter « in the boundary data.

e Nonlocality of one of the boundary conditions makes the respective spectral operator non-self

adjoint.

o The presence of e, ¢(t;w) * uyy(x,t) represents the nonlocal damping term where e ¢(¢;w)

represents the Mittag-Leffler type function.

Our main focus is on the recovery of the component of the source term, depending only on time,
in the model —, from extra data . Hence, our main aim is to prove the existence and
uniqueness of the regular solution of the inverse problem —. The regular solution represents
a pair {u(z,t), a(t)}, such that u € C’i:?(l‘[), CDng’tu € C(II), ey e(t;w) * ugg(z,t) € CII) and
a(t) € C(0,T].

The rest of the manuscript is structured as: we state the basic definitions of fractional calculus,
Prabhakar-type Mittag-Leffler function and related basic results in the Section[2] Results related to
the Sturm-Liouville problem are presented in the Section[3] In the Section[d] the construction of the
solution is presented followed by existence and uniqueness results. Number of lemmata involving
Prabhakar-type Mittag-Leffler and their convolution are also proved at the start of Section
Numeric examples are presented in the Section [5] to support our analysis. The Section [6]is devoted

to concluding remarks.



2. Preliminaries

Definition 1. [2]] For —0 <a <z <b<oo, m—1<oc<m and g € AC™(a,b) where

o m = [o], then the left sided o ordered Caputo fractional derivative of is

1 g™
¢D? = .
a+72g(z) I‘(m _ 0) /a (Z _ T)lfera dr

Definition 2. [25] The Prabhakar generalized Mittag-Leffler function is defined as

oo
E’),n(z) ::Zj!r(p)jzj, c>0,n>0, p>0, z,e R,

’ = ' T(oj +n)
where (p); represents the Pochhammer symbol and defined as (p); == F(Ie(:)‘])
For p =1, N
E;n(z) = jgo mzﬂ‘ = Eopn(2).
Forp=1=mn, N
Bl =) ST = Bl

s For the sake of convenience, we define the following notion
E{;’n(z; V)= z"_lEg’n(—z/z"),

for p = 1, we denote

€on 1= 5;777(2; V)= z”_lEam(—uz”).

The solution, of the system of fractional differential equations, is obtained in the Section [4.6] by

using Laplace transform, hence for reference some formulae for Laplace transform are mentioned

here.
n—1
o e L(°DE,.9(2)) = 7 L(g(=)) = 305" g (0).
k=0

e For o > 0,n,p,v,2 € R, s > 0,|s|” > |z|, we have

LE(zv) = o0
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Lemma 2.1. [26] If g € C[a,b] and K(z,y) is bounded and continuous for a <y < z < b, then the
equation

o(x) = g(z) + / T K (2 y)g(y)dy,

has one and only one bounded and continuous solution g(z) in the interval a < z < b.

3. Riesz Basis

To make the article self-contained, we are to mention spectral analysis corresponding to the
system (|1.1)-(1.2]). Detailed analysis can be found in [27].
The spectral and its conjugate problems corresponding to (|1.1)-(1.2) are

Y'(z) = =AY(2), Y(0)=0, Y (0)=Y (1)+aY(1), (3.1)
Z'(x)=-X\Z, Z(0)=2(1), Z(1)+az(1)=0. (3.2)
Eigenvalues of and are

)\0 = (2y0)2, )\11‘ = (2i7T)2, /\Qi = (2%)2, 1 E N,

such that y; satisfies the non-linear algebraic equation tan(w) = a/2w.

Moreover, y; satisfy the following inequalities

mi<y <mi+w/2, ieNU{0}. (3.3)
Note that
%ﬂ% 1=1,2 (3.4)
The eigenfunctions of and are
{uo =sin(2yox), wy; =sin(2wiz), w9 = sin(2yix)}, (3.5)

{vo = Cp cos(yo(1 — 2x)), v1; = C; cos(2miz + 1, ), va; = Cay cos(y; (1 — 2m))}, (3.6)

respectively, where

v, = arctan(;), Co = 2 ,
o sin(yop) <1 + sinc(2y0)>
Cli = _%a C2i = 2 )
s (Y sin(yi) (1 + sinc(?yi))



ss and sinc(a) := sin(a)/a.
The set of eigenfunction (3.5) and (3.6) are complete but not orthogonal (see [27]).
The following bi-orthogonal set is constructed from eigenfunctions of (3.1]) and (3.2]).

Qo = {q0; q1i, q2i : 1 € N}, Ry = {ro, T, 72i : 1 € N}, (3.7)
where
U2 — UL4
(JO(ff) = u0/2y07 CIU(CU) = #» Q2i(9ﬁ) = Uig,
ro(z) = 2yovo, T1:(T) = 20;v9;, T2i(X) 1= V2 + V14,

and §; = y; — 7.
% The sets @, and R, given by are proved to be Riesz bases of L%(0,1) in [27].
4. Main Results

This section is devoted to presenting the research contributions of this article. To start with we

are going to prove few key lemmata that will aid in proving the regularity of the solution (L.1))-(1.4]).

Lemma 4.1. The Fourier’s coefficients gi;, obtained by using the Riesz bases (3.7), of g(x) €
o L2(0,1) satisfy the following relations

o If g€ CY0,1), we have
D,
lgul < == 1+ 1g'ID:

e If g€ C%0,1) and g(0) =0, ¢’'(0) = ¢'(1) + a g(1). Then, we have
jgul < 2211”1,
e If g€ C3(0,1) and g(0) =0, ¢’(0) = ¢’(1) + a g(1). Then, we have
loul < 221+ g1,

where g;; = (g(x),ri(x)), 1 =1, 2,1 € N and D, is a positive constant.



1w PROOF. We are going to give the proof of the inequalities satisfied by ¢1;, similar relation can be
established for go;.

Since

1
g1i = 25i02i/ g(x) cos(yi(1 — 2z))da.
0

Integration by parts implies us to

_20,Cy;
o

g1 { - g(x)sin(y; (1 - 2x))|izé + /0 ¢ (z)sin(y;(1 — 2z))dz },

the give condition ¢g(0) = 0 together with integration by parts, further modifies the results as

20;Co; .
g1 = Tg{g(l)sm(%)+

cos(y; (1 — 2x)) e=1 1
N g/(x)|w:0 T 9.
Yi 2y;

1
/0 g" (z) cos(y;(1 — 2x))dx}.

s Due to the fact tan(y;) = 2a and using the second boundary condition ¢'(0) = ¢’(1) + « g(1), we

%

obtain
20;Ca; /1 p
i=— x) cos(y; (1 — 2x))dzx,
g =g | 9@ eos(u(1 - 20)
again integration by parts gives
26;Co; . ! .
10 = G5B (670) + g (D)sin(u) + [ " (&) sinas (1~ 20))do}.

Using Cauchy-Bunkovsky-Schwarz, we obtain

D
lg1:] < ?31(1 + g 1),
where
Dy =max{D,20;Cy;, 20;C2(|g(1)| + |g(0)), 26;Ca; + C1i , (26;Ca; + C13)(|g(1)] + g(0)]
20;Coi(|g" (0)[ + g (1)]), (26;Coi + Cra) (1" (0)| + |g" (1))},

D =max{||rol|, ||r:ll, [|r2:ll}-

Lemma 4.2. The Fourier’s coefficients g;, obtained by using the Riesz bases (3.7), of g(x,t) €
L2(10) satisfy the following relations



e Ifge C;:?(H), we have
(0] < 20+ lgel), ¥ te (0.7)
o Ifge C’i:?(l’[) and g(0,t) =0, g-(0,t) = g»(1,t) + a g(1,t). Then,
960 < 2lgeall, ¥ 1€ (0,7]
115 e Ifge C’i:?(l’[) and g(0,t) =0, g-(0,t) = g(1,t) + a g(1,t). Then,

D
()] < 20+ lgaaal), ¥ € (0,T]

where g;; = (g9(x,t),ri(x)), 1 =1,2,i€ N and Dy > 0.
PROOF. Proof can be done on the same lines as we did for the Lemma A1
Lemma 4.3. Foro > —1, p,r,n,v >0 andt € R, we have

t7 % EL(Ev) =T(o+ DEL, oia (i)

PRrROOF. Above result can be obtained by using definition of convolution integral along side defini-

o tion of Euler integral of first kind.
Remark 1. By taking o = 0, we have
1 &L, (tv) = Sg,nﬂ(t; v).

Lemma 4.4. If 0 A,v >0, 0<k<o<1,1<n<2,¢>0andp=0,1 then the following triple

series involving Mittag-Leffler type functions of three parameters satisfy the following inequalities

ook n
nn k k. n—mpk—n ck+1 .
ZZ Z(_l) Cm" Cnl"v 0 gn,n(n—m+p)+o(k—n)+nk+¢(t’ v)
k=0n=0m=0
Cltd)Jrnpfl

< :
= 14 utr + MOt + ptnte 4 )

PRrooOF. By definition, we have

ok n

nn k k. n—mpk—n ck+1 .
ZZ Z(_l) Cr"Cr v 0 gn,n(n—m+p)+o(k—n)+ﬂk+¢(t’V)
k=0n=0m=0

—i Xk: Zn:(—nmo ko AR yn—mgh—n i (k4 1);(—ptr)igrn=mip)tolk—n)tnk+é-1
B e JT(kj 4+ K(n —m~+p)+o(k—n)+nk+¢)

k=0n=0m=0 7=0




125 Changing the order of summation yields

k n

nn k k. n—mpk—n ck+1 .
Z Z Z <_ Crn"Cp Ay 0 gn sk(n—m+p)+o(k— n)-l-nk-l-<25-‘r1(t7 V)
k=0n=0m=0

SYY Y (75 FARyn T TRGRTT s 4 1) (b £ 1o )
5=0 k=0 n=0 m=0 —k+1D)I'(m+1)(n—m+ DIk —n+1)
ti(s—k)+r(n—m+p)+o(k—n)+nk+eo—1
<F(/@( _k)‘i‘f@(n—m—&-p)+U(k—n)+nk+¢)>}
Sncem <n<k<s = n—-m+p>0,k—n>0,s—k>0,and I'() is an increasing

(4.1)

function.

So, we can write
1 1
T((s— k) + h(n—m+p) +o(k—n) +nk+9¢) ~ T(xs+ )’
so, Equation , takes the form

ZZ Z(_ 1" O CoAFL TR (g::}n metp)+o (h—n)-ni-+ V)>

k=0n=0m=0

(ryy

5=0 k=0 n=0
" T(n+1)ymerem

(Z F(m+1)F(n—m+1)> '

m=0

n+s k Ak nts— kgk ntm(‘; k)+r(n+p)+o(k—n)+nk+op— 1F(S—|—1)
Fk+1)I(s—k+1)I(n+ )0k —n+ 1)(ks + @)

10 By using the fact that

!
(+1) " !
=(1 leN R.
]ZFJ+1 lf]Jrl) (L), LE€N, re

Hence, we get

nn k k. n—mpk—n ck+1 .
ZZ Z(* O O AV 0 ) o (o) ittt (B V)

k=0n=0m=0

<tPTPTLE, o (MG — pt® — AT — A7) < 0TPTLE, o (AOETTT 4 vt + AvtTTR T+ ALY)

By using Theorem 1.6 of [28], we have

nn k k. n—mpk—n ck+1 .
Z Z Z (=)™ O Co AP 0 E ) o (b—n) o1 (V)
k=0 n=0m=0

Cltd’J”‘”’ 1
- 1 + AOto+n 4yt 4+ Aptnts 4 A’

as required.



Lemma 4.5. If 0,A,v >0,0< k<o <1,1<n<2 ¢>0andp=0,1 then the convolution
s of following triple series involving three parameter Mittag-Leffler type functions with two parameter

Mittag-Leffler type function satisfy the following inequalities

nn k k. n—mpk—n ck+1 .
en,o(t; V) ZZ Z o\ il SN (17

k=0n=0m=0
F(J)C%td""“p"“’_l

T 1+ vth + A(OtT T vt )’

PROOF. Required inequalities can be obtained by using Lemma 4.3 followed by Lemma [{.4}

The direct consequence of the Lemma [£.4] is following remark:

Remark 2. If ,A1,A2,v > 0,0 <k <0 <1,1<n<2 ¢1,¢2 >0and p; =0,1, j =1,2
uo then the triple series involving the convolution of Prabhakar-type Mittag-Leffler function satisfy

the following inequalities

(a)
ook n
) SP SRS 1§ 90 9) ECEECTS NN 1Y)

k=0n=0m=0 k=0n=0m=0

2 P1+¢2+rKp1+rp2
5k+1 (t, l/) S Clr(¢2 + HPQ)t :
Kyk(n—m-+p2)+o(k—n)+nk+p2 14+ vte + A2 (9t0+77 + ptnte 4 tn)

ook n
STEZE 95 90 SEVEE1 0 99 9 o Fc NNNNUNINCEZ)

k=0n=0m=0 k=0n=0m=0

*gk+1 (t' I/) < CfP(O’)F((bQ + sz)t¢1+¢2+rap1+np2+afl
K,k(n—m~+p2)+o(k—n)+nk+dsa — 1+ vth + A2(9t0+77 + pinte + tn)

where AT = (—1)""C,, KO ARy mgR R

4.6. Regularity of the solution

In this subsection, we will state the optimum conditions that will ensure the unique existence

us of the regular solution.

Theorem 1. If the given data {¢, f, g} satisfy the following reqularity constraints

10



e € C3(0,1) such that p(0) =0, ¢'(0) = ¢'(1) + a ¢(1),

o fe€ C;o”’?(l'[) such that f(0,t) =0, f(0,t) = fo(1,1) + o f(1,1).

Moreover,

<f(l',t)77‘0($)> 7é 0.
1
150 o g(t) € AC(0,T], such that g(0) = / o(x)dx
0
the unique solution of the inverse source problem (1.1)-(1.4) is reqular in nature

PROOF. The proof of the theorem consists of three parts. First part contains the construction of
the solution then we are going to present existence results and finally we are going to conclude the
proof with uniqueness results.

155 Construction of the Solution

The unknown function u(z,t) and the given part of source term f(x,t) can be written as:

+oo

u(x,t) = To(t)qo(@) + Y [Tri(t)qui(x) + Tai(t)gai ()], (4.2)
=1
+oo

f(z,t) = fo(t)qo(x) + Z [f1i(0)q1i(x) + f2i(t)g2i(2)] (4.3)

where Ty(t), T1i(t), T2 (t), fo(t), f1:(t) and fo2;(t) are to be determined by solving the following

differential equations of fractional order:

DY To(t) = — MoTo(t) + Mopes e (t:w) * To(t) + a(t) fo(t), (4.4)
CD(ﬁ)%tTu(t) = — Ao T1i(t) + Agspeq e (G w) = Thi(t) + alt) fri(t), (4.5)
>\2i - /\11'

Dy Toi(t) = — MiToi(t) + —T1i(t) + Miprey ¢ (tw) * Toi(t) + a(t) f2i(t). (4.6)

26;
By using Laplace transform, we obtained the following expression for (4.4))
ﬁ{To(t)}A0M87_§

s7L{To(1)} — 8771 Tp(0) — 87 2T5(0) = —AoL{To ()} + ST 1w + L{a(t) fo(t)}
pt p-2 L{a(t) fo(t
LT (0} = o gy AN
55+)\0_& 5ﬂ+/\_& 3B+/\_L
§T+w §T4+w T+w

11



10 By taking the inverse Laplace transform, we get

To(t) = cl( S @0)+£1< A %)

Aops® ™ Aouss ™
B4 N\g— —— B4 \g— 2
7+ Ao sT +w 7+ Ao ST +w
o [ Lla®h©}
Aops” 3
P+ X — ———
T +w
Consider
st B sPHT=1 4 sfl
Aops? ¢ $YXo 4+ who — Aous? ¢
B4 g — B(sv 1
ot s+ ST w1+ 55(57+w)

AFm yme(v=€) (k—n)

=(s"7 ws ZZ Z 2;&;+1 ) (7 + w)kTL

k=0n=0m=0

Using the Equation (2.1]), we have

B—1 co k n
—1 B _ k,n,m k+1 A
T e =3 0 D) DD DYt (s AR

k+1 .
+WE 1) b n)+6k+1(t’w))'

Similarly, we can obtain

B

—1 S k,n,m k+1 .

O S T et 1 R 0
8+ N — O~

ST 4+ w

k+ .
+WE e n)+5k(t7”)>'

1
-1 k,n,m Ic+1
£ { /\0/187_5 } Z Z Z AAo W, v y(n—m)+&(k— n)+6(k+1)( w).

8[3_|_)\O_ k=0n=0m=0

ST 4+ w

Hence, the solution of (4.4)) takes the form

oo k n
=D D D ANICE 5+ WML 5) w0 — (AT 5 + WL 5)vo + alt) folt) = BYE 5],
k=0 m=0

n=0
(4.7)

12



s Similarly, solution of (4.5) and (4.6) are given by

co k n

AF t; t; t;
Tut) =) ) Y ANEL(CE s+ WM p)oni — ( SestwFl ﬁ) i + alt) fui(t) * B ]

k=0n=0m=0
(4.8)

k,n,m tiw L tiw ) tiw
T(t) =) Z > AN L(CTE 5+ wHE ) (‘A%&B WP B) tai +a(t) fai(t) * B 5

k=0n=0m=0

+ 222 4 (B +w052,) . (49)
where
Al s = &ty ethom+ar2 (B0); Bl s = & e myrethm sy (@),
Cles = s ethonyspni (B0), Dt = & nemyretkom a1 B9),
Fes = E nminyretm e arr2EW); 9yt = E o minyretmaeen HW),
Ht s = & nmmeretemmsn B9 T = E ) ehmmyrprnyar (B W)

Hence, u(x,t) can be written as

k
) =333 S [k { (5 i on = (A5 T )

i=1 k=0 n=0m=0

t; sin(2yo) k,n, t; t;
+ a(t) fo(t) * B’Y? /3} 290 + Ax\zﬁ,;n,u (C%(g”@ + WHWE,B)SOU

( SesT wFY e B) Pri + a(t) fri(t) = Bi&g) B} sin(2yi:c)2;isin(27rix)

Aif,ﬂu{ (CYe s+ Wi o) 02i — (“47 gsTW t;,ug,ﬁ) Vo + alt) failt) * BIE

(Z Z Z AN (e s + WMy p)ori — (A'y s TWFE 5) Y1

k=0n=0m=0

a(t) f1i(t) * Bv’z’ ﬁ]) (Bt it wgv ¢, B) }sin(Qﬂix)]. (4.10)
To determine a(t), we will make use of the Equation we can have
1
/0 CDg+7tu(x,t)dx = CDfiﬁtg(t). (4.11)
By using (1.1, we have
1 -1 1
- (/ f(x,t)dx) ( DB tg( )+ au(l,t) —&-u/ eqy,e(t;w) *um(a:,t)dx> , (4.12)
0 0

13



1o where

2 n,m W “ .
u(l, 1) Sln Yo Z Z Z A’;O ! u{ Ct €. —1—w’H7 ¢ g) (Af{,g,ﬁ + w]:ff-fﬁ)%}

k=0n=0m=0

banyl n, w sw
+Z ZZ Z ];\2”3#{ (C3%.5 +wHI% 5)oni — (A 5+ wF £ﬁ)w“}

k=0n=0m=0

The Equation (4.12)) can be written as

+ /0 K(t,m)a(r)dr. (4.13)

where

-1

( f(a,t) dm) [ DB g(t) + 0 120§ Z S Ak

2
Yo k=0n=0m=0

{ (Co s +oH e 5)po — (ATe 5 +w;§;§,ﬁ)¢0}

2 k3 n,m e
DW= 9 9 S R (AR

i=1 1k0n0m0

— (A% s +“f»ty°§ﬁ)¢1i}

T PR 9 9D SN IR

k=0n=0m=0

sin29;
< — 2¢0y052n Yo + Z —201Yyi—— 5 ))
=1 v

+ ey e(t;w) * ZZZA]i;LnH Ve twFEs)

k=0n=0m=0

X ( — 24poyosin’yo + Z (— 2y SH;_ 61)) H ; (4.14)
i=1 ¢
t—7
(/ f(z,t)d > {fo T)Yosin yo/o evet—7—s; )ngﬁds
26
£3 futr)y fm / erelt =7 = s.w)BYY ;ﬂs} (4.15)
i=0

Existence of the Solution

s Following are the requirements for the existence of the solution:

14



e a(t) € C(0,7T) * ug,(z,t) € C(I)
e u(z,t) € C(II)

o “Doy u(z,t) € C(II) 1008 €y ¢(t;w) * ugg(x,t) € C(II)

To show that a(t) € C(0,T), we will show the continuity of F(t) given by (4.14)and K (¢, )
ie. (4.15). We will use following estimates that are obtained by making use of Lemma and

given by
n
DD AN s et ) < Cull ),

n=0m=0
k n

DD AN s T ) < Crt(L - wt),

k=0n=0m=0
[eS)

ZZ Z AV (1 BEY 5) < CitP.

k=0n=0m=0

MSEMS

co k

knm Cl(l+wt7)
ZZZ MG g+ WHE g) € =55
k=0n= 07n 0

< & Ch (1 + wt?)

k n,m tiw tyw
> Z Noiswd(Ayep T WF e 5) < — 55—

k=0n=0m=0

. - Ak:,mm 1 Btw Cl
DD D AN B ) <
k=0n=0m=0
Due to Lemma we have the following inequalities
o k n
k,n,m
epelt;w)x Y DN AR (CEY S wHY ) S T(§CTHE(1+wt?)
k=0n=0m=0
c© k n
ere(tw)x 3D D0 AN (AT s + 0T 5) S TEOCHTH 1+ wi?)
ga3 Ao,w9 v:€.8 787 = 1 ’
k=0n=0m=0
o k n
k,n,m pt—7iw -
ey et *ZZZA)\QwQB'yfﬁ <T(ECF(t—7)sP L

k=0n=0m=0

15

(4.16)

(4.17)

(4.18)



ok n

L(6)CHE (1 4 wt?)
k,n,m tiw 1
ere(tiw)xY DY ANTTH(CTE 5 +wHLE ) < 248 ’
k=0n=0m=0
co k n 2.¢
k,n,m tiw (g)clt (1+wt’y) 4.19
eve(tiw) x> > AN (AT +wF ) < 21 ’ (4.19)
k=0n=0m=0
- k,n,m t Tw (5)012@_7—)5_1
exelt ZZZAM»MG eh S =z
k=0n=0m=0

185 Consequently, by using (4.16]), (4.17),(4.18]) and (4.19)) we have the following relation for (4.14])

and (4.15)

|F(t)| < My {CDgJﬂtg(t) +aC1 Dy (1 + Wt’y)(H‘PH + ||¢II)

. aCiD: (1 + wt?

+30 SO gy B
=1

. N{ﬂcfplr@tﬁ(l +wt) ([lgll +
> 3rC2DT(6)té(1 g 1

+ 3 ZEDLORLLD) (i + 1a+ 1)}

=1

I\wll)

K(t,7)] < My [WC'%D2(7§ — 7)s+B-1 Ul + i 3nD(§)CEDy(t — 7)1 (s ”fIH)} |

2 i=1 i
1 -1
where (/ f(x,t)dx) < M.
Henceoby Weierstrass M-test F(t) and K (¢, 7) represent uniformly convergent function. Conse-
w0 quently, by using Lemma the Equation unique continuous solution i.e., a(t) € C(0,T]
In order to establish the continuity of u(x,t), we need to present the convergent estimates for
Ty ;,7=0,1,2, i e N.
To show that u(z,t) represents a continuous function, first we check the boundedness of Tg(t),
T1;(t) and Th,(t).
15 Due to , we can write

I To ()] <C1(1+wt”)|go| + Crt(L + wt?)|gho| + Cit?| fol.

16



Cauchy-Bankovsky-Schwarz inequality allows us to write

a(e) <G +wt) (Nl + vl ) + D] (4.20)
Next, by using and (| in , we have
01(1 +wt7) MCl
1@ < D (Joul 4+ il ) + g Lfiato) (421)

Due to Cauchy-Bankovsky-Schwarz inequality and Lemma (4.1]), above relation can be written as

C1D(1 v MC
i) < SR (ol + ol ) + 22201 (1.22)

Hence by Weierstrass M-test Z |T1;(t)] is uniformly convergent.
i=1
200 Before giving an upper bound for |T5;(¢)|, we will establish inequality for convolution of three

parameter Mittag-Leffler function.

Consider
co k n
knm tiw tiw
SO Y AT+ (B w0 |
k=0n=0m=0
oo k
k t;
STSS S a6l

k=0n=0m=0

knm w
Z /\uqu“ )*Bvﬁﬁ‘+w
k=0n=0m=0

By using Remark [2] we have

ZZZ AN Tu(t) + (B§§ﬂ+wgv£5)‘

k=0n=0m=0

< C(T(B) + ;‘;F(/B +11) (14 wt) <|<P2z + - ¢2z|>

M01 (8)

(1 +wt)|fr(®)lt”.

Due to Lemmata and we can write

S S AR T+ (B 06|

k=0n=0m=0

_ CID(T(8) ;“’F(ﬂ D) (1 4 o) ((1 + ) + %(1 - WII))

+@(1+wm(1+ [FAIE (4.23)

205 For estimate of Ts;(t), we will make use of Remark [2|and equation (4.23)) apart from relation (4.16]),
to get the following inequality

17



C1D1(1 + wt” MC D
(el < SLE (o + el ) + 2522 1)

N 5mC?D1(T(B) + wl(B + 1)t7)(1 + wt?) <(

i2
N 5TtMC2D,D(8)(1 + wt?)

2 (1 + 11 £a11)¢? (4.24)

L)+ o1+ ||w'|>)

By using (4.22) and (4.24), together with Weierstrass M-test ensure the continuity of u(z,t).

To present the continuity of wus,(x,t). observe that

< 2 ‘82‘111'
— ) xQ

82(]%
0z2

82(]0
02

< 4m%i%. (4.25)

< 18722, ‘

Hence, for continuity of .. (x,t) we need to show convergence of

> P, 1=1,2,
i=1

210 which can be deduced by following relations

1) < SR (et ) + HGP2 (1.26)
1ol <SPG (1o o) + MClD ML

+ TADEE) TG+ DL+ o (4197 + e+ 1)

+ 5”MC%D2F.§’B)(1 ) (44 el (4.27)

7

In order to establish the continuity of e ¢ (£; w) * uzz(2,t), we need to study the convergence of

(o)
Zzae%g(t;w) x T (t), 1 =1,2.

i=1

By using Lemma and Cauchy-Bankovsky-Schwarz inequality, we have

L(6)C2D1t5 (1 + wt?)

1" " MC# Dot
210 (1+wt”)(||<p |+t ||> (f)—l?

%y ¢ (tw) * Tui(t)] <

([ fazll
(4.28)

Lemma and Remark [2] together with Cauchy-Bankovsky-Schwarz inequality, support us to

18



write

D(§)CED1 (1 + wt?) L(6)MC?Dot®

e ati) » Tast)) < DIALIELLOD (oo g gy ) 4 HENEDE

+5mi(1 +wt)(D(B) + wl(8 + 1)¢7)L(€)CF Dyt ((1 + ll™|) + (1 + W”II)
+ (L+wt)MCTDL (T (B)E P (1 + || faa)- (4.29)

25 Finally, we are going to present the estimates that ensure the continuity of CD€+7tu(x, t).
By using [29], in order to ensure the continuity of CDéltu(x,t), we need to establish the uniform

convergence of

o0 oo
> T, andZCDg+7tﬂi, [=1,2.
i=1 i=1

oo

Uniform convergence of Z Ti;, 1 =1,2has already been proved (see inequalities (4.26]) and (4.27)).
i=1

By using Equation (4.5) and (4.6), we can see that in order to show the uniform convergence of

(oo}

220 Z CDng,tTli, we need to present the convergent estimates of
i=1

PT(t), Peqex Ti(t); 1=1,2,

which we have already established in (4.26) and (4.29).

Uniqueness of the Solution
Lastly, we will prove the uniqueness of the obtained solution i.e., and (4.12)).
The expression, given by , involves definite integral of known function f(z,t) and the
»s 3 ordered Caputo fractional derivative of given function h(t). One-one nature of these operators
(integral and fractional derivative) proves the uniqueness of a(t).

On contrary suppose u(z,t) and v(z,t) be two different solutions, and define
a(x,t) = u(z, t) — v(z,t). (4.30)
Using in —, we have
Dy (1) + Uar (T,) + pey e (tw) * Upz(z,t) =0,  (z,t) € IL
the boundary datum
w(0,t) = 0 = Ugaa(0,y, 1), 1z(0,1) = us(1,8) + au(l, ).
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23 and initial condition

w(x,0) =0, u(z,0)=0. (4.31)

Consider the functions

1

7(0) = [ [ ate.ro(w.y)dsdy,
Thi(t) = /01 /01 w(x, t)r;(x, y)dady,
Toi(t) = /01 /01 u(x, t)ro;(x, y)dady.

Taking the fractional derivative, we get
DpTo(t) = =\iTo(t) + Moptey ¢ (tw) * To(t),
0D0+7tT1i(t) = —XoiThi(t) + Aaipey ¢ (8 w) + Ty (2),

Noi = M .
2 ! T1i(t) + Avipiey ¢ (B w) * Toi(t).

B (4) = — 1T L3
CDO+7tT2z (t) = —A1;T%; (t) + 95,

The solution of the above system is

Z Z Z AN (€ p + w2 ) To(0) = (AT 5+ wFye 5) T5(0)],

k=0 n=0m=0

Thi(t Z Z Z A’;; m Cti‘g,ﬁ + wH:fgﬂ)Tu( ) — (A7 it wfﬁg’ﬁ) T{;(0)],

k=0 n=0m=0

k n,m tiw tiw o _ tiw 1w 2l
Toi(t Z Z Z Moo (e s + WM 5)T2i(0) (Ams,ﬁ + wf%&ﬁ) 15;(0)
k=0n=0m=0
AQZ >\17 W H)
Py (st

The condition (4.31]), leads to
To(t) =0, Th‘(t) =0, Tgi(t) =0, te (O,T]

The completeness of the set {ro,r1;,72;}, ¢ € N guarantees that obtained solution is unique.

25 5. Example

This section is devoted to some examples for particular values of p, f(z,t), ¢(x) and ().
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Example 1: By taking p =1=w, y=0.25, £ =0.5, 8 = 1.5, ¢(z) = sin(27z), P(x) =0, a =1
and f(z,t) = 0.7654 sin(1.30654z)t"25.
Solution of the inverse source problem (1.1))-(1.4) has the following form:

a(t) _ t1.5

240

oo k n
nn k .
u(z,t) = Z Z Z (1) C*Cr {(2”)% (50.—551,0.25(n—m)+O.5(k—n)+1.5k+l(t7 1)

k=0n=0m=0

+ (1.7075) LOITAES L2 55 () 40,50k —m) 1.5 (ks 241 (£ 1) sin(0.30652)

k1 1Y)
+ 5025,0.25(n—m+1)+0.5(k~—n)+1.5k+1(t7 1)) sin(27z)|.

Example 2:

By taking p = 1 = w, v = 0.25, £ = 0.5, 8 = 1.5, ¢(x) = 0.7654sin(1.30654x), ¢(x) =
sin(2rx), a =1 and f(x,t) = 0.7654 sin(1.30654x) + sin(wx).

Solution of the inverse source problem — has the following form:

a(t) =2

245

¢o=1,1va =1, fo=1, for =1

oo k n
k k+1 .
u(z,t) = Z Z Z (=1)""Cp"Cy |:{€O.J2FS,0.25(nm)+0.5(kn)+1.5k+1(t7 1)

k=0n=0m=0

k+1 .
+ 50.J2r5,0.25(n7m+1)+0.5(k:fn)+1.5k+1(t’ 1)
k .
+ 250353,0.25@%)+o.5<k7n)+1.5(k+1>+1(t% 1)}0.7654 sin(1.30654x)
k+1 .
+ (€5.35.0.95(n—m)+0.5(k—n)+1.5% (1)

k+1 .
+ 50.25,0.25(n—m+1)+O.5(k—n)+1.5k (t’ 1)

k+1 y
+ 250.25,0.25(n—m)+O.5(k—n)+1.5(k+1)+1) sin(27z) | .

6. Conculsion

In summary, our investigation has navigated the complexities of fractional diffusion-wave equa-

tions, focusing on the extraction of the temporal component of the source term. Addressing a
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250

255

260

265

270

275

challenging inverse problem, we incorporate a nonlocal damping term with a two-parameter Mittag-
Leffler function and include Samarskii-lonkin type boundary conditions. The establishment of a
three-parameter Mittag-Leffler function not only affirms the existence of solutions but also con-
tributes valuable insights to the domains of mathematical analysis and fractional calculus.

Our research significantly advances the understanding of these equations, providing a solid foun-
dation for nuanced problem-solving methodologies. The attained insights not only confirm solution
existence but also pave the way for future exploration and application, marking a substantive con-
tribution to the dynamic intersection of mathematics and physics. As we navigate the complexities
of fractional diffusion-wave equation, this work opens new avenues for continued advancements and

deeper understanding in this ever-evolving field.
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