$k\-sparse signal recovery via unrestricted <math display="inline">\left|1-2\right-.$

Shaohua Xie¹

¹Sun Yat-Sen University

May 16, 2022

Abstract

In the field of compressed sensing, $\left|\left\{1-2\right\}\right\}$ -minimization model can recover the sparse signal well. In dealing with the $\left|\left\{1-2\right\}\right\}$ -minimization problem, most of the existing literatures use the DCA algorithm to solve the unrestricted $\left|\left\{1-2\right\}\right\}$ -minimization model, i.e. model $\left(??\right)$. Although experiments have proved that the unrestricted $\left|\left\{1-2\right\}\right\}$ -minimization model can recover the original sparse signal, the theoretical proof has not been established yet. This paper mainly proves theoretically that the unrestricted $\left|\left\{1-2\right\}\right\}$ -minimization model can recover the sparse signal well, and makes an experimental study on the parameter $\left|\left\{1-2\right\}\right\}$ in the unrestricted minimization model. The experimental results show that increasing the size of parameter $\left|\left\{1-2\right\}\right\}$ appropriately can improve the recovery success rate. However, when $\left|\left\{1-2\right\}\right\}$ is sufficiently large, increasing $\left|\left\{1-2\right\}\right\}$ will not increase the recovery success rate.

Hosted file

unrestricted-L1-L2.pdf available at https://authorea.com/users/482585/articles/569098--k-sparse-signal-recovery-via-unrestricted-ell_-1-2-minimization