The High-Voltage Level Shifter with dV/dt noises Shielding

Jianwen Cao ${ }^{1}$, Ze-kun Zhou ${ }^{1}$, and Bo Zhang ${ }^{1}$
${ }^{1}$ University of Electronic Science and Technology of China

June 15, 2022

Abstract

This paper proposes a HV (high-voltage) level shifter to shield the dV/dt noise. When there is the dV/dt noises, the proposed level shifter's output is locked by the $\mathrm{dV} / \mathrm{dt}$ noise shielding circuit. So, the proposed level shifter has infinite $\mathrm{dV} / \mathrm{dt}$ immunity, which is not affected by the supply voltage, and processes. In the $0.5 \mu \mathrm{~m}$ BCD process, the proposed level shifter is simulated, realizing the $\pm 250 \mathrm{~V} / \mathrm{ns} \mathrm{dV} / \mathrm{dt}$ noises shielding function and less than 1.5 ns delay time under the 400 V HV power supply.

The High-Voltage Level Shifter with $d V / d t$ noises Shielding
Jianwen Cao, Ze-kun Zhou*, and Bo Zhang
University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 610054, China
*Email: zkzhou@uestc.edu.cn
This paper proposes a HV (high-voltage) level shifter to shield the $d V / d t$ noise. When there is the $d V / d t$ noises, the proposed level shifter's output is locked by the $d V / d t$ noise shielding circuit. So, the proposed level shifter has infinite $d V / d t$ immunity, which is not affected by the supply voltage, and processes. In the $0.5 \mu \mathrm{~m}$ BCD process, the proposed level shifter is simulated, realizing the $\pm 250 \mathrm{~V} / \mathrm{ns} d V / d t$ noises shielding function and less than 1.5 ns delay time under the 400 V HV power supply.

Introduction: With the development of wide-bandgap power MOSFET in HV (high-voltage) applications, high-performance gate drivers are required $[1-3]$. HV and high-speed gate drivers are also essential in widebandgap power MOSFET applications due to high-frequency applications [1]. At the same time, for widebandgap power MOSFET's driving circuit, the synchronous gate driver is often designed on the chip to improve the system efficiency [1]. However, the large $d V / d t$ noise generated by power devices could introduce and interfere with the synchronous gate driver. Therefore, as the critical sub-block of gate drivers, the level shifter has a high $d V / d t i m m u n i t y ~ r e q u i r e m e n t ~ i n ~ w i d e-b a n d g a p ~ a p p l i c a t i o n s . ~ T h e ~ e x i s t i n g ~ H V ~ l e v e l ~ s h i f t e r s ~$ use many design techniques to improve $d V / d t$ immunity [1-4]. These level shifters' $d V / d t$ noise immunity has been significantly enhanced, about hundreds of V / ns. In [3], a $200 \mathrm{~V} / \mathrm{ns} d V / d t$ noise immunity is achieved using the capacitive level shifter in the SOI process with a 200 V power supply, which is limited by the process. For most level shifters in conventional processes, the $d V / d t$ noise has a greater influence on the level shifter with the increase of supply voltage. Then, circuits that have been to enhance $d V / d t$ immunity and need more energy to suppress $d V / d t$ noise. Therefore, the existing design methods to improve level shifter immunity could gradually become unavailable with the increase of power supply voltage. This paper proposes the HV floating level shifter with $d V / d t$ noises shielding function. The core mechanism is that when $d V / d t$ noise occurs, the proposed level shifter locks the output to prevent it from triggering by mistake.
The $d V / d t$ noise interference to HV level shifters: There are two situations for the HV floating level shifter disturbed by $d V / d t$ noises. The HV floating power supply rail rises synchronously, which is the positive $d V / d t$ noise; the other is that the HV floating power supply rail falls synchronously, which is the negative
$d V / d t$ noise. Therefore, only the circuit connected with both HV and LV regions needs to be considered when the level shifter is disturbed by $d V / d t$ noises, as described in [4]. For the HV floating level shifter, HV and LV regions have the same power supply rail voltage [4]. VDDH-VSSH is equal to VDDL-VSSL, and the LV power supply rail (VDDL-VSSL) is fixed.
Fig. 1 The positive dV/dt noise interference.
Fig. 2 The negative $d V / d t$ noise interference.
When IN is high, the level shifter is interfered with by the positive $d V / d t$ noise, as shown in Fig. 1. When IN is high, V_{A} is equal to VSSH, and V_{B} is equal to VDDH. When the positive $d V / d t$ noise comes, VSSH and VDDH rise synchronously, and nodes A and B also increase due to parasitic capacitance charging. The parasitic capacitance charging current is limited, so the rising speed of nodes A and B are relatively slow, especially for the level shifter without the $d V / d t$ immunity improving circuit. Thus, $\mathrm{V}_{\mathrm{A}}-\mathrm{VSSH}$ and $\mathrm{V}_{\mathrm{B}^{-}}$ VSSH could decrease when the positive $d V / d t$ noise happens. Owing to M7's body diode, $\mathrm{V}_{\mathrm{A}}-\mathrm{VSSH}$ could be clamped down to $-\mathrm{V}_{\mathrm{F}}$. The high-level $\mathrm{V}_{\mathrm{B}}-\mathrm{VSSH}$ may become a low-level signal and clamped to $-\mathrm{V}_{\mathrm{F}}$ due to M8's body diode, as shown in Fig. 1(b). V_{F} is the forward voltage of MOSFET's body diode.
When the negative $d V / d t$ noise occurs, both $\mathrm{V}_{\mathrm{A}}-\mathrm{VSSH}$ and $\mathrm{V}_{\mathrm{B}}-\mathrm{VSSH}$ could increase, as shown in Fig. 2. The analysis is similar to the above. When IN is high, and the negative $d V / d t$ noise occurs, nodes A and B become high. Of course, each node voltage is within the allowed range due to the MOSFET's parasitic diode.

The proposed level shifter with $d V / d t$ noises shielding: According to the above $d V / d t$ noise interference analysis, when IN is high and VSSH and VDDH rise synchronously, both $\mathrm{V}_{\mathrm{A}}-\mathrm{VSSH}$ and $\mathrm{V}_{\mathrm{B}}-\mathrm{VSSH}$ have an undershoot. Nodes A and B could become low. When IN is high and VSSH and VDDH fall synchronously, both $\mathrm{V}_{\mathrm{A}}-\mathrm{VSSH}$ and $\mathrm{V}_{\mathrm{B}}-$ VSSH have an overshot. Nodes A and B could become high. When there is no $d V / d t$ noise, V_{A} and V_{B} are opposite. For example, IN is high, node A is low, and node B is high. Therefore, nodes A and B have different voltage changes in normal operation and $d V / d t$ noises interference. Utilizing the differences analyzed above, the level shifter with $d V / d t$ noises shielding function is proposed, as shown in Fig. 3.

The proposed level shifter's transient operating is illustrated through a low-to-high operation. When IN goes high, M1 and M3 are turned on, and M2 and M4 are turned off. Nodes A and C start going down. Then, node A's falling edge is sampled, and $\mathrm{M}_{\mathrm{H} 1}$ is turned on to accelerate node B's rising. After node A drops, NAND2 outputs a high signal R. At this time, node A is low and INV1 outputs a high signal. When node B is higher than the NAND1's triggering voltage, NAND1 outputs a low-level signal S. Finally, Latch outputs a high signal OUT. This is the low-to-high transient operation of the proposed level shifter, as shown in Fig. 4 (a). The high-to-low transient operation of the proposed level shifter is similar to the above operation.

As can be seen in Fig. 3 and Fig. 4 (a), when IN is high, due to the huge pull-down ability of M1 and M3, node A drops rapidly, while node B rises slowly. Therefore, the auxiliary pull-up transistors $\mathrm{M}_{\mathrm{H} 1}$ and $\mathrm{M}_{\mathrm{H} 2}$ are added to improve the proposed level shifter's response speed, as shown in Fig. 3.

The proposed level shifter can shield the $d V / d t$ noise using logic gates (INV1/INV2 and NAND1/NAND2). According to the above analysis, only when the voltages of nodes A and B are different, S or R of Latch could become low. That is, the proposed level shifter starts to transfer the input signal IN to the output signal OUT. When the $d V / d t$ noise occurs, nodes A and B have the same voltage variation trend. When the $d V / d t$ noise is small, the voltage variation of nodes A and B cannot be higher than the logic gate's trigger voltage. Then, the output of NAND1 and NAND2 remains unchanged and OUT also keeps constant. When the $d V / d t$ noise is large, the voltage variation of nodes A and B is higher than the logic gate's trigger voltage. At this time, nodes A and B have the same variation. Due to using INV1/INV2, NAND1/NAND2 could output a high signal, and the output of Latch remains unchanged. So, the output OUT of the proposed level shifter remains constant and is not disturbed by $d V / d t$ noise.
Fig. 3 The proposed level shifter with $\mathrm{dV} / \mathrm{dt}$ noise shielding function.

Fig. 4 The waveform of the proposed level shifter, (a) the low-to-high operation, (b) dV/dt noises shielding function when IN is high.
For example, Fig. 4 (b) shows the proposed level shifter's waveform during shielding positive and negative $d V / d t$ noises. When IN is high, $\mathrm{V}_{\mathrm{A}}-\mathrm{VSSH}$ is low and $\mathrm{V}_{\mathrm{B}}-\mathrm{VSSH}$ is equal to VDDL. When the negative $d V / d t$ noise comes, V_{A}-VSSH and V_{B}-VSSH rise. V_{B}-VSSH does not exceed VDDL+ V_{F} due to the M8's body diode. In this situation, V_{B}-VSSH is always higher than the INV2's triggering voltage and V_{R} also keeps high. The variation voltage of $\mathrm{V}_{\mathrm{A}}-\mathrm{VSSH}$ is $\Delta \mathrm{V}_{\mathrm{A}}$. When $\Delta \mathrm{V}_{\mathrm{A}}$ is lower than INV1's triggering voltage, V_{S} remains low. Then, OUT is still high. When $\Delta \mathrm{V}_{\mathrm{A}}$ exceeds the INV1's triggering, V_{S} becomes high. Two inputs of Latch are high, so OUT remain high. When the positive $d V / d t$ noise comes, the operation is similar to the above.

Therefore, when IN is high, the proposed level shifter's output OUT always remains unchanged whether any $d V / d t$ noises happens. Then, the proposed level shifter realizes the $d V / d t$ noise shielding function. When IN is low, a similar situation also happens. Therefore, the proposed level shifter detects nodes A and B's voltage variation by logic gates INV1/INV2 and NAND1/NAND2 to determine whether there are large $d V / d t$ noises. The proposed level shifter can shield the $d V / d t$ noise from disturbing the output OUT.

The proposed level shifter is simulated under a $0.5 \mu \mathrm{~m}$ BCD process. VSSH is 400 V , and VDDL is 5 V . Fig. 5 simulates the proposed level shifter's $d V / d t$ noise shielding function at the $\pm 250 \mathrm{~V} / \mathrm{ns} d V / d t$ noise. The simulation result shows that nodes A and B have the same voltage variation due to $d V / d t$ noise, while input signals S and R of Latch only appear high. Therefore, the proposed level shifter's output OUT could not be disturbed by $d V / d t$ noises. This can illustrate that the proposed level shifter has a shielding function to $d V / d t$ noise, which is also suitable for other power supply voltages and processes. Fig. 6 is the simulation result of the proposed level shifter's rising and falling delay, realizing a 1 ns rising and 1.4 ns falling delay time under a 400 V power supply.

Fig. 5 Simulation results of $\mathrm{dV} / \mathrm{dt}$ noise immunity.

Fig. 6 Simulation results of delay time.
Table 1. Comparison of HV Level shifters.

	$[1]$	$[3]$	$[4]$	This Work
Year	2019	2021	2021	2022
Process	$0.18 \mu \mathrm{~m}$ CMOS	$0.18 \mu \mathrm{~m}$ SOI	$0.5 \mu \mathrm{~m} \mathrm{BCD}$	$0.5 \mu \mathrm{~m} \mathrm{BCD}$
Voltage (V)	50	200	30	400
+ Slew rate	200	200	250	$[?]$
$(d V / d t)$			$[?]$	$[?]$
-Slew rate	$[?]$	200		0.66
$(d V / d t)$		0.67	0.044	1.2
Delay (ns) ${ }^{a}$ FOM	0.53	0.058		0.019

${ }^{a}$ FOM from [1]: ns/(um. V).
Table 1 shows the comparison of HV level shifters. In [1] and [4], the large positive $d V / d t$ immunity and infinite negative $d V / d t$ immunity are achieved under tens of voltages supply voltage. As the power supply voltage increases, $d V / d t$ noise interference also gradually increases. Then, $d V / d t$ immunity technologies applied in the LV field is no longer applicable. In [3], the HV level shifter realizes the $200 \mathrm{~V} / \mathrm{ns} d V / d t$ immunity under a 200 V power supply. However, the special process, SOI process, is used in [3]. In this paper, the proposed level shifter can shield both positive and negative $d V / d t$ noise, and infinite $d V / d t$ immunity, which is not influenced by processes and power supply voltages. At the same time, FOM is used to evaluate the HV level shifter's response speed. In Table I, the proposed HV level shifter has the smallest FOM. Therefore, the proposed level shifter can still achieve the enough response speed under the 400V power supply.

Conclusion: This paper proposes the HV level shifter with $d V / d t$ noises shielding function. The $d V / d t$ noise is shielded by logic gates without the use of complex auxiliary circuits. Therefore, the proposed level shifter's $d V / d t$ noise immunity tends to infinity and is not affected by the supply voltage and process size. Simulation results of $d V / d t$ immunity and delay time are implemented in a $0.5 \mu \mathrm{~m} \mathrm{BCD}$ process, realizing the $d V / d t$ noise shielding function and no more than 1.5 ns delay time under a 400 V power supply. The proposed level shifter solves the problem that the supply voltage and process sizes could weaken the existing technologies to improve $d V / d t$ immunity.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under Grant No. 62074028 and No. 61674025.

Funding information : National Natural Science Foundation of China under Grant No. 62074028and No. 61674025.

Conflict of interest : None.
Data availability statement : Not applicable.
? 2022 The Authors. Electronics Letters published by John Wiley \& Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

References

1. Liu, S. J., et al.: A new design technique for sub-nanosecond delay and $200 \mathrm{~V} / \mathrm{ns}$ power supply slewtolerant floating voltage level shifters for GaN SMPS. IEEE Transactions on Circuits and Systems I: Regular papers, 66 (3), 1280-1290(2019)
2. Yang, et al.: $120 \mathrm{~V} / \mathrm{ns}$ output slew rate enhancement technique and high voltage clamping circuit in high integrated gate driver for power GaN FETs. European Solid-State Circuits Conference (ESSCIRC), Graz, Austria, 2015
3. Nguyen, et at.: A versatile 200V Capacitor-Coupled Level Shifter for Fully Floating Multi-MHz Gate Drivers. IEEE Transactions on Circuit and System II: Express Briefs, 68(5), 1625-1629(2021)
4. Cao, et at.: Design Techniques of Sub-ns Level Shifters with Ultra-high dV/dt immunity for Various wide-bandgap Applications. IEEE Transactions on Power Electronics, 36(9), 10447-10460(2021)
