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Abstract

We derive a Bayesian model to forecast the continuation of a cumulative progression of records. We show that the model

compares favourably to past least-square prediction models for records in running events. We also check the validity of the

model for the case where we have access to the underlying attempts, using data from athletic events in the Olympics.

Highlights

• We explain how to perform Bayesian inference for time series where each data point is the cumu-
lative maximum (or minimum) of an i.i.d. series.

• We compare the results of this framework to a classic minimum mean square error (MMSE)
frequentist approach. We use world record data from six athletic events. We find a similar performance
between the bayesian mean posterior estimate and the frequentist approach in terms of mean squared
error.

• We explore the effect of the choice of distribution of attempts. We find that assuming a Weibull
distribution marginally outperforms a Gaussian distribution and that both robustly outperform a
Gumbel distribution of attempts.

• We forecast world records for 11 categories of athletic events for the 2022 to 2032 period.
• We introduce fmax, a Python open-source package to model and forecast time series of cumulative

minima and maxima. The package can be found at https://github.com/jlindbloom/fmax.

How often and by how much are Olympic records beat? What score do we expect future machine learning
systems to attain for classification tasks in the absence of new breakthroughs? With what probability will
the fasted speed run for our favorite videogame be beaten within the next year?

In situations such as these, we are interested in characterizing how a historical record has evolved and will
evolve in the future. And while properties of order statistics such as the maximum over a set of random
variables are well-studied, the running maximum (or minimum) of a time series is markedly less so.

An example of such work is presented in (Tryfos & Blackmore, 1985), in which the authors present a model
for the world record in six major running events using an i.i.d. distribution for attempts. In this article,
we present the corresponding Bayesian approach to such models. We use this model to derive predictions
for the men’s and women’s data for the same events considered in (Tryfos & Blackmore, 1985) and show
comparable performance in terms of the squared error given the actual records that followed.

We also discuss the effects of the choice of attempt distribution. We find that a Weibull distribution
gives the best fit in terms of loglikelihood, marginally outperforming a Gaussian distribution and robustly
outperforming a Gumbel distribution.

Finally, we provide a forecast of records in the next decade for the 11 categories of athletic events we collected
data on.
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Previous work

(Tryfos & Blackmore, 1985) develops the minimum mean square error (MMSE) estimator for a series of
cumulative minimums. They derive the estimator for both a normal distribution and extreme value distri-
butions of attempts. In particular, they apply their approach to forecast the world records of six running

events, assuming an underlying Gumbel distribution with density f (x) = exp (x−µσ − e
x−µ
σ ) 1

σ . We use this
article as a basis to compare our approach. In section we show how our approaches compare using the same
data as the authors.

(Smith, 1988) expands the work of Tryfos and Blackmore to derive the maximum likelihood estimator for a
series of cumulative minimums where the attempt distribution is the sum of an i.i.d. random variable Xn

and a nonrandom drift trend.

Yn = Xn + cn

They consider random distributions including the Gaussian, Gumbel and Generalized Extreme Value (GEV)
distributions. The drift trends considered include linear drift, quadratic drift, and exponential decay models.
The author applies the method to model records in the mile and marathon races.

We could in theory adapt their approach assuming a zero-drift trend cn = 0. However, in practice with
the data, we considered and in short time scales this results in constant extrapolated forecasts Ŷn+k = Yn.
Future work may include extending the Bayesian framework presented in this paper to the case of non-zero
drift and comparing it to this paper.

(Smith & Miller, 1986) follow Smith by considering a Gumbel model with linear drift, but work within a
state-space approach to explicitly construct the forward-looking predictive distribution for the model. They
also consider a Bayesian formulation, applying their method to the forecasting of athletic records similar to
Tryfos and ourselves.

(Wergen et al., 2013) focuses on the related problem of modeling the probability that timestep n will be a
new record given historical data. The authors assume a linear drift in the attempts.

(Kim & Seo, 2020) derive the Jeffrey prior for the Gumbel distribution, and derive the density function
of the conditional forecasted distribution of records of i.i.d. Gumbel variables given previous observations.
They compare their result to an ARIMA and DLM approach. As we will discuss in this article, the Gumbel
distribution seems to underperform relative to the Weibull and Gaussian distribution, suggesting a natural
extension to their work.

Beyond the aforementioned articles, we could not find much work on forecasting cumulative records, espe-
cially from a Bayesian perspective. This points to a gap in the literature that we aim to fill.

The General Model

In this section, we introduce a general framework for deriving the likelihood of the distribution.

First we establish the notation we will use through the paper. Then we derive the likelihood functions for a
cumulative distribution of maxima and minima. These are, respectively:

LY1:n(y1, . . . , yN ) =
∏
i∈R

fX(yi)
∏
i 6∈R

FX(yi)

2
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LY1:n(y1, . . . , yN ) =
∏
i∈R

fX(yi)
∏
i 6∈R

(1− FX(yi))

Finally, we show how we can use these results to forecast future records.

Notation

Suppose we would like to model some time series for the running record for some task, where the record is
the maximum or minimum over some sequence of attempts. We’ll first consider the case where the record
is of a minimum - the derivation for the maximum requires only a slight modification. We assume that
the record is a continuous quantity, rather than discrete. Let {Xt}t ∈N denote a discrete-time stochastic
process representing the results from some sequence of attempts at a task. We assume that the Xi are i.i.d.
according to some random variable X with a common CDF given by FX and PDF given by fX . When we
make inferences about X we will assume that X lies in some parametric family parameterized by θ ∈ Θ.

Our observed data of the record is some time-series {r1, r2, . . . , rn} where n is the number of time periods for
which the record has been observed. In the case the record is of a minimum, note that we must have ri ≥ rj
whenever i ≤ j. To match our observed data, we define a sequence {Yt}t ∈N where

Yi := max {X1, . . . , Xi } .

We treat {r1, r2, . . . , rn} as noiseless, truncated observations along some sample path ω =
{r1, r2, . . . , rn, . . .}.

The Likelihood Function

To perform Bayesian inference on the model parameters θ, we need to be able to compute the likelihood
function. The marginal distribution of each record is easy enough to derive:

Lemma 1: Marginal distribution of a historical record

Let X1, . . . , Xn be a collection of i.i.d. i.id random continuous variables with PDF fX and CDF FX , and
define Yn := maxi≤nXi. Then the marginal likelihood of Yn is equal to:

LYn(on) = n[FX(on)]n−1fX(on)

Proof: The CDF of Yn is:

FYn(on)amp; = P (Yn ≤ on) = P (max{X1, . . . , Xn} ≤ on)

amp; =
∏
i≤n

P (Xi ≤ on)

amp; =
∏
i≤n

FX(on)

amp; = [FX(on)]n

Differentiation of the CDF gives us the desired result. �

However, to use all the data available to us in the inference we need to derive the joint likelihood of all the
cumulative records:

3
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fY1:n(y1, . . . , yn|θ)
where fY1:n

(·|θ) denotes the joint density of Y1, . . . , Yn, given parameters θ. Since

max {X1, . . . , Xj , Xj+1} = max {Xj , Xj+1}

for any j, we conclude that each of the Yi are independent of all of the previous except for Yi−1. The
likelihood function must then factorize like

fY1:n
(y1, . . . , yn|θ) = fY1

(y1|θ)
n−1∏
j=1

fYj+1|Yj=yj (yj+1|θ).

Now we are ready to derive the likelihood function .

Proposition 1. Let X1, . . . , Xn be a collection of i.i.d. continuous random variables with common PDF fX
and CDF FX , and define Yj := maxi≤j Xi. We assume that fX ∈ C1. Then the joint likelihood for the
sequence Y1, . . . , YN is given by

LY1:n
(y1, . . . , yN ) =

∏
i∈R

fX(yi)
∏
i 6∈R

FX(yi)

where R ⊆ {1, . . . , n} is the set of indices where the record was broken and a new maximum was established.

Proof : See appendix. �

Proposition 2. Let X1, . . . , Xn be a collection of i.i.d. continuous random variables with common PDF fX
and CDF FX , and define Yj := mini≤j Xi. We assume that fX ∈ C1. Then the joint likelihood for the
sequence Y1, . . . , YN is given by

LY1:n
(y1, . . . , yN ) =

∏
i∈R

fX(yi)
∏
i 6∈R

(1− FX(yi))

where R ⊆ {1, . . . , n} is the set of indices where the record was broken and a new minimum was established.

Proof: Analogous to proposition 1.

Forecasting future records

Given the likelihood, we can use a Bayesian posterior sampling method like the No-U-Turn Sampler (NUTS)
(Homan & Gelman, 2014) to sample the posterior distribution of the model parameters θ. We draw samples
from the conditional distribution of the records given the parameters (the posterior predictive distribution),
and compare simulated data generated from these samples to the actual data for a sanity check of our model.

Given the distribution over the parameters, we can also generate n new samples of the attempt distribu-
tion XN+1, . . . , XN+n and take the cumulative maximum to generate a distribution of records in future
timesteps.

To help us and others with this process, we have developed and released fmax, a Python library built on
top of PyMC3 (Salvatier et al., 2016) to model and forecast future series. This expands on our previous
article (Sevilla & Lindbloom., 2021).

4
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Empirical results

With our theoretical framework established, we now study its applications with real-world data.

We will study the application of the framework to extrapolate the world record times for six athletic events
(mile run, 1000 meters, 5000 meters, 10000 meters, 20000 meters, and marathon).

This is the same data discussed in (Tryfos & Blackmore, 1985). We extend the dataset they used with data
up until the present day, and also include data from the corresponding women’s events. We gathered the
data from the World Athletics sports federation. A snapshot of the data is available in Figure 1.

Figure 1: World records for 11 categories of athletic events. The vertical axis indicates the record times in
seconds. Source: [X]

We use this data to:

1. Compare the results of the Bayesian posterior with a Gaussian attempt distribution to the reported
results of the MMSE estimator.

2. Study the effects of modeling the problem using different attempt distributions and parameter priors.
3. Produce forecasts for the record progressions for each event over the course of the next decade.

Comparison with the Tryfos MMSE approach

(Tryfos & Blackmore, 1985) provided forecasts for future records of the six men categories between 1983 and
1997, for their model fit to the records in the previous years 1968 to 1982. Their approach is to derive the
Minimum Mean Square Error (MMSE) estimator assuming an underlying Gumbel distribution of attempts.
Here we compare the results from their approach to an analogous Bayesian model using our approach with a
Gumbel attempt distribution. Note that the MMSE estimator of (Tryfos & Blackmore, 1985) is a maximum
likelihood estimate that does not incorporate a prior for the solution. To make an accurate comparison, we

5
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opt to use highly uninformative priors for the parameters of the underlying Gumbel attempt distribution
used in our approach.

Consider the mile run event. In Figures 2, 3, and 4, we present the results of the Bayesian model on
the mile run in comparison to the MMSE estimator. Here we have used the No-U-Turn Sampler (NUTS)
implementation of PyMC3 to compute 10 independent chains of 25,000 samples each, with posterior statistics
calculated using samples from all chains.

Figure 2: Histograms of samples of the marginal posterior distributions on the mean and standard deviation
of the underlying Gumbel attempt distribution for the mile run.

Figure 3: The posterior predictive distribution over the historical records for the mile run, using a Gumbel
attempt distribution. The red curve tracks the historical record, while the blue curves summarize the
posterior.

6
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Event Tryfos MMSE Bayes Mean Constant Baseline

Mile Run 1.923 1.135 3.425
1000 Meters 0.310 1.461 0.000
5000 Meters 43.371 41.053 65.494
10000 Meters 496.971 427.221 607.342
20000 Meters 192.800 108.640 383.957
Marathon 3500.800 981.312 5341.133

Figure 4: The posterior predictive distribution over the future records for the mile run, using a Gumbel
attempt distribution. The red curve tracks the historical record, while the blue curves summarize the
posterior. The actual observed record over the forecasted period (1983-1997) is shown in black.

We repeat this same calculation for each of the remaining events in the Tryfos dataset, but with only 5000
posterior samples per chain since we observe little difference in our results compared with the longer chains.
To compare the performance of the Bayesian posterior with the MMSE, we compute the MSE of both the
posterior mean and the MMSE estimator compared to the actual observed records over the forecasted period
(1983-1997). We also include in our comparison a constant baseline estimator that always predicts the last
observed record.

The performance of the Tryfos MMSE estimator and the mean of the Bayesian posterior are comparable,
both strictly better than the constant baseline (except for the 1000 meters event, where the observed record
saw no change during the hold-out period). The largest difference between the two predictors was observed
for the Marathon event, where the posterior mean estimator performed significantly better than both Tryfos
MMSE and the constant baseline. While the magnitude of the difference is partly driven by the scale of the
marathon times, in Figure 5 we see that the posterior median estimator correctly tracks the actual observed
records.

7



P
os

te
d

on
A

u
th

or
ea

28
M

ay
20

22
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
65

3
7
55

11
.1

50
61

36
9/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Figure 5: The posterior predictive distribution over the future records for the Marathon event, using a
Gaussian attempt distribution.

Our approach allows us to produce credence intervals to quantify the uncertainty in our predictions. In this
comparison, we cannot compare the credence intervals produced from the Trfyos MMSE estimator approach
with our approach since they were not stated alongside their predictions.

We emphasize that even though the Tryfos MMSE estimator approach can produce credence intervals, they
express uncertainty only in sampling variability and do not capture parametric uncertainty. Our approach
also captures parametric uncertainty in the fit of our model, which provides a possible explanation for why
the posterior mean estimator for the Marathon event performs better than the Tryfos MMSE.

Comparison of different attempt distributions

Our approach extends seamlessly to other attempt distributions. In this section, we repeat the same exer-
cise on the Tryfos dataset but instead consider the effect of varying the form of the attempt distribution.
Specifically, we compare the performance of a Gaussian attempt distribution with that of a Gumbel and of
a Weibull attempt distribution. For this experiment, we again choose uninformative priors for each of the
parameters of the underlying attempt distributions.

From our results, we cannot draw any strong conclusions about whether one of the underlying distributions
tends to perform better than the others. However, the model using a Weibull attempt distribution appears
to give a good balance between predictive accuracy and maximizing the average log probability.

These results match common sense - the Weibull distribution arises whenever we take the minimum out of
a series of samples from an i.i.d. distribution with a finite lower bound (Fréchet, 1927). At each time step,

8
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Gaussian Gumbel Weibull

Event Avg. Log Probability MSE Avg. Log Probability MSE Avg. Log Probability MSE

Men’s Mile Run -11.794 0.462 -33.634 1.135 -10.657 0.411
Men’s 1000 Meters -2.486 4.443 -2.333 1.461 -2.808 2.551
Men’s 5000 Meters -42.163 33.407 -238.417 41.053 -35.860 32.540
Men’s 10000 Meters -133.376 350.226 -21846.803 427.221 -77.867 393.207
Men’s 20000 Meters -16.289 213.791 -21.031 108.640 -16.481 198.684
Men’s Marathon -26.639 162.073 -39.445 981.312 -26.733 202.035
Women’s Mile Run -16.773 7.754 -18.008 0.865 -17.554 22.673
Women’s 1000 Meters -16.975 436.421 -16.120 93.398 -17.477 285.403
Women’s 5000 Meters -54.615 565.344 -166.077 668.257 -42.062 406.651
Women’s 10000 Meters -36.218 358.348 -40.090 2722.824 -36.177 2307.902
Women’s Marathon -17.989 7129.153 -18.243 24141.174 -17.620 346133.452

the attempt to beat the record reflects the minimum time out of all runners that year. Since runs cannot
obtain a time less than 0, the conditions are met for a Weibull distribution.

Predicting future records

In this section, we provide our best attempt at predicting the records for the next decade using our proposed
framework. We fit Weibull models using all available records since 1968, presenting forecasts for the years
2022-2032. We hope this will help evaluate the performance of the method a decade from now, and other
researchers who might want to benchmark their results against ours. We report our results for each year as
a credence interval. We highlight the 5%, 15%, 50%, 85%, and 95% quantiles of the prediction. An example
forecast is presented in Figure 6, and a panel of the forecasts for all of the men’s events is presented in Figure
7. Tables containing the forecasts for all events, as well as individual plots for each event, can be found in
Appendix B.

Figure 6: Forecast for the women’s mile run event, using a Weibull attempt model.

9
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Figure 7: A collection of forecasts for the men’s events. Full resolution plots available in Appendix B.

Conclusion

Predicting records is of paramount importance for science - with use cases ranging from predicting temper-
ature records to forecasting the development of new technologies.

In this article, we have developed a Bayesian account for predicting records. Our work is quite general and
extends to all situations in which the underlying attempts follow an i.i.d. distribution.

We have shown that our approach is competitive with a previous frequentist method by (Tryfos & Blackmore,
1985) in terms of MSE for predicting records in 6 athletic events.

We have also investigated the predictive accuracy of different attempt distributions on data for 11 athletic
events. While the conclusions aren’t clear-cut, the evidence suggests that the Weibull distribution results in
a better fit for the data in terms of a log-likelihood loss.

Using our method we have forecasted the records for these 11 athletic events for the period of 2022 to 2032.
We hope other researchers will be able to use this as a basis for comparison.

We have released an open-source PyMC3 package accompanying this paper, fmax. Researchers and practi-
tioners can use this framework to model record distributions using their own data.
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Appendix A: Proof of proposition 1
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To reason about the conditional density fYi+1|Yi=yi it is useful to consider the procedure of drawing a sample
of the corresponding random variable . Suppose at time t = j the observed record for the minimum is yj .
Then, given that the CDF of Xj+1 is FXj+1

= FX , the probability that the record Yj+1 exceeds yj is

P (Yj+1 ≥ Yj |Yj = yj) = 1− FX(yj)

and in this case we must have yj+1 = yj since the attempt doesn’t change the record for the minimum. In
the alternative case that Yj+1 is less than yj , a sample is drawn from the distribution of Xconditioned on
the event X ≤ yj . Let Zj denote a random variable that admits a PDF

fZj (z) =
1

FX(yj−1)
fX(z)χz≤yj−1

where χ denotes the indicator function. Then our sampling procedure can be summarized as

uamp;∼ Bernoulli(FX(yj)),

yj+1amp;∼

{
Zj , amp; if u = 1,

Constant(yj), amp; if u = 0.

From this expression it is clear that the random variable Yj+1|Yj = yj is a mixed random variable, meaning
that it consists of both a discrete and a continuous component. The PDF of such a random variable involves
Dirac delta functions and the CDF has jump discontinuities. Omitting its derivation (see the Appendix),
the likelihood function for a sequence of observed records {r1, r2, . . . , rn} can be expressed as

fY1:n
(r1, . . . , rn|θ)amp; =

(∏
j∈C

FX(rj−1)fZj (rj)

)( ∏
j∈D

(1− FX(rj−1))

)

amp; =

(∏
j∈C

FX(rj−1) · 1

FX(rj−1)
fX(rj)χrj≤yj−1

)( ∏
j∈D

(1− FX(rj))

)

amp; =

(∏
j∈C

fX(rj)

)( ∏
j∈D

(1− FX(rj))

)
where C denotes the set of time indices for the records which changed the running minimum and D denotes
the set of time indices for the records which didn’t change the running minimum. Note that we can determine
the sets C and D by checking successively checking whether or not arecord changed since the previous record.
Note also that we drop the factors χz≤yj−1

from the likelihood since they are redundant ; j ∈ C if and only
if rj ≤ yj−1. Presuming that we can evaluate the CDF and PDF of X for any θ, the evaluation of this form
of the likelihood is straightforward. If we seek a model for a running maximum rather than a minimum, we
can make a similar argument to find that the likelihood in this case becomes

fY1:n(r1, . . . , rn|θ)amp; =

(∏
j∈C

(1− FX(rj−1)) · 1

(1− FX(rj−1))
fX(rj)χrj≥yj−1

)( ∏
j∈D

FX(rj)

)

amp; =

(∏
j∈C

fX(rj)

)( ∏
j∈D

FX(rj)

)
with the appropriate modifcations in notation for switching to the maximum.
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Appendix B: Forecasts for all events using a Weibull attempt distribution.

The plots show the historical record in green, and the forecasted distribution in blue. In purple we show the
mean.

In the tables we include the 5%, 15%, 50%, 85%, 95% percentiles and the mean of the distribution for each
year between 2023 and 2032.

Figure 8: Forecast for the men’s mile run event, using a Weibull attempt model.

Men’s Mile Run
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 221.700 219.869 218.541 217.771 217.238 216.563 216.140 215.528 215.176 214.816
15% 223.130 223.032 222.037 221.249 220.630 220.089 219.710 219.338 219.067 218.806
50% 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.023
85% 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130
95% 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130 223.130
Mean 222.872 222.667 222.452 222.247 222.070 221.875 221.717 221.549 221.402 221.270
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Figure 9: Forecast for the men’s 5000 meter run event, using a Weibull attempt model.

Men’s 5000 M
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 746.244 735.782 731.595 727.079 723.798 721.009 719.030 717.754 715.459 714.333
15% 755.360 751.862 746.984 742.987 739.913 737.276 735.411 733.734 732.101 730.642
50% 755.360 755.360 755.360 755.360 755.360 755.360 755.360 753.827 752.492 751.146
85% 755.360 755.360 755.360 755.360 755.360 755.360 755.360 755.360 755.360 755.360
95% 755.360 755.360 755.360 755.360 755.360 755.360 755.360 755.360 755.360 755.360
Mean 754.027 752.664 751.529 750.305 749.156 748.189 747.294 746.391 745.469 744.723

Figure 10: Forecast for the men’s 10000 meter run event, using a Weibull attempt model.
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Men’s 10000 M
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 1549.133 1529.001 1515.671 1507.667 1499.729 1493.763 1488.453 1483.908 1480.733 1477.142
15% 1571.000 1560.467 1549.666 1541.676 1535.418 1530.620 1526.658 1522.914 1519.520 1515.662
50% 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1570.128 1566.447 1562.402 1559.364
85% 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000
95% 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000 1571.000
Mean 1567.684 1564.612 1561.785 1559.197 1556.670 1554.383 1552.431 1550.498 1548.441 1546.343

Figure 11: Forecast for the men’s 20000 meter run event, using a Weibull attempt model.

Men’s 20000 M
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 3346.052 3322.007 3306.363 3294.180 3286.358 3279.879 3271.824 3270.657 3265.552 3260.606
15% 3380.020 3366.939 3351.314 3341.700 3332.459 3326.468 3321.829 3317.942 3314.704 3309.275
50% 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3375.903 3372.039 3368.733
85% 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020
95% 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020 3380.020
Mean 3375.214 3371.503 3367.896 3364.506 3361.333 3358.737 3355.898 3353.788 3351.885 3349.399
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Figure 12: Forecast for the men’s Marathon event, using a Weibull attempt model.

Men’s Marathon
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 7210.013 7120.834 7072.999 7025.397 6995.733 6977.074 6949.472 6934.098 6913.576 6900.289
15% 7299.000 7282.595 7230.468 7191.317 7161.068 7141.663 7119.901 7100.728 7085.708 7074.286
50% 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7291.665 7281.740
85% 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000
95% 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000 7299.000
Mean 7285.462 7274.152 7264.177 7253.715 7244.807 7236.743 7227.567 7219.616 7211.340 7204.801

Figure 13: Forecast for the women’s mile run event, using a Weibull attempt model.
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Women’s Mile Run
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 241.485 234.801 231.596 229.318 227.781 226.558 224.863 223.427 221.937 220.941
15% 252.283 245.752 241.983 239.613 238.127 236.486 235.269 234.183 233.128 232.258
50% 252.330 252.330 252.330 252.330 251.367 249.670 248.360 247.266 246.249 245.535
85% 252.330 252.330 252.330 252.330 252.330 252.330 252.330 252.330 252.330 252.330
95% 252.330 252.330 252.330 252.330 252.330 252.330 252.330 252.330 252.330 252.330
Mean 250.877 249.520 248.320 247.274 246.355 245.462 244.665 243.919 243.170 242.562

Figure 14: Forecast for the women’s 1000 meter run event, using a Weibull attempt model.

Women’s 1000 M
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 123.219 115.159 110.267 106.359 103.893 101.900 100.132 98.667 96.914 95.522
15% 138.311 129.567 124.976 121.006 118.971 116.652 115.022 113.370 112.215 111.413
50% 148.980 148.980 144.257 141.208 138.617 136.360 134.727 132.935 131.534 130.445
85% 148.980 148.980 148.980 148.980 148.980 148.980 148.908 147.303 145.996 144.783
95% 148.980 148.980 148.980 148.980 148.980 148.980 148.980 148.980 148.980 148.980
Mean 144.572 141.231 138.629 136.306 134.407 132.723 131.338 129.911 128.699 127.696
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Figure 15: Forecast for the women’s 5000 meter run event, using a Weibull attempt model.

Women’s 5000 M
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 815.144 792.258 779.824 772.488 765.834 758.765 754.099 750.127 745.510 741.991
15% 846.620 831.699 818.445 809.310 801.140 794.899 790.372 786.619 782.870 780.149
50% 846.620 846.620 846.620 846.620 846.620 844.468 840.244 836.266 832.596 829.305
85% 846.620 846.620 846.620 846.620 846.620 846.620 846.620 846.620 846.620 846.620
95% 846.620 846.620 846.620 846.620 846.620 846.620 846.620 846.620 846.620 846.620
Mean 842.557 838.839 835.247 832.066 828.752 825.707 823.162 820.880 818.680 816.641

Figure 16: Forecast for the women’s 10000 meter run event, using a Weibull attempt model.
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Women’s 10000 M
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 1550.304 1448.169 1384.777 1345.584 1313.976 1292.429 1269.354 1248.860 1231.726 1215.167
15% 1720.029 1614.853 1549.713 1515.500 1479.115 1455.277 1432.242 1414.355 1393.739 1379.958
50% 1741.030 1741.030 1741.030 1735.545 1701.818 1676.206 1654.447 1635.369 1618.355 1602.198
85% 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030
95% 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030 1741.030
Mean 1715.697 1690.610 1668.621 1649.936 1630.922 1614.456 1599.926 1586.273 1573.312 1562.129

Figure 17: Forecast for the women’s marathon event, using a Weibull attempt model.

Women’s Marathon
Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
5% 6861.300 6359.315 6031.158 5803.483 5642.323 5550.896 5435.129 5310.331 5254.349 5185.546
15% 7826.202 7255.647 6913.038 6664.624 6488.961 6335.872 6245.672 6128.398 6048.550 5970.950
50% 8044.000 8044.000 8044.000 7922.313 7736.367 7582.565 7446.883 7336.415 7243.205 7144.597
85% 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000
95% 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000 8044.000
Mean 7880.817 7738.886 7604.671 7490.326 7385.662 7289.743 7206.064 7124.282 7050.443 6983.096
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