Exploring of catalytic oxygen reduction reaction activity of lattice carbons of vanadium and niobium doped nitrogen codoped carbon nanotubes by density functional theory

Anton Kuzmin¹ and Bagrat Shainyan¹

¹AE Favorsky Irkutsk Institute of Chemistry SB RAS

May 30, 2022

Abstract

The oxygen electroreduction mechanism on the V- and Nb-doped nitrogen-codoped (6,6)armchair carbon nanotube with incorporated MN_4 fragment has been studied using the ω B97XD and PBE density functional theory approaches. The metal center in MN_4 fragment and the adjacent NC=CN double bond (C_2 site) of the support have been revealed as active centers. The metal active centers turned out to be irreversibly oxidized at the first step of ORR affording stable O^{*}, 2O^{*}, or O^{*}HO^{*} adsorbates depending on the applied electrode potential U, that makes them no longer active in ORR. Therefore, the C_2 site comes at the forefront in ORR catalysis. Among the metal oxidized forms $M(O)N_4$ -, $M(O)(O)N_4$ - and $M(O)(OH)N_4$ -CNT, the C_2 site of the latter turned out to be most active for 4e dissociative ORR. For both metals the last protonation/electron transfer step, HO^{*} + H^{*} = H₂O, is the rate-limiting step. The alternative hydrogen peroxide formation is not only thermodynamically less favorable but also kinetically slower than the $_{4e}$ dissociative ORR route on the C_2 site of model $M(O)(OH)N_4$ -CNT catalyst.

Hosted file

001 IJQC_VNbN4CNT.docx available at https://authorea.com/users/485726/articles/571026exploring-of-catalytic-oxygen-reduction-reaction-activity-of-lattice-carbons-ofvanadium-and-niobium-doped-nitrogen-codoped-carbon-nanotubes-by-density-functionaltheory