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Abstract

Standard convolution is difficult to provide an effective fog feature for visibility estimate tasks due to the fixed grid kernel

structure. In this paper, a multiscale deformable convolution model (MDCM) is proposed to extract features that make

effectively sampling discriminating features from the atmospheric region in foggy image. Moreover, to enhance performance we

use RGB-IR image pair as observations and design a multimodal visibility range classification network based on the MDCM.

Experimental results show that both the robustness and accuracy of visibility estimate performance are raised beyond 30%

compared to standard convolutional neural networks (CNNs).
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Standard convolution is difficult to provide an 
effective fog feature for visibility estimate tasks 
due to the fixed grid kernel structure. In this paper, 
a multiscale deformable convolution model 
(MDCM) is proposed to extract features that make 
effectively sampling discriminating features from 
the atmospheric region in foggy image. Moreover, 
to enhance performance we use RGB-IR image 
pair as observations and design a multimodal 
visibility range classification network based on 
the MDCM. Experimental results show that both 
the robustness and accuracy of visibility estimate 
performance are raised beyond 30% compared to 
standard convolutional neural networks (CNNs). 

Introduction: Image visibility estimation is a method to 
determine the visibility range according to the atmospheric 
transparency in the image scene. Because of the strong 
ability of CNNs to describe image features, image visibility 
estimate based on deep learning has become a research 
hotspot. For example, Li, et al. [1] used AlexNet [2] to 
extract features and designed a GRNN for visibility 
evaluation based on these deep learning features. You, et al. 
[3] used CNN-RNN to feature extraction and made a 
relative visibility evaluation by relative SVM. Palvanov, et 
al. [4] proposed multi-branch parallel network to enhance 
the accuracy of visibility estimate. Song, et al. [5] proposed 
a deep label distribution model to realize effective and 
efficient visibility estimation. The kernel used in the above 
methods were fixed regular grid structures.  

Fig.1 shows visualization [6] results under different 
convolution models including standard convolution and 
proposed multiscale deformable convolution model as 
Fig.1(a) and Fig.1(b) shows respectively. We can find that 
the key features of standard kernel are concentrated in non-
atmospheric areas, such as buildings and trees, like Fig.1(d) 
shown. In this paper, to extract effective features directly 
from the atmospheric region in the image, a channel 
attention model is utilized to adaptively merge the offset 
regions of different scale deformable convolution kernel [7] 
for completing multiscale deformable convolution model 
(MDCM), like Fig.1(b) shown. As a result, MDCM can 
directly use the shape and transparency of the atmospheric 
area to estimate and classify the visibility range like Fig.1(e) 
shows.  

 

Fig 1 Feature visualization results of various convolution kernels. 

Multimodal visibility estimation based on MDCM: Fig.2 
shows an illustration of multiscale deformable convolution, 
the grid R3×3 and R5×5 respectively defines the two different 
field sizes. R3×3={(-1,-1),(-1,0),…,(1,1)} defines a 3×3 
kernel with dilation 1 and R5×5={(-2,-2),(-2,-1),…,(2,2)} 
defines a 5×5 kernel with dilation 2. The output feature 
y3×3(P0) on the top 3×3 kernel convolution branch is 

𝒚 × (𝑷 ) = ∑ 𝑤 ×𝑷𝒏∈𝑹𝟑×𝟑
 (𝑷𝒏) ∙ 𝐱(𝑷𝟎 + 𝑷𝒏 + ∆𝑷𝒏

𝟑×𝟑)  (1) 

where Pn
3×3 enumerates the locations in R3×3 and ∆Pn

3×3 is 
the corresponding offset, n∈[1,9]. x(P) is P position pixel 
value and w3×3 (Pn) is kernel weight value. Similarly, the 
down branch 5×5 kernel convolution feature y5×5(P0) is 

    𝒚 × (𝑷 ) = ∑ 𝑤 ×𝑷𝒏∈𝑹𝟓×𝟓
 (𝑷𝒏) ∙ 𝐱(𝑷𝟎 + 𝑷𝒏 + ∆𝑷𝒏

𝟓×𝟓) (2) 

where Pn
5×5 enumerates the locations in R5×5 and ∆Pn

5×5 is 
the corresponding offset, n∈[1,25]. x(P) is P position pixel 
value and w5×5 (Pn) is 5×5 kernel weight value. Therefore, 
the output of MDCD is the combination of two-scale kernel 
deformable convolution results. 

𝒚 (𝑷 ) = 𝑤(𝒌𝟑×𝟑
𝒎 ) ∙ 𝒚𝟑×𝟑(𝑷 ) + 𝑤(𝒌𝟓×𝟓

𝒎 ) ∙ 𝒚𝟓×𝟓(𝑷 )   (3) 

where, w(k3×3
m) is the channel important weight of the m-

th 5×5 convolution kernel and w(k5×5
m) is the channel 

important weight of the m-th 5×5 convolution kernel. They 
are both assigned from a block attention module [8]. 

 

Fig 2 Illustration of multiscale deformable convolution. 
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Fig 3 The structure of multimodal visibility range estimate network. 

The main structure of the proposed multimodal visibility 
deep learning model as Fig.3 shows. The feature extraction 
streams consist of infrared feature stream and visible 
feature stream, which are connected in parallel to ensure 
the accuracy and robustness of the parallel network as 
whole during classification. It receives an input visible-
infrared image pair, classifies them, and produces a 
visibility range. 

The structures of the infrared and visible feature streams 
are identical, but their corresponding inputs are infrared 
and visible images, respectively. The two streams both 
consist of three convolutional layers and two MDCMs. 
Then feature maps of two streams are concatenated and 
forwarded to a convolutional block attention module 
(CBAM) [8].  Finally, the CBAM weighted feature map is 
aggregated by global average pooling and forwarded to a 
fully connected layer then fed into the final classification 
layer, in which the softmax function is used. 

Experimental Results: To evaluate and verify the proposed 
method using real-world images, a Hikvision binocular 
camera is used to build the experimental dataset, with a raw 
image pair consisting of a visible (1092×1080) and an 
infrared image (384×288). We then use a visibility meter to 
create corresponding visibility range labels for all of the 
experimental image pairs as Fig.4 shows. As a result, a 
dataset consisting of 5208 RGB-IR image pairs with a 
384×288 resolution is collected as our dataset that covers 
ranges from 0 km to 10 km, presented with 7 classes. With 
the number of classes increase the visibility becomes worse. 

 

Fig 4 Experimental devices and an example of the raw data. 

To measure accuracy, we employ the average accuracy 
of 5 times performance and a variance score is utilized as a 
robustness measure. The comparison experiments are set 
up as below. First, the experimental dataset is randomly 
divided into training and test data by 50%-50%. Then, all 

comparison models are trained with a random initial 
network parameter based on the training data and the 
trained models are employed in visibility classification and 
their accuracy is recorded. Finally, we repeat this procedure 
for 5 times and evaluate the performance using the pre-
defined two measures. 

To fairly evaluate the performance of the proposed 
MDCM and other conventional methods, we use two layers 
backbone network and apply three different convolution 
kernels including MDCM, DCN [7] and standard fixed grid 
kernel [9] as the comparison object to visibility range 
classification task with our dataset. The experimental 
results are shown in Table 1. It clear that MDCM improves 
the accuracy by 36% compared with standard convolution. 

Table 1. Performance for visibility estimate with different kernel. 

Kernel type RGB IR 

Standard convolution [9] 59.4% 65.57% 

Deformable convolution [7] 90.1% 91.0% 

Proposed MDCM 96.4% 96.8% 

Why can proposed MDCM greatly improve the visibility 
rage classification? Fig.5 shows the visualization results of 
the convolution features for three kinds of kernels under 
RGB-IR input image pairs. By comparison, the key 
features of fixed grid convolution kernel are all 
concentrated in the non-atmospheric area of the image, 
such as buildings or trees. For deformable convolution 
kernel, the key feature points of the first and the third input 
images are extracted from the atmospheric region, but the 
feature extraction regions of rest input images are the same 
as the standard convolution. Obviously proposed MDCM 
can effectively use CBAM [8] to adjust the position of each 
kernel element, so that most of the key feature extraction 
areas are concentrated in the atmospheric area. That is, the 
visibility feature can be described directly by using the 
atmospheric color, transparency and shape information. 

 

Fig 5 Feature visualization with different convolution type kernel 
based on visible and infrared image observations. 

To illustrate the advantage of multimodal observations 
for visibility range classification, Fig.6 shows we apply 
five different models and evaluate their performance of five 
training result with random initial network parameters.  
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Fig 6 Robustness performance from 5 training runs for the 
different models. 

The comparison shows that the accuracy of the single 
input model is easily affected by the initial weight value. 
Therefore, the curve shows an obvious oscillation 
phenomenon just like “RGB & two layers CNN” and “IR 
& two layers CNN” shows. The multi-modal input 
significantly improves the amplitude of oscillation, just like 
“RGB-IR & fusion CNN” and “RGB-IR & fusion CNN & 
DCN”. Especially with the help of MDCD, the accuracy of 
the visibility model is little affected by the initial weight of 
the network, and its curve is relatively flat like “RGB-IR & 
fusion CNN & MDCD” shows. 

We compare our proposed multimodal network with 7 
different deep learning models for the task of visibility 
range classification including a classical two layers CNN 
model with different inputs (RGB, IR), AlexNet [2], 
ResNet [11], CNN-RNN [3], VisNet [4] and a feature level 
fusion model FusionNet [10] with RGB-IR input.  

Table 2. Performance of visibility range classification model. 

Model Accuracy Robustness 

RGB & CNN (two layers) 59.4% 0.0491 

IR & CNN  (two layers) 65.5% 0.0657 

RGB & AlexNet [3] 83.24% 0.0212 

RGB & Resnet [11] 85.39% 0.0091 

RGB & CNN-RNN [3] 82.90% 0.0199 

RGB & VisNet [4] 86.53% 0.0072 

RGB-IR & FusionNet [10] 95.70% 0.00238 

Proposed model 99.6% 0.00001 

Table 2 shows that the visibility model based on single 
input image and simple network structure has the lowest 
accuracy. The complex network structure can improve the 
accuracy of visibility model by 17% - 20%. It also shows 
that the model based on multimodal input image combined 
with feature fusion network can improve the accuracy by 
more than 30%. The proposed multimodal visibility model 
is shown to achieve the highest accuracy and robustness 
compared to other conventional methods. 

 

Conclusion: In this paper, the influence of convolution 
kernel pattern on visibility range classification was deeply 
analyzed and discussed. The visibility model with 
traditional fixed grid convolution kernel found the 
sampling area of key feature points was concentrated in the 
non-atmospheric area of the image, such as buildings and 
trees. That is, those visible and texture rich areas in the 
scene were used as the basis for visibility representation. 
However, atmospheric transparency, color and boundary 
shape were found as the direct feature to describe visibility. 
Hence, a multiscale deformable convolution kernel was 
established. Experiments showed that the proposed 
MDCM can effectively concentrate most of the sampling 
areas of key features in the atmospheric area of the image. 
Moreover, we built and demonstrated a multimodal 
visibility model based on MDCM and RGB-IR input, 
which significantly improved the accuracy and robustness 
of visibility range classification. 
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