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Abstract

The substantial increase in global population and climate change, among other factors have led to global food security and
supply chain challenges. The United Nations has laid out an agenda to sustainably achieve zero hunger by 2030 as one of
its sustainable development goals. However, sustainably achieving improved food yield has become a challenge as excessive
use of fertilizers has also led to adverse environmental impact. To address the aforementioned challenges, WisDM Green, an
artificial intelligence (AI)-based platform that aims to pinpoint and prioritize compound (e.g. biostimulants) combinations in
peat moss, is harnessed to sustainably improve the yield of Amaranthus cruentus (red spinach). In this proof-of-concept study,
from a pool of 8 compounds, WisDM Green-pinpointed combinations (6-Benzylaminopurine/Ethylenediaminetetraacetic Acid
Iron (III) and Humic Acid/Seaweed Extract) achieve 26.34±15.80 and 33.59±14.60 increase in %Yield, respectively. The study
also indicates that compound combinations may exhibit concentration-dependent synergies and thus, properly adjusting the
concentration ratios of combinations may further improve plant yield in the context of sustainable farming.
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Figure 1: ToC Figure. WisDM, an artificial intelligence-based platform, is harnessed to design and prior-
itize compound combinations to sustainably increase the yield of Amaranthus cruentus (red spinach). This
workflow enables the prioritization of WisDM Green-pinpointed combinations, such as humic acid in combi-
nation with seaweed extract, and these combinations were able to achieve 15-35% increase in the biological
yield of red spinach.

Introduction

Global food security challenges have become apparent due to multiple factors including a substantial increase
in the global population, climate change, and water scarcity.[1] By 2050, global food supply chains must
ensure sufficient nourishment for an estimated 9 billion people, which is 60% more than the demand at
present (Nations; Breene). This rising demand is partly due to shifts to richer diets (e.g. dairy, processed
food) in certain parts of the world, which have also included an increase in grain consumption (Breene;
Shi et al., 2021). Moreover, substantial climate change and land degradation have further exacerbated
food security globally (Fujimori et al., 2019; Hasegawa et al., 2018; Ramankutty et al., 2018; Smith et al.,
2020). Specifically, 11.1% of households in the United States were food insecure in 2018 and 12.7% were food
insecure in Canada, suggesting that the food security challenge is not specific to underdeveloped regions
(Long et al., 2020). This challenge has also been amplified as a result of the COVID-19 pandemic, as
availability, access, and stability of the food supply have been compromised (Zurayk, 2020). According to
the United Nations, nearly 2.37 billion people did not have access to an adequate food supply in 2020, which
accounted for a 15.6% increase from pre-pandemic times (nat). Therefore, continuous efforts to sustain an
increasingly stressed food supply chain both during and after the pandemic will be essential.
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In the context of agriculture, extensive efforts have been made to increase the production yield of crops.
Notably, the overapplication of fertilizers in an effort to enhance yield has been widely employed, resulting
in sub-optimal outcomes as well as fertilizer wastage (Good and Beatty, 2011; Yizong Huang, 2000). The
excessive use of fertilizers, specifically nitrogen-based formulations, has often resulted in adverse environ-
mental impact, such as soil degradation and harmful effects on aquatic life due to water pollution (Ahmed
et al., 2017; Qi et al., 2018; Kopittke et al., 2019; Khan et al., 2018). The emissions of nitrous oxide as a
result of microbial conversions have also directly contributed to climate change and global warming (Zhao
et al., 2019). Thus, an equilibrium between food security and sustainability must be achieved to meet the
demands of population growth while preventing further environmental deterioration.

Recent research strategies have applied advanced technologies including artificial intelligence (AI) and au-
tomation towards agriculture, especially crops, in attempt to achieve an equilibrium between sufficient food
supply and food production sustainability. For example, controlled-release fertilization strategies have re-
sulted in reductions in greenhouse gas emission and nitrogen leaching without compromising the overall
yield (Li et al., 2018; Sikora et al., 2020; Xiao et al., 2019; ul Haq et al., 2020; Wang et al., 2020). Fur-
thermore, multiple studies have harnessed AI to achieve precision agriculture, crop yield prediction, and
decision support in agriculture and supply chain management (Zhang et al., 2021; Kouadio et al., 2018;
Jung et al., 2021; Basso and Antle, 2020; Kim et al., 2019; Waleed et al., 2020; Geethanjali and Muralid-
hara, 2020; Ghasemi-Varnamkhasti et al., 2019). These approaches have demonstrated the feasibility and
potential benefit from intersecting agriculture and AI and thus, provide a new avenue towards digitized,
sustainable farming. Proposing an alternative approach to sustainably achieve improved crop yield, we re-
port the application of an optimization platform, termed WisDM Green, to simultaneously pinpoint suitable
compound combinations (e.g. biostimulants) in peat moss and pinpoint their concentration ratios that can
mediate positive effects on the yield of Amaranthus cruentus (red spinach), which was used for experimental
validation in this proof-of-concept study. Red spinach was selected for this study due to its short growing
season, manageable growing conditions and importantly, its rising popularity in healthy diets.

This work sought to overcome a pervasive challenge in yield enhancement without reliance on excessive
use of fertilizers. While a number of compounds have been proposed as potential mediators of improved
crop yield, the importance of pinpointing suitable compound combinations, and the respective concentra-
tion of each compound in these combinations is a key barrier towards yield enhancement. For example,
the role of compound concentrations in determining which compounds should comprise optimal combina-
tions creates prohibitively large parameter spaces that cannot be resolved through brute force, as the sheer
number of experiments required may be insurmountable. To overcome this challenge, WisDM Green in-
terrogated the interaction space from a pool of 8 compounds via an AI-discovered, second-order quadratic
series that describes the correlation between compounds and their corresponding biological response (e.g.
dry weight). The biomedical implications of this correlation were previously discovered in in vitro cellular
response to therapeutics using neural networks (Al-Shyoukh et al., 2011). Subsequently, this correlation
was validated in multiple in vitro and in vivo studies for biomedical applications ranging from oncology to
COVID-19 (Clemens et al., 2019; Lee et al., 2017; Rashid et al., 2018; Silva et al., 2016; Blasiak et al., 2020,
2021; Abdulla et al., 2020; Ding et al., 2019; Khong et al., 2020). The optimization of treatment outcomes
using the second-order quadratic series was further confirmed in prospective human studies (Kee et al., 2019;
Pantuck et al., 2018; Zarrinpar et al., 2016; de Mel et al., 2020). Due to the broadly demonstrated effective-
ness of this approach towards mediating optimal outcomes in living systems, this study sought to apply this
approach for multi-compound prioritization towards positive yield outcomes. It should be noted that previ-
ous studies have examined the role of a quadratic model towards optimizing drug combinations to achieve
optimal clinical outcomes. However, this current study aimed to bridge the multi-compound design input
with plant yield output. In addition, this current study has harnessed WisDM Green and associated drug
development-centric approaches to pinpoint unforeseen concentration-dependent compound interactions that
may actionably mediate yield improvement with a simultaneous reduction in the concentrations of certain
compounds towards sustainable implementation of this approach. Importantly, WisDM Green differs from
traditional AI-based approaches as it does not utilize any pre-existing compound information, big data,
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or in silico modeling. Instead, WisDM Green harnesses experimentally obtained data (e.g. biological yield
or dry weight) to determine suitable compound combinations and their respective concentration ratios via
prospective validation studies. Furthermore, WisDM Green also differs from the response surface methdol-
ogy (RSM), which has been used to modulate input variables (e.g. magnetic field, minerals) to improve
growth and yield in plants (Iqbal et al., 2013; Poothong, 2020). In this study, WisDM Green simultaneously
interrogated the interaction space of multiple compounds at various concentration ranges, pinpointing effec-
tive combinations based on experimentally-detected compound interactions. However, RSM only assesses 2
input variables at a time to determine the response, or interaction, of the input factors (e.g. magnetic field).
Nonetheless, RSM has laid important foundations for paired interactions in farming applications.

In this study, an initial pool of 8 compounds that have previously demonstrated feasibility in enhancing
plant yield was finalized using a decision tree. These 8 compounds included Potato Starch (Starch), Sucrose,
Humic Acid (HA), Citric Acid (CA), Ethylenediaminetetraacetic Acid Iron (III) (EDTA-Fe), Adenine, 6-
Benzylaminopurine (6-BAP), and Seaweed Extract (SWE). Subsequently, WisDM Green assessed their in-
teractions in red spinach that were grown with liquid fertilizers (Starxgrow) to pinpoint unique compound
interactions that may lead to improved yield. WisDM Green harnessed prospectively obtained biological yield,
or dry weight, data of red spinach grown in a set of compoundcombinations and subsequently, formulated a
ranked list of optimal combinations based on percent yield (%Yield), which is the percentage difference in
biological yield between treated and control plants. The streamlined workflow to determine compound com-
binations is outlined in Figure 2. Notably, 6-BAP/EDTA-Fe and HA/SWE combinations were able to
achieve 26.34±15.80 and 33.59±14.60 increases in %Yield, respectively. Further interaction analysis sugges-
ted that compound combinations may have concentration-dependent interactions. Specifically, HA/SWE at
concentrations 2 g L-1 and 12.5% v/v, respectively, resulted in 33.59±14.60 increase in %Yield; however,
adjusting the concentration ratio to 0.25 g L-1 and 100% v/v, respectively, HA/SWE resulted in 9.36±14.42
decrease in %Yield. Concentration-dependent synergies observed in this study suggest that WisDM Green-
pinpointed combinations containing lower or higher concentrations of specific compounds may potentially
improve yield outcomes compared to traditional titration or high concentration approaches. Moreover, the
nutrition profiles of red spinach grown with WisDM Green-pinpointed compound combinations had no sta-
tistically significant difference when compared to red spinach grown under control conditions, suggesting
that improved %Yield may be achieved without compromising nutritional values. In this study, WisDM
Green served as a proof-of-concept platform towards sustainable combinatorial design of growth compounds
to increase plant yield without fertilizer-driven enhancement. This platform may also be broadly applicable
towards other classes of agricultural products. However, further refinement of the platform will need to be
considered in order for potential translation into a scalable agricultural workflow.
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Figure 2: WisDM Green Workflow and Experimental Timeline. a) The workflow for WisDM Green
to determine effective compound combinations that may increase the %Yield of red spinach. b) On day 0,
the red spinach seeds were sowed in a cell tray with sufficient water and light. Red spinach were repotted
into the gardening machines upon germination on day 7. Compounds individually and in combinations were
added to red spinach on day 21. They were harvested on day 50 and quantitatively analyzed.

Experimental Section/Methods

Decision Tree and Compound Preparation

In the pre-experimental stage, the WisDM Green Decision Tree was used to determine appropriate com-
pounds that may enhance agriculture/food production yield. This decision tree integrated several major
parameters as outlined in Figure 3. A decision whether suitable or not suitable was provided for each com-
pound. In this study, 8 initial compounds were selected for WisDM Green analysis.

Potato Starch (Starch) (Sigma Aldrich, S2004), Sucrose (Sigma Aldrich, S5391), Humic Acid (HA) (Sigma
Aldrich, 53680), Citric Acid (CA) (C2404), Ethylenediaminetetraacetic Acid Iron (III) (EDTA-Fe) (Sigma
Aldrich, E6760), Adenine (Sigma Aldrich, A5665), 6-Benzylaminopurine (6-BAP) (Sigma Aldrich, B3274),
and Seaweed Extract (SWE) (Horti Flora). All compounds above, except HA and Adenine, were readily

5
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soluble and diluted to 2 concentration levels using deionized water (Merck Millipore). Moreover, 6-BAP
came as solution (1 mg mL-1), and was diluted to desired concentration levels (mg mL-1). HA and Adenine
were dissolved using NaOH (2 M) and HCl (2 M), respectively, and they were subsequently neutralized (pH
7). The unit for the concentration of SWE is expressed in % volume/volume (% v/v).

Red Spinach Growth Protocol

Throughout the WisDM Green workflow, Amaranthus cruentus (red spinach) (Everything Green Pte Ltd)
seeds were sowed in peat moss (Everything Green Pte Ltd) on day 0 and repotted into gardening machines
(9 plants per machine) (Click & Grow LLC) on day 7. The machines provided continuous water supply
and 16 h of light per day (Figure 2b). On day 21, after reaching seedling stage, Starxgrow Nitrosol Liquid
Fertilizer (10.5% N, 2.3% P, 6.8% K, and 1.68% Ca) (Starxgrow) was added to every plant. Mono-compounds
and compound combinations were applied to each plant on day 21, except the control red spinach, which
contained only the Starxgrow Nitrosol Liquid fertilizer. Water was added to the tank in the machine when
level was low. The water in Singapore goes through purification process and may include traces of chlorine
(202, a). The parameters of water in Singapore are outlined in Table 1. Red spinach were harvested on
Day 50. The complete schedule for all 4 experiments is listed in Table 2. All plants were randomized across
all machines using the example code in the Supporting Information. Red Spinach Analysis

All red spinach samples were analyzed according to Table 3. This series of measurements including biological
yield and nutrient content was performed independently by STATS Asia Pacific in Singapore (71 Toh Guan
Rd E #02-01/02/06 TCH Techcentre Singapore 608598).

WisDM Green Optimization

In this study, %Yield is defined as the percent change in dry weight, or biological yield, of treated red spinach
with respect to the control red spinach that contained only the fertilizer (no additional compounds). The
equation to calculate %Yield is outlined in Equation (1):

%Y ield = Dry Weight of Treated Red Spinach−Dry Weight of Control Red Spinach
Dry Weight of Control Red Spinach · 100%

6
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Water Parameters Unit WHO Guideline Singapore Average
Microbiological Parameter
Escherichia coli (E. coli) cfu/100mL ¡1 ¡1

Physical Parameters
Conductivity

μS/cm
- 205

pH Value Units - 8.2
Dissolved Solid mg/L - 107

Turbidity NTU 5 0.12
Chemical Parameters

Acrylamide
μg/L

0.5 ¡ 0.1

Antimony
μg/L

20 ¡ 1

Arsenic
μg/L

10 ¡ 0.5

Aluminum mg/L - 0.02
Barium mg/L 1.3 0.01
Benzene

μg/L
10 ¡ 1

Boron mg/L 2.4 0.3
Cadmium

μg/L
3 ¡ 0.2

Calcium mg/L - 15
Chloride mg/L - 30
Chlorine mg/L 5 2.38
Chlorite mg/L 0.7 ¡ 0.02

Chloroform
μg/L

300 11

Chromium mg/L 0.05 ¡ 0.01
Copper mg/L 2 ¡ 0.0
Cyanide mg/L - ¡ 0.03

DDT and Metabolites
μg/L

1 ¡ 0.01

Dioxane, 14
μg/L

50 ¡ 1

Edetic Acid
μg/L

600 ¡1

Fluoride mg/L 1.5 0.45
Iron mg/L 9 0.0
Lead

μg/L
- ¡ 0.5

Mercury
μg/L

6 ¡ 0.03

Manganese mg/L - ¡ 0.0
Magnesium mg/L - 0.28

Nickel mg/L 0.07 ¡ 0.0
Nitrate mg/L 11 0.07
Nitrite mg/L 0.9 ¡ 0.01

Perchlorate
μg/L

70 ¡ 2

Selenium
μg/L

40 ¡ 0.5

Sulfate mg/L - 7
Silica mg/L - 0.83

Sodium mg/L - 19
Toulene

μg/L
700 ¡ 5

Total Organic Carbon mg/L - 0.8
Total Alkalinity (CaCO3) mg/L - 40

Total Phosphorous (P) mg/L - 0.01
Uranium

μg/L
30 0.01

Vinyl Chloride
μg/L

0.3 ¡ 0.1

Xylenes
μg/L

500 ¡ 15

Table 1: Quality of Singapore Drinking Water. The measured parameters were compared to the World
Health Organization (WHO) guideline. Values were adopted from Singapore’s National Water Agency.
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Experiment 1/2: Mono-Compound and
Combinatorial Study

Date Day Tasks Wa-
ter

2021-06-22 0 Sowed Red Spinach Seeds
2021-06-29 7 Repotted into Machines with Peat

Moss
2 L

2021-07-05 13 Added Water 2 L
2021-07-13 21 Added Liquid Fertilizer and

Compounds
2021-07-19 27 Added Water 1 L
2021-07-27 35 Extended the Light Source (25 cm to

40 cm)
1 L

2021-08-11 50 Sent Samples to STATS Asia Pacific
Experiment 3/4: Validation Study and Interaction

Analysis
Date Day Tasks Wa-

ter
2021-09-01 0 Sowed Red Spinach Seeds
2021-09-08 7 Repotted into Machines with Peat

Moss
2 L

2021-09-14 13 Added Water 2 L
2021-09-22 21 Added Liquid Fertilizer and

Compounds
2021-09-28 27 Added Water 1 L
2021-10-06 35 Extended the Light Source (25 cm to

40 cm)
1 L

2021-10-21 50 Sent Samples to STATS Asia Pacific

Table 2: Experimental Timeline for the WisDM Green Workflow. The schedules below were strictly
complied to ensure consistent conditions across experiments. Dates are in MM/DD/YYYY format.

Testing Items Standards & Test Methods
Morphology Dry Weight GB/T 8304

Leaf Size Australian Journal of Botany, 2003, 51
Root Length

Water GB/T 8304
Nutrients Protein AOAC 984.13, AOAC 991.2

Vitamin C Anal. Chem. Vol. 71, No. 6, 1988
Element Content P AOAC 2015.06

K
Ca
Mg
Fe
Mn
Zn

Table 3: Red Spinach Analyses. All the performed tests and their respective methods are summarized
below.

8
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In Equation (1), control red spinach samples only contained the Starxgrow Nitrosol Liquid Fertilizer with
no additional compounds. However, the treated red spinach samples (mono- compounds and combinations)
contained both the Starxgrow Nitrosol Liquid Fertilizer and additional compounds. The difference in dry
weight between a treated and control spinach divided by the dry weight of control red spinach indicates the
percent change in dry weight as a result of the treatment (%Yield).

WisDM Green optimization utilized a set of curated combinations according to a Resolution IV 59-
combination OACD, which was generated by combining a 32-combination Resolution IV two-level fractional
factorial and a 27-combination three-level orthogonal array (Xu et al., 2013; Lim et al., 2019). The %Yield
of all 59 OACD combinations (N = 3) were calculated. WisDM Green correlated all 59 OACD combinations
and their respective average experimentally measured %Yield into a second order quadratic series as shown
in Equation (2):

y = b0 + b1x1 + [?] + bnxn + b12x1x2 + bmnxmxn + b11x
2
1 + [?] + [?] + bnnx

2
n

In Equation (2), y represents the plant’s biological response (%Yield) to the addition of compounds, B0 is
the intercept term for the quadratic equation, Bn is the coefficient for the nth compound, and Bmn is the
interaction terms between mth and nth compound. xn indicates the concentration levels (0, 1, or 2) of a
given compound.

The WisDM Green second order quadratic series was derived from stepwise regression that performed
bidirectional elimination of the estimated coefficients using the P values from F -statistics in MATLAB
2020b (Mathworks, Inc.). This quadratic series was then used to derive the predicted %Yield data for all
possible combinations consisting of 8 compounds in three concentration levels (38 = 6,561). Box-Cox trans-
formation was explored to determine appropriate transformations to the %Yield output data. Residual-based
outlier analysis was performed based on the residual distribution of the %Yield data.

%Load OACD Data and Respective %Yield

data =

[

Starch Sucrose HA CA EDTA-Fe Adenine 6-BAP SWE %Yield

-1 -1 -1 -1 -1 1 -1 -1 20.5

1 -1 -1 -1 -1 -1 1 1 6.1

-1 1 -1 -1 -1 -1 1 -1 14.6

1 1 -1 -1 -1 1 -1 1 16.5

-1 -1 1 -1 -1 -1 -1 1 43.4

1 -1 1 -1 -1 1 1 -1 -26.6

-1 1 1 -1 -1 1 1 1 3.5

-1 -1 -1 1 -1 -1 -1 -1 -9.3

1 -1 -1 1 -1 1 1 1 -6.8

-1 1 -1 1 -1 1 1 -1 10.5

1 1 -1 1 -1 -1 -1 1 -13.7

-1 -1 1 1 -1 1 -1 1 40.1

9
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1 -1 1 1 -1 -1 1 -1 32.7

-1 1 1 1 -1 -1 1 1 45.3

1 1 1 1 -1 1 -1 -1 -6.4

-1 -1 -1 -1 1 1 1 1 -5.0

1 -1 -1 -1 1 -1 -1 -1 37.3

-1 1 -1 -1 1 -1 -1 1 17.5

1 1 -1 -1 1 1 1 -1 23.1

... ... ... ... ... ... ... ... ...

]

%Define Inputs and Outputs

x = data(: , 1:8);

y = data(: , 9);

%WisDM Green Quadratic Series

result = stepwiselm(x , y, ’quadratic’, ’ResponseVar’, ’Inhibition’, ’PredictorVars’, {’Starch’, ’Sucrose’, ’HA’, ’CA’, ’EDTA-Fe’, ’Adenine’, ’6-BAP’, ’SWE’});

Validation of WisDM Green-determined Combinations

WisDM Green-determined top combinations were subsequently experimentally validated. The workflow to
grow red spinach in this experiment followed the aforementioned approach from day 0 to day 50. Aside from
the morphological features, validated combinations also had additional nutritional analyses.

Response Surfaces and Bliss Independence Model for Synergy Analysis

Four 2-compound combinations (Adenine/EDTA-Fe, 6-BAP, EDTA-Fe, Adenine/6-BAP, and HA/SWE)
were further analyzed via a 4x4 checkerboard design. The design had 16 different combinations with expanded
concentrations (0 – 2x Level 2; except 6-BAP) ranging from 0 to 1 g L-1 for Adenine, 0 to 2 g L-1 for EDTA-Fe,
0 to 1 mg mL-1 for 6-BAP, 0 to 2 g L-1 for Humic Acid, and 0 to 100% for SWE. Subsequently, the measured
%Yield and morphological data for each of the 16 combinations were used to generate a response surface
and respective 2-dimenstional heatmap for each 2- compoundcombination in MATLAB 2020b (Mathworks,
Inc.). The interaction maps of these 2-compound combinations were generated using GraphPad PRISM 9
(GraphPad Software). The %Yield data were uploaded to SynergyFinder using Bliss Independence Model
to quantify synergy in the tested region (Ianevski et al., 2020). The resulting Bliss synergy score data were
downloaded and used to generate Bliss Synergy Map using GraphPad PRISM 9 (GraphPad Software).

Financial and Energy Consumption Analysis

Energy consumption was determined based on the number of days (50 days) in which the Click & Grow
machines were in use. Since the machines only utilized light for 16 h a day, the total hours in which energy was
consumed was 800 h. In accordance to the manufacturer’s information on power consumption, each device
consumes 6.2 kWh. Furthermore, Singapore’s electricity price is currently set at S$0.2255 kW-1 h-1 (202,
b). Calculations for total energy consumption for one machine, one spinach, and total for the experiment
were based on the information above. Water consumption was calculated based on the total utilization of
water at the time of harvest. A total of 5 L of water was added to each machine for the 50-day growing
season. As of 2021, Singapore’s National Water Agency charges S$1.52 per m3 of water. Additionally, the
total carbon footprint for red spinach growing cycle was calculated based on Singapore’s Operating Margin
(OM) GEF, which is 0.4085 kg CO2 kW-1 h-1 (tra). The exact pricing of the above-mentioned resources
may vary year-to-year and depend on the usage in other jurisdictions. All referenced values are summarized
in Table 4. Statistical Analysis

All experiments were performed in at least 3 spinach replicates unless stated otherwise. Standard deviations
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Singapore Electricity Standard Price S$0.23/kWh | OM GEF 0.41 kg
CO2/kWh

Energy Consumption/Machine 10.33 kWh S$2.33
Water Consumption/Machine 5 L S$0.01

Total Cost/Machine S$2.34
Total Carbon Footprint/Machine 4.22 kg

CO2

Energy Consumption/Spinach 1.15 kWh S$0.26
Water Consumption/Spinach 0.56 L S$ 0.0

Total Cost/Spinach S$0.27
Total Carbon Footprint/Spinach 0.47 kg

CO2

Table 4: Financial and Energy Consumption Analysis. The electricity and water usage for the study
including carbon footprint are summarized.

(SDs) were determined from the replicates of each sample. The WisDM Green estimated coefficients were
analyzed using sum of squares F -test and the significance of P -values served as the removal criterion for each
individual coefficient obtained from stepwise regression. Sample distribution was tested with Shapiro-Wilk
normality test. The Kruskal-Wallis test was used for multiple comparisons, followed by Dunn’s post hoc
test for pairwise comparisons. The statistical significance of Bliss synergy scores was determined using one-
sample t-test. Student’s t-test was performed to determine statistically significant difference of experimental
conditions across experiments.

In the WisDM Green optimization step, potential outliers were observed in combinations that had >30
%Yield in standard deviations. To account for biological variation, a strict set of criteria was implemented
to remove replicates. Combinations that had >30 %Yield in standard deviations and satisfied at least one
of the following exclusion criteria were excluded from WisDM Green analysis. The first factor that was
observed to affect red spinach (Amaranthus cruentus) growth is spatial bias, and that plants at the corner
had less light source. Moreover, the neighboring red plants’ height and leaf count also limited the growth and
space of some red spinach. In a total of 177 replicates (59 OACD combinations in triplicates), 16 replicates
were removed before WisDM Green analysis. Combination 3, 5, 9, 13, 25, 40, 41, and 45 had one replicate
that satisfied all three criteria and were subsequently excluded. Combination 17, 24, 27, 49, and 55 had
one replicate that satisfied at least two of the three criteria and were removed. One replicate was removed
in combination 29 and 59, satisfying one of the three exclusion criteria. Combination 23 had one replicate
removed due to experimental error.

Data and Code Availability

All data used in the analysis of this study can be found in this manuscript. Data processing was performed
using a custom code written in Python language, and WisDM Green analysis in this study was conducted
using a custom code written in MATLAB R2020b (Mathworks, Inc.) with the built-in “stepwiselm” function.

from openpyxl import load_workbook

import random

import string

def OACD_read(filename): # put in OACD design and return combination compound and their levels

fertnames = []

combinations = dict()

for i in range(1, 60):

t = ’Comb_’ + str(i) # combination numbering

combinations[t] = []

11



P
os

te
d

on
A

u
th

or
ea

13
M

ay
20

22
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
65

2
4
46

95
.5

66
81

78
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

wb = load_workbook(filename)

ws = wb[’OACD’] # OACD design

cell_range = ws[’A1’:’H1’]

cell_range = cell_range[0]

for cell in cell_range:

fertnames.append(cell.value)

for i in range(2,61):

t = ’Comb_’ + str(i-1)

j = -1

cell_range = ws[’A’+str(i):’H’+str(i)]

cell_range = cell_range[0]

for cell in cell_range:

j += 1

if cell.value != -1:

combinations[t].append(fertnames[j] + ’_’ + str(cell.value))

wb.close()

result = [fertnames, combinations]

return result

def Allocation(filename):

allocation = dict() # dictionary store gardening machine pod & combs pairs

stack_1 = list() # three lists help randomization

stack_2 = list()

temp = list()

# stack_1 stores the triplicates of 59 combinations

for i in range(1, 60):

t = []

t.append(’Comb_’ + str(i))

t *= 3

stack_1.append(t)

# stack_1 stores triplicates of controls and traditional fertilizers

stack_1.append([’Control’] * 3)

stack_1.append([’Traditional’] * 3)

wb = load_workbook(filename) # file for OACD design

ws = wb[’Sheet1’] # sheet containing OACD design

# stack_1 stores mono compound treatments with triplicates

cell_range = ws[’A1’:’H1’]

cell_range = cell_range[0]

for cell in cell_range:

t = []

t.append(cell.value + ’_0’)

t *= 3

12
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stack_1.append(t)

t = []

t.append(cell.value + ’_1’)

t *= 3

stack_1.append(t)

random.shuffle(stack_1) # randomization

# pairing gardening machines with compound treatments

for letter in string.ascii_uppercase:

car = list() # temporary list for randomization

if len(stack_1) < 9:

pass

if not stack_2:

for j in stack_1:

car.append(j.pop())

allocation[’Z’] = car

else:

for j in stack_1:

car.append(j.pop())

random.shuffle(stack_2)

for j in range(9 - len(stack_1)):

t = stack_2.pop(0)

car.append(t.pop())

if t:

temp.append(t)

stack_1 += stack_2

random.shuffle(stack_1)

stack_2 = temp

temp = []

allocation[letter] = car

else:

pass

for i in range(9):

t = stack_1.pop(0)

car.append(t.pop())

if t:

stack_2.append(t)

allocation[letter] = car

13
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pass

print(’machine ’ + letter + ’loading combinations completed!!!’)

print(allocation) # print out results

wb.close()

# file store the randomization results

with open(’allocation.txt’, ’w’, encoding=’utf-8’) as f:

for letter in string.ascii_uppercase:

f.write(letter + ’: ’ + str(allocation[letter]))

f.write(’\n’)

return allocation

def Application(fertnames, combinations, allocation):

application = dict()

for fert in fertnames:

for i in range(2):

application[fert + ’_’ + str(i)] = []

application[’Traditional’] = []

keys = application.keys()

comb_names = combinations.keys()

for letter in string.ascii_uppercase:

i = 0

for pod in allocation[letter]:

i += 1

if pod in keys:

application[pod].append(letter + str(i))

elif pod in comb_names:

for fert in combinations[pod]:

application[fert].append(letter + str(i))

with open(’application.txt’, ’w’, encoding=’utf-8’) as f:

for key in keys:

f.write(key + ’: ’ + str(application[key]))

f.write(’\n’)

return application

if __name__ == "__main__":

[fernames, combinations] = OACD_read(’WisDM Green Experiment Design.xlsx’)

allocation = Allocation(’WisDM Green Experiment Design.xlsx’)

application = Application(fernames, combinations, allocation)

print(application)

14
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from openpyxl import load_workbook

import random

def OACD_read(filename): # return fertilizer name list & combination level dictionary

fertnames = []

combinations = dict()

for i in range(1, 37):

t = ’Comb_’ + str(i) # combination numbering

combinations[t] = []

wb = load_workbook(filename)

ws = wb[’Validation Combos’]

cell_range = ws[’B1’:’F1’]

cell_range = cell_range[0]

for cell in cell_range:

fertnames.append(cell.value)

for i in range(2,38):

t = ’Comb_’ + str(i-1)

j = -1

cell_range = ws[’B’+str(i):’F’+str(i)]

cell_range = cell_range[0]

for cell in cell_range:

j += 1

if cell.value != -1:

combinations[t].append(fertnames[j] + ’_’ + str(cell.value))

wb.close()

result = [fertnames, combinations]

return result

def Allocation(filename):

allocation = dict() # dictionary for pairing gardening machine pods with combinations

stack_1 = list() # three lists help randomization

stack_2 = list()

temp = list()

# stack_1 stores the triplicates of all combinations

for i in range(1, 37):

t = [] # temporary list for randomization

t.append(’Comb_’ + str(i))

t *= 3

stack_1.append(t)

# stack_1 stores controls

stack_1.append([’Control’] * 3)

stack_1.append([’Control’] * 3)
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# stack_1 stores mono_treatments of level 1 & 2

stack_1.append([’Humic Acid_0’] * 3)

stack_1.append([’Humic Acid_1’] * 3)

stack_1.append([’Humic Acid_2’] * 3)

stack_1.append([’EDTA-Fe_0’] * 3)

stack_1.append([’EDTA-Fe_1’] * 3)

stack_1.append([’EDTA-Fe_2’] * 3)

stack_1.append([’Adenine_0’] * 3)

stack_1.append([’Adenine_1’] * 3)

stack_1.append([’Adenine_2’] * 3)

stack_1.append([’6-BAP_0’] * 3)

stack_1.append([’6-BAP_1’] * 3)

stack_1.append([’6-BAP_2’] * 3)

stack_1.append([’Seaweed_0’] * 3)

stack_1.append([’Seaweed_1’] * 3)

stack_1.append([’Seaweed_2’] * 3)

random.shuffle(stack_1) # randomization

# pair gardening machine pods with combs

for i in range(ord(’A’), ord(’R’)+1):

letter = chr(i)

car = list() # temporary list for randomization

if len(stack_1) < 9:

pass

if not stack_2:

for j in stack_1:

car.append(j.pop())

allocation[’R’] = car

else:

if stack_1:

for j in stack_1:

car.append(j.pop())

random.shuffle(stack_2)

for j in range(9 - len(stack_1)):

if stack_2:

t = stack_2.pop(0)

car.append(t.pop())

if t:

temp.append(t)

stack_1 += stack_2

random.shuffle(stack_1)

stack_2 = temp

temp = []

16
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allocation[letter] = car

else:

pass

for i in range(9):

t = stack_1.pop(0)

car.append(t.pop())

if t:

stack_2.append(t)

allocation[letter] = car

pass

print(’machine ’ + letter + ’loading completed!!!’)

print(allocation) # print out results

# file stores randomization results

with open(’allocation validation.txt’, ’w’, encoding=’utf-8’) as f:

for i in range(ord(’A’), ord(’R’) + 1):

letter = chr(i)

# for letter in string.ascii_uppercase:

f.write(letter + ’: ’ + str(allocation[letter]))

f.write(’\n’)

return allocation

def Application(fertnames, combinations, allocation):

print(fertnames)

application = dict()

for fert in fertnames:

for i in range(3):

application[fert + ’_’ + str(i)] = []

application[’Control’] = []

keys = application.keys()

comb_names = combinations.keys()

for i in range(ord(’A’), ord(’R’) + 1):

letter = chr(i)

i = 0

for pod in allocation[letter]:

i += 1

if pod in keys:

application[pod].append(letter + str(i))

elif pod in comb_names:

for fert in combinations[pod]:

application[fert].append(letter + str(i))

with open(’application validation.txt’, ’w’, encoding=’utf-8’) as f:
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for key in keys:

f.write(key + ’: ’ + str(application[key]))

f.write(’\n’)

return application

if __name__ == "__main__":

[fernames, combinations] = OACD_read(’WisDM Green Experiment Design.xlsx’)

allocation = Allocation(’WisDM Green Experiment Design.xlsx’)

application = Application(fernames, combinations, allocation)

print(application)

Results

WisDM Green Decision Tree Selected 8 Compounds

A literature search was conducted to determine an initial pool of compounds (e.g. biostimulants) that may
potentially enhance the biological yield (%Yield) of plants. In this study, the biological yield was defined as
the total dry weight of the plants including the shoot and root (Equation 1). Subsequently, the WisDM
Green Decision Tree was utilized to assess the suitability of each compound to the growth of red spinach
according to the criteria outlined in Figure 3, and a pool of 8 compounds was finalized for WisDM Green
combination optimization. These 8 compounds included Potato Starch (Starch), Sucrose, Humic Acid (HA),
Citric Acid (CA), Ethylenediaminetetraacetic Acid Iron (III) (EDTA-Fe), Adenine, 6-Benzylaminopurine
(6-BAP), and Seaweed Extract (SWE). The WisDM Green workflow was initiated, and plants were grown
in accordance with the experimental timeline in Figure 2 and 4.

Figure 3: WisDM Green Decision Tree. The criteria implemented to select suitable compounds for
WisDM Green optimization.

Mono-Compounds were Broadly Ineffective in Increasing %Yield

The WisDM Green optimization process assessed 3 concentration levels (0 indicates absence of a compound,
and 1 and 2 represent two concentration levels) for each compound (Table 5). Concentrations were referenced
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Figure 4: Growing Red Spinach in the Gardening Machines. The pictures of red spinach were taken
on Day 0, 7, 15, 23, 27, and 31.

to previous studies and were carefully selected in an effort to avoid overrepresenting a single compound. The
mono-compound experiment was performed by growing red spinach using level 1 and level 2 concentrations
of each compound to assess their individual effect in %Yield (N = 3) (Equation 1 and Table 5). All
8 compounds in their level 1 and 2 concentrations had a minimal effect in increasing %Yield, and most
compounds resulted in negative %Yield (Figure 5a and 5b). Importantly, these 8 compounds demonstrated
concentration-dependent correlations between %Yield and their concentrations. Starch, HA, EDTA-Fe,
SWE revealed a positive relationship such that the increase in concentrations resulted in improved %Yield.
However, the remaining compounds led to a negative relationship between concentrations and %Yield. These
correlations suggested that high concentrations of compounds may not always associate with improved
%Yield. Though the compounds were broadly ineffective in increasing %Yield, we aimed to test if pairing
them correctly may positively impact %Yield.

WisDM Green Compound Combination Optimization

In the WisDM Green design step, a set of 59 compound combinations selected according to a Resolution
IV Orthogonal Array Composite Design (OACD) was applied to plants one time only on Day 21 (N = 3)
(Figure 2b and Table 6). On day 50, the harvested plants were comprehensively quantified. The biological
yield of each plant treated with various combinations of compounds were measured, and normalized to the
control plants to determine %Yield (Equation 1 and Figure 5c). A small number of plant samples (16
out of 177) were excluded due to experimental errors, which are described in detail in Statistical Analysis.
This set of experiments was performed along with mono-compounds, and the experimental conditions are
illustrated in Figure 6.

The WisDM Green analysis correlated the 59 OACD-designed compound combinations and their corre-
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Compound Level 0 Conc. Level 1 Conc. Level 2 Conc.
Starch 0 250 mg/L 1 g/L
Sucrose 0 250 mg/L 1 g/L

Humic Acid 0 250 mg/L 1 g/L
Citric Acid 0 250 mg/L 1 g/L
EDTA-Fe 0 250 mg/L 1 g/L
Adenine 0 125 mg/L 500 mg/L
6-BAP 0 0.25 mg/mL 1 mg/mL

Seaweed Extract 0 12.5% (v/v) 50% (v/v)

Table 5: Concentration Levels for WisDM Green Optimization. Potato Starch (Starch), Ethylene-
diaminetetraacetic Acid Iron (III) (EDTA-Fe), and 6-Benzylaminopurine (6-BAP).

sponding %Yield via a second-order quadratic equation, and this correlation can be used to describe the
interactions among all 8 compounds (Equation 2). Box-Cox transformation suggested a square transfor-
mation (%Yield2) that would improve the fit properties of the %Yield data: residual distributions and the
adjusted R2. No outlier was identified using residual-based outlier analysis (Figure 7). The WisDM Green
analysis had an adjusted R2 of 0.732, and the WisDM Green estimated coefficients and statistics for the
second order quadratic equation are tabulated in Table 7. The analysis provided a ranked list of all possi-
ble combinations for 8 compounds at 3 concentration levels (38 = 6,561) with their corresponding WisDM
Green-predicted %Yield. The top 10 combinations are summarized in Table 8, and the top 10 2-compound
combinations are tabulated in Table 9. 2-compound combinations were further explored to assess their
interactions as they may serve as a backbone for the development of sustainable multi-compound combina-
tions. Furthermore, designing effective combinations may be more ecologically sustainable by reducing the
practice of fertilizer-driven yield. Subsequently, all of the combinations that were highly ranked for potential
yield increase (6-BAP/Adenine/EDTA-Fe, 6-BAP/HA/SWE/Starch, Adenine/EDTA-Fe, 6-BAP/EDTA-Fe,
Adenine/6-BAP, and HA/SWE) were selected to experimentally measure their effect on %Yield (Table 8
and 9). Notably, HA/SWE, which was pinpointed as one of the top 2-compound combinations, has been
identified in multiple studies and determined as a synergistic combination in farming applications (Zhang
et al., 2003; F.S. Hameed Al-Marsoumi, 2020; Sandepogu et al., 2019; Prakash et al., 2017). Moreover, in Ta-
ble 8, 6-BAP/Adenine/HA/EDTA-Fe/Sucrose, an ineffective combination (ranked 5,610th out of 6,561), was
also included to confirm the dynamic ability of WisDM Green in pointing to combinatorial designs that may
have ineffective %Yield. This combination had two identical compounds as the 1st and 2nd ranked combinati-
ons, and WisDM Green determined that replacing a few compounds may result in negative %Yield (-37.72).

In addition, WisDM Green interaction analysis further pointed to potential synergistic interactions in the
four selected 2-compound combinations in Table 9. WisDM Green suggested that Adenine/EDTA-Fe may
achieve maximum %Yield at higher concentrations (Figure 8a). The interaction surfaces for 6-BAP/EDTA-
Fe and Adenine/6-BAP pointed to potential compound interactions (Figure 8b and 8c). In Figure 8d,
HA/SWE interaction surface suggested a potential synergistic interaction. In terms of sustainability and
minimizing environmental impact, these 2-compound combinations were prioritized over other combinations
consisting of 3 or more compounds. 2- compound combinations that can achieve similar, or potentially
greater, increases in %Yield compared to multi-compound combinations may support the further investiga-
tion of sustainable and deployable peat moss formulations guided by AI.

Validation of WisDM Green-pinpointed Combinations

The 1st and 2nd ranked combinations (6-BAP/Adenine/EDTA-Fe and 6-BAP/HA/SWE/Starch) were val-
idated in a subsequent set of experiments (Table 8). Additionally, four 2-compound combinations were
assessed in expanded concentration ranges (0 – 2x of Level 2; except 6-BAP) to determine their interactions
at different concentration ratios (Table 9). Importantly, assessing the interactions of Adenine/EDTA-Fe,
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Figure 5: Dry Weight and %Yield for Mono-Compounds and OACD Combinations. The effects
of each compound in two concentration levels were assessed (N = 3-6). Control red spinach with only liquid
fertilizer (red) are compared to the effects of each compound at two concentration levels. The a) dry weight
(N = 3-6) and b) %Yield with respect to control (N = 3-6) are illustrated. c) The average %Yield of
each OACD combinations are illustrated (N = 3). The combinations are in order from 1 to 59 and positive
yield combinations are highlighted in blue and negative yield combinations are highlighted in red. Data
points are presented in mean ± SD, and individual replicates are represented in black dots. Kruskal-Wallis
test followed by Dunn’s post hoc test failed to detect any statistically significant differences in the mono-
compound dry weight and %Yield data. Potato Starch (Starch), Ethylenediaminetetraacetic Acid Iron (III)
(EDTA-Fe), 6-Benzylaminopurine (6-BAP), and Seaweed Extract (SWE).

6-BAP/EDTA-Fe, and Adenine/6-BAP may provide insight into the interactions of the 1st ranked combi-
nation (6-BAP/Adenine/EDTA-Fe), which consisted of all compounds in the aforementioned 2-compound
combinations.

In Figure 9a, combinations that improved the %Yield of red spinach were highlighted. Notably, the
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Figure 6: Experimental Conditions of the Entire Experiment. The temperatures and humidity
measured throughout the experiments were recorded using Qingping Bluetooth Thermometer/Hygrometer
Lite (CGDK2). Experiment 1 and 2 (N = 1024) and Experiment 3 and 4 (N = 3638). Data points are
presented in mean ± SD. The temperatures recorded for both sets of experiments had no statistically
significant difference (Student’s t-test; P > 0.05). However, statistically significant difference was detected
for humidity in both sets of experiments (Student’s t-test; P < 0.001).

1st ranked combination (6-BAP/Adenine/EDTA-Fe) failed to demonstrate any apparent effect in %Yield
(-3.60±11.70) even though it was ranked first among all possible combinations. This can be explained by
concentration-dependent interactions observed in Figure 9b, 9c, and 9d, which illustrated the response
surfaces of all interactions of 6-BAP/Adenine/EDTA-Fe. Though these surfaces may not have strong cor-
relations to explain the relationship between input compounds and the %Yield of plants, they did however
provide insight into the response of red spinach growth to the input compounds. Within the dotted black
box outlining the WisDM Green-assessed concentrations (0 – Level 2), Adenine/EDTA-Fe and Adenine/6-
BAP exhibited slight antagonistic effects and concentration-dependent interactions, which can potentially
explain the reason why 6-BAP/Adenine/EDTA-Fe had no effect in %Yield in that range (Figure 9b and
9d). The observed concentration-dependent interactions implied that adjusting the concentration ratios of 6-
BAP/Adenine/EDTA-Fe may potentially increase the %Yield. Subsequent interrogation of compound inter-
action demonstrated that adjusting concentration-dependent ratios may markedly enhance %Yield. Of note,
the 2nd ranked combination (6-BAP/HA/SWE/Starch) demonstrated an increase in %Yield (15.32±8.42).

When 2-compound combinations were interrogated, the WisDM Green-pinpointed 6-BAP/EDTA-Fe com-
bination, at concentrations 1 mg mL-1 and 2 g L-1, respectively, led to 26.34±15.80 increase in %Yield
(Figure 9). However, 6-BAP/EDTA-Fe at concentrations 0.50 mg mL-1 and 1 g L-1, respectively, media-
ted a negative %Yield (-14.66±15.52). Furthermore, HA/SWE at concentrations 2 g L-1 and 12.50% v/v,
respectively, resulted in a substantial increase in %Yield (33.59±14.60%). When the concentrations of HA
were reduced to 0.25 g L-1 and SWE increased to 100% v/v, HA/SWE led to 9.36±14.42 decrease in %Yield.
The concentration-dependent interactions of 6-BAP/EDTA-Fe and HA/SWE are illustrated in the response
surfaces (Figure 9c, 9e and 10). The results suggested certain compounds may require higher concen-
trations to achieve optimal outcomes, while some may lead to better interactions at lower concentrations
when carefully paired in combinations. To demonstrate the fidelity of negative predictivity of WisDM Green,
an ineffective combination pinpointed by WisDM Green (6-BAP/Adenine/HA/EDTA-Fe/Sucrose) (Table
8) was also validated. This combination had two identical compounds as the top 2 ranked combinations,
and WisDM Green determined that replacing some of the compounds may lead to negative %Yield. The
experimentally measured %Yield was -6.93±8.27 (Figure 9a). The results suggested that properly pairing
two compounds in optimal concentration ratios may mediate interactions that facilitate better %Yield en-
hancement than multi-compound combinations. To reduce the use of fertilizers, which is closely connected to
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Figure 7: Outlier Analysis for WisDM Green Analysis on %Yield. The mean of each individual
compound combination (N = 3) was used in the WisDM Green quadratic stepwise regression analysis.
Residual-based outlier analysis was performed for each of the OACD-designed combinations. Residual is
determined by the difference between the experimentally determined %Yield and the WisDM Green-predicted
%Yield. The fit properties of the %Yield data, specifically the distribution of residuals and the WisDM Green
model fit, were assessed via the plot of residuals vs. fitted values. In the Cook’s distance plot, each row
number corresponds to the OACD-designed combinations in Table 6. The normal probability plot and
the histogram of residuals examined the normality of residual distribution. No outlier was identified in this
round of outlier analysis.

environmental impact, appropriately pairing compounds and determining their optimal concentration ratios
that can provide yield enhancement may be the most sustainable approach to the future of farming. For
example, HA and SWE are both ecologically sustainable, natural compounds, and pairing them in combina-
tion and in optimal ratios improved the %Yield. The individual replicates used to plot the response surfaces
in Figure 9 are illustrated in Figure 11.The 2-dimensional heatmaps of each response surface are displayed
in Figure 10.

Assessing Compound Interactions and Synergy Analysis

The experimentally measured %Yield data for the entire concentration ranges in Figure 9b, 9c, 9d, and
9e were used to construct the interaction maps shown on the left column in Figure 12. The interaction
maps provided an assessment on the %Yield of red spinach when grown with these 2-compound combinations
at different concentration ratios. Furthermore, the %Yield data at every compound ratio were subsequently
analyzed using the Bliss independence model for synergy analysis, which is conventionally used to assess
synergy in drug combinations (Liu et al., 2018; Poon et al., 2021). The Bliss independence model assumes
that two compounds are mutually nonexclusive and compounds affect %Yield via different pathways, and
this approach may provide insight into synergies exhibited by compound combinations. The Bliss synergy
maps quantified the synergy exhibited by each concentration ratio using the Bliss synergy score, which
quantifies the strength of synergy of a given combination with respect to the mono-compounds. Notably,
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Figure 8: WisDM Green Interaction analysis. a) WisDM Green analysis suggested that
Adenine/EDTA-Fe may have concentration-dependent interactions, and b) the surface pointed to a mild
interaction between 6-BAP and EDTA-Fe. c) The interaction surface indicated that Adenine/6-BAP may
have mild concentration-dependent interactions and d) HA/SWE may have a strong interaction. Ethylene-
diaminetetraacetic Acid Iron (III) (EDTA-Fe), 6-Benzylaminopurine (6-BAP), and Seaweed Extract (SWE).

the interaction of 6-BAP/EDTA-Fe at concentrations 1 mg mL-1 and 2 g L-1, respectively, highlighted in the
response surface analysis (Figure 9a), was confirmed to be synergistic via Bliss synergy scores. Similarly,
Bliss synergy map also suggested that HA/SWE at concentrations 2 g L-1 and 12.5% v/v, respectively, had
strong synergy (synergy score of 35.2).

Aside from assessing the %Yield interactions, response surfaces were also constructed to illustrate the poten-
tial association between the input compounds and measured morphological features including fresh weight,
dry weight, water, shoot length, and leaf count (Figure 10 and 13). Though the explanatory power (e.g. R2)
of the input compounds to describe the change in morphological features may not be significant, they howe-
ver provided insight into the change in morphological features. The response surfaces of Adenine/EDTA-Fe
demonstrated concentration-dependent interactions in fresh weight, dry weight, and water, and importantly,
they demonstrated a similar concave shape as observed for the %Yield response surface in Figure 9b. Ho-
wever, minimal interactions were observed in the surface for shoot length and a mild antagonistic interaction
was observed for leaf count. 6-BAP/EDTA-Fe and Adenine/6-BAP demonstrated strong interaction and
concentration-dependent interaction, respectively, across all morphological features, and their interactions
were similar to that of the %Yield in Figure 9c and 9d. The response surfaces of HA/SWE assessing fresh
weight, dry weight, and water revealed strong interactions similar to Figure 9e. However, concentration-
dependent interaction was observed in shoot length and leaf count. Overall, the response surfaces of these
morphological features demonstrated similar interactions to the %Yield response surfaces. 6-BAP/EDTA-Fe
demonstrated the most uniform interactions across all features. These interactions broadly resulted in im-
provements across all morphological properties, confirming their highly ranked interactions pinpointed by
WisDM Green interaction analysis. The individual replicates used to plot the response surfaces in Figure
13 are illustrated in Figure 11. The 2-dimensional heatmaps and interaction maps of each response surface
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Figure 9: Validation of WisDM Green-pinpointed Combinations in Red Spinach and Com-
pound Interaction Analysis. a)Highlight of WisDM Green-pinpointed optimal and ineffective compound
combinations. Data points are presented in mean ± SD. Each replicate is illustrated in gray points (N =
2-6). Kruskal-Wallis test detected statistically significant differences at P < 0.01. However, Dunn’s post
hoc test did not detect pairwise statistical significance. b-e) The response surfaces of Adenine/EDTA-Fe,
6-BAP/EDTA-Fe, Adenine/6-BAP, and HA/SWE. The dotted black box represents the original range of
concentrations (0 – Level 2) tested. The unit for SWE is % v/v. The heatmaps of each response surface
are displayed in Figure 10. Individual replicates used to generate each response surface are illustrated as
scatterplots in Figure 11. Statistics and source data of the response surfaces are attached.

are displayed in Figure 10 and 14. Experimental conditions across all experiments are defined in Figure
6.
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Figure 10: 2-Dimensional Heatmaps of Compound Interaction. The heatmaps representing the 2-
dimensional view of response surfaces for compound interactions in %Yield and morphological features (N
= 2-6). The dotted black box represents the original range of concentrations (0 – Level 2) tested. The
unit for SWE is % v/v. Statistics and source data are attached. Ethylenediaminetetraacetic Acid Iron (III)
(EDTA-Fe), 6-Benzylaminopurine (6-BAP), Humic Acid (HA), and Seaweed Extract (SWE).

Nutritional Analysis

The WisDM Green-designed combinations highlighted in Figure 9a mediated an increase in %Yield of red
spinach. The nutrients and elements in red spinach grown with these combinations (Level 2 concentrations)
were comprehensively assessed and compared to the control red spinach. Three basic morphological features
including shoot length, root length, and leaf size were compared to provide an insight into the baseline char-
acteristics of the plants. Total protein, vitamin C, and critical elemental contents were measured. The full
comparisons are illustrated Figure 15. Notably, the optimal WisDM Green-designed combinations demon-
strated a substantial increase in absolute Zn content, which is critical to immune system and metabolism
function (Wessels et al., 2021). 6-BAP/HA/SWE/Starch (2nd ranked combination) led to a 15.32±8.42 in-
crease in %Yield, while maintaining an average absolute Vitamin C content at 1.78±0.78 mg, which is 44%
higher than the absolute content in control spinach. However, Kruskal-Wallis test followed by Dunn’s post
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Figure 11: Scatterplots of Response Surfaces. Individual replicates used to construct response surfaces
for %Yield, fresh weight, dry weight, water, shoot length, and leaf count are presented in scatterplots (N
= 2-6). The dotted black box represents the original range of concentrations (0 – Level 2) tested. The
unit for SWE is % v/v. Source data are attached. Ethylenediaminetetraacetic Acid Iron (III) (EDTA-Fe),
6-Benzylaminopurine (6-BAP), Humic Acid (HA), and Seaweed Extract (SWE).

hoc test failed to detect any statistically significant difference in morphological features and absolute nutritio-
nal contents between control red spinach and those grown with optimal combinations across all assessments.
The results suggested that WisDM Green was able to identify compound combinations that substantially
increased the %Yield without compromising the absolute nutritional contents of red spinach. It is important
to approach these findings as a proof of concept of the platform as conclusions may only be made with
additional nutritional analysis.

Financial and Energy Consumption Analysis

The total costs of growing red spinach in this study were comprehensively calculated. All calculations were
based on Singapore’s electricity standard price of S$0.2255/kW-1 h-1 and Singapore’s National Water Agency
standard price of S$1.52 per m3 of water. Growing red spinach requires about 5 L of water per machines
(9 plants), which is equivalent to approximately S$0.01 for one growing cycle. The gardening machines only
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utilizes light source for 16 h in a day; thus, in one growing cycle, the electricity cost is approximately S$2.33.
Furthermore, to grow one spinach, the water and electricity cost S$0.001 and S$0.26, respectively. In sum,
the total cost for grow one red spinach using gardening machines is approximately S$0.27. Additionally, the
carbon footprint of growing red spinach is also calculated. The Operating Margin (OM) GEF, which is the
average CO2 emissions emitted per unit net electricity generated in Singapore, is 0.4085 kg CO2 kW-1 h-1.
The total carbon footprint per gardening machine and per plant are approximately 4.22 kg CO2 and 0.47
kg CO2, respectively. Details of the aforementioned calculations are tabulated in Table 4.
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Combo Starch Sucrose HA CA EDTA Adenine 6-BAP SWE %Yield
1 -1 -1 -1 -1 -1 1 -1 -1 -9.1
2 1 -1 -1 -1 -1 -1 1 1 7.46
3 -1 1 -1 -1 -1 -1 1 -1 -13.79
4 1 1 -1 -1 -1 1 -1 1 -19.32
5 -1 -1 1 -1 -1 -1 -1 1 12.99
6 1 -1 1 -1 -1 1 1 -1 -16.44
7 -1 1 1 -1 -1 1 1 1 -26.03
8 1 1 1 -1 -1 -1 -1 -1 -19.35
9 -1 -1 -1 1 -1 -1 -1 -1 -42.89
10 1 -1 -1 1 -1 1 1 1 -23.59
11 -1 1 -1 1 -1 1 1 -1 -9.59
12 1 1 -1 1 -1 -1 -1 1 -0.94
13 -1 -1 1 1 -1 1 -1 1 21.18
14 1 -1 1 1 -1 -1 1 -1 -6.06
15 -1 1 1 1 -1 -1 1 1 -18.83
16 1 1 1 1 -1 1 -1 -1 -17.26
17 -1 -1 -1 -1 1 1 1 1 29.87
18 1 -1 -1 -1 1 -1 -1 -1 -19.96
19 -1 1 -1 -1 1 -1 -1 1 -20.59
20 1 1 -1 -1 1 1 1 -1 -5.47
21 -1 -1 1 -1 1 -1 1 -1 -18.03
22 1 -1 1 -1 1 1 -1 1 -19.34
23 -1 1 1 -1 1 1 -1 -1 -40.89
24 1 1 1 -1 1 -1 1 1 -39.08
25 -1 -1 -1 1 1 -1 1 1 -30.03
26 1 -1 -1 1 1 1 -1 -1 -12.11
27 -1 1 -1 1 1 1 -1 1 22.82
28 1 1 -1 1 1 -1 1 -1 -11.34
29 -1 -1 1 1 1 1 1 -1 -32.82
30 1 -1 1 1 1 -1 -1 1 -4.46
31 -1 1 1 1 1 -1 -1 -1 -49.71
32 1 1 1 1 1 1 1 1 -16.73
33 -1 -1 -1 -1 -1 -1 -1 -1 -35.58
34 -1 0 0 -1 -1 0 1 1 -9.54
35 -1 1 1 -1 -1 1 0 0 -13.14
36 -1 -1 0 1 0 -1 0 0 -20.75
37 -1 0 1 1 0 0 -1 -1 -23.29
38 -1 1 -1 1 0 1 1 1 -20.1
39 -1 -1 1 0 1 -1 1 1 5.2
40 -1 0 -1 0 1 0 0 0 8.64
41 -1 1 0 0 1 1 -1 -1 4.52
42 0 -1 0 0 -1 0 -1 0 -13.6
43 0 0 1 0 -1 1 1 -1 -20.29
44 0 1 -1 0 -1 -1 0 1 -13.38
45 0 -1 1 -1 0 0 0 1 22.39
46 0 0 -1 -1 0 1 -1 0 -10.67
47 0 1 0 -1 0 -1 1 -1 -15.35
48 0 -1 -1 1 1 0 1 -1 6.24
49 0 0 0 1 1 1 0 1 -4.68
50 0 1 1 1 1 -1 -1 0 2.47
51 1 -1 1 1 -1 1 -1 1 -1.09
52 1 0 -1 1 -1 -1 1 0 3.04
53 1 1 0 1 -1 0 0 -1 -23.81
54 1 -1 -1 0 0 1 0 -1 -34.77
55 1 0 0 0 0 -1 -1 1 2.48
56 1 1 1 0 0 0 1 0 -22.98
57 1 -1 0 -1 1 1 1 0 -40.08
58 1 0 1 -1 1 -1 0 -1 -15.02
59 1 1 -1 -1 1 0 -1 1 -21.76

Table 6: Resolution IV 8-compound OACD Design. 59 combinations for 8-compound experiment
at three different concentration levels. Level 0 (input -1 in the OACD table) indicates the absence of
a compound. Level 1 and 2 (inputs 0 and 1 in the OACD table, respectively) represent two compound
concentrations. The experimentally measured %Yield used in WisDM Green analysis is determined with
respect to the control plants using Equation (1) (N = 3). Potato Starch (Starch), Humic Acid (HA), Citric
Acid (CA), Ethylenediaminetetraacetic Acid Iron (III) (EDTA-Fe/EDTA), 6-Benzylaminopurine (6-BAP),
and Seaweed Extract (SWE).
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WisDM Green Estimate Significance
Intercept 1496.7 ***

Starch -277.34 *
Sucrose -319.87 **

HA -195.08
CA -14.62

EDTA-Fe -65.67
Adenine 108.06
6-BAP -87.13
SWE 537.2 ***

Starch:Sucrose 524.24 **
Starch:HA 296.38

Starch:EDTA-Fe -392.07 *
Starch:Adenine -658.28 ***

Sucrose:CA 400.43 **
Sucrose:6-BAP -493.52 *
Sucrose:SWE -389.42 **
HA:EDTA-Fe -452.78 ***
HA:Adenine -276.61 *

HA:SWE 821.64 ***
CA:6-BAP -436.28 ***

EDTA-Fe:Adenine 356.28 **
EDTA-Fe:6-BAP -361.59
EDTA-Fe:SWE -293.39

6-BAP:SWE -375.36 **
Starch2 -603.06 *

HA2 780.94 **
Observations 59

Degrees of Freedom 33
Correlation Coefficient 0.92

Adj R2 0.73
R2 0.85

F-test ***

Table 7: WisDM Green Estimated Coefficients for %Yield Data Analysis and Model Statis-
tics. Potato Starch (Starch), Humic Acid (HA), Citric Acid (CA), Ethylenediaminetetraacetic Acid Iron
(III) (EDTA-Fe), 6-Benzylaminopurine (6-BAP), and Seaweed Extract (SWE). Statistical significance was
determined using F-test. *P < 0.05, **P < 0.01 and, ***P < 0.001.
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Rank Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 %Yield
1 6-BAP (2) Adenine (2) EDTA-Fe (2) / / 33.51
2 6-BAP (2) SWE (2) HA (2) Starch (1) / 32.33
3 6-BAP (2) SWE (2) HA (2) Starch (2) / 31.97
4 SWE (2) HA (2) Starch (2) Sucrose (2) CA (2) 30.76
5 6-BAP (2) SWE (1) Adenine (2) EDTA-Fe (2) / 30.05
6 6-BAP (2) SWE (2) Adenine (1) HA (2) Starch (2) 29.06
7 Adenine (2) EDTA-Fe (2) Starch (2) CA (2) / 28.6
8 6-BAP (2) Adenine (2) EDTA-Fe (2) CA (1) / 28.22
9 6-BAP (1) Adenine (2) EDTA-Fe (2) / / 28.19
10 6-BAP (1) SWE (2) HA (2) Starch (1) / 27.11

5610 6-BAP (2) Adenine (2) EDTA-Fe (2) HA (2) Sucrose (2) -37.72

Table 8: Summary of Top 10 WisDM Green-determined Compound Combinations. 1st and
2nd ranked combinations were selected to perform subsequent validation study. An ineffective combination
(anked 5610) was also included in the subsequent validation study. Concentration levels are included in the
parenthesis. Ethylenediaminetetraacetic Acid Iron (III) (EDTA-Fe), 6-Benzylaminopurine (6-BAP), Citric
Acid (CA), Humic Acid (HA), and Seaweed Extract (SWE).

Rank Compound 1 Compound 2 %Yield
67 Adenine (2) EDTA-Fe (2) 22.48
126 6-BAP (2) Adenine (2) 19.5
304 6-BAP (2) EDTA-Fe (2) 14.52
312 6-BAP (2) Adenine (1) 14.35
387 6-BAP (2) Starch (1) 13.32
409 Humic Acid (2) SWE (2) 12.94
477 Adenine (1) EDTA-Fe (2) 12.04
490 6-BAP (2) EDTA-Fe (1) 11.7
670 6-BAP (2) SWE (2) 9.14
685 6-BAP (2) SWE (1) 8.94

Table 9: Summary of Top 10 WisDM Green-determined 2-Compound Combinations. Top 3
combinations and HA/SWE (ranked 409) were selected to perform subsequent validation study. Concen-
tration levels are included in the parenthesis. Potato Starch (Starch), Ethylenediaminetetraacetic Acid Iron
(III) (EDTA-Fe), 6-Benzylaminopurine (6-BAP), and Seaweed Extract (SWE).
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Figure 12: Interaction Map and Bliss Synergy Map of WisDM Green-pinpointed 2-Compound
Combinations. . a-d) The %Yield of all tested concentration ratios were used to generate an interaction
map that illustrates the performance for each combination in different concentration ratios (N = 2-6). %Yield
data points are presented in mean ± SD. On the right column of the figure, the Bliss synergy maps indicated
the Bliss synergy score for each corresponding combination. Statistical significance of Bliss synergy scores was
determined by one-sample t-test (*P < 0.05). The unit for SWE is % v/v. Source data are attached.
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Figure 13: Interaction Analysis on Red Spinach Morphological Features. The morphological
data for 2-compound combinations were used to generate response surfaces that describe the interactions at
different concentration ratios (N = 2-6). The dotted black box represents the original range of concentrations
(0 – Level 2) tested. The unit for SWE is % v/v. The heatmaps of each response surface are displayed in
Figure 10. Individual replicates and interaction maps for each response surface are illustrated in a scatterplot
in Figure 11 and in Figure 14, respectively.
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Figure 14: Interaction Maps on Red Spinach Morphological Features. The morphological data for
2-compound combinations were used to generate interaction maps that describe the compound interactions
at different concentration ratios (N = 2-6). The unit for SWE is % v/v. Ethylenediaminetetraacetic Acid
Iron (III) (EDTA-Fe), 6-Benzylaminopurine (6-BAP), Humic Acid (HA), and Seaweed Extract (SWE).
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Figure 15: Nutritional and Morphological Analysis on Validated Combinations. The nutritional
and elemental content of red spinach grown in optimal WisDM Green-designed combinations were assessed
and compared to the control red spinach (N = 2-6). Data points are presented in mean ± SD and individual
replicate is presented in black dots. Kruskal-Wallis test followed by Dunn’s post hoc test failed to detect any
statistically significant differences across all comparisons. Source data are attached.
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Discussion

Rapid Optimization and Re-Optimization of Compound Combinations

The compound combination optimization only utilized prospectively obtained morphological data of 59 red
spinach treated according to the OACD combinations, and did not require any pre-existing datasets for
the optimization workflow. With these data, WisDM Green rapidly correlated the relationship between the
compound combinations and the %Yield of each treated red spinach via a second order quadratic series to
predict the %Yield of all 6,561 possible combinations at three concentration levels. WisDM Green utilized
a resolution IV 59-combination OACD, which requires a small but representative sample size, to pinpoint
unforeseen compound interactions. Aside from the chosen design, alternative higher resolution OACD’s may
enhance the predictability of WisDM Green by screening more combinations, which may lead to higher costs.
Thus, a balance between the efficient use of resources and predictability must be carefully considered (Lim
et al., 2019). Importantly, WisDM Green pinpointed unforeseen compound interactions and concentration
ratios that positively impacted %Yield via 2-compound combinations. Therefore, this strategy represents
a first step towards improving peat moss formulation by optimizing compound combinations and their
concentrations to positively impact %Yield while simultaneously mitigating wastage.

Given the agnostic nature of WisDM Green implementation, it can potentially be expanded to other applica-
tions in food production and wider farming communities. These may include cell culture media optimization
for cell-based meats, beverage compound selection, viticulture, space farming, and other applications (Massa
et al., 2017). WisDM Green is also able to prioritize compound combinations that do or do not contain
certain agents. Examples include selecting an optimal combination that does not contain animal products,
or perhaps contains only vegan diet-compliant compounds, among other criteria. Moreover, WisDM Green
allows multi-parametric optimization to determine the most suitable combinations for a specific desired
outcome. For instance, this approach may be used to pinpoint compound combinations that optimize for
biological yield without compromising the nutritional content. WisDM Green may also be applicable towards
improving the yield of plant-derived compounds for cosmetic or drug synthesis, for example. Furthermore,
WisDM Green can be rapidly re-implemented to account for evolving factors such as reagent availability,
cost, effectiveness, climate and environmental change, user requirement, and many other parameters (Figure
2).

Concentration-dependent Synergy and Sustainable Farming

In this proof-of-concept study, we harnessed a platform technology that we have previously applied in drug
combination optimization towards plant biological yield optimization. Similarly, we also explored approaches
used in drug development, such as the Bliss independence model, to assess synergies observed in WisDM
Green-pinpointed compound combinations (Liu et al., 2018; Poon et al., 2021). In the context of sustaina-
bility, rationally optimizing yield enhancement may be closely interconnected with concentration-dependent
synergy. Appropriately adjusting concentration ratios to achieve optimal outcomes may substantially reduce
the use of compounds, and also further reduce the reliance on fertilizer-driven approach to increase yield.
For example, the excessive use of fertilizer has affected aquatic life and increased greenhouse gas emissions
(Khan et al., 2018; Bijay-Singh et al., 1995; Qadri and Faiq, 2019; Huang et al., 2017; Malyan et al., 2019;
Sedlacek et al., 2020; Ögmundarson et al., 2020). Though efforts have been made to protect the environment
via approaches, such as controlled-release fertilizer, properly adjusting the concentration ratios of compounds
may result in improved outcomes and reduction in fertilizer usage, which may lead to leaching (Li et al.,
2018; Sikora et al., 2020; Xiao et al., 2019; Ögmundarson et al., 2020; Puga et al., 2020).

Foods Show Apparent Decline in Nutrients

Recent studies have pointed to apparent decline in nutrition during the course of food production. Assessing
the United States Department of Agriculture (USDA) nutrient content data for 43 garden crops revealed
that 6 nutrients (e.g. protein, Ca, P) showed statistically significant nutritional decline between 1950 and

36



P
os

te
d

on
A

u
th

or
ea

13
M

ay
20

22
—

C
C

-B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
65

2
4
46

95
.5

66
81

78
0/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

1999 (Davis et al., 2004). The observed declines ranged from 6% to 38%. Furthermore, a systemic review
on databases from Australia indicated a 30-50% decline in iron content of vegetables (Eberl et al., 2021).
A separate study assessed archived wheat grain samples collected from 1950 to 2016 and discovered an
imbalance in carbohydrate/protein content after the 1960’s (Mariem et al., 2020). Notably, uptrend increases
in CO2 and temperature were observed in the same time period, suggesting climate change may have
impacted both yield and the nutritional content. In 2018, Zhu et al. Pointed to altered food nutritional
content as a result of rising CO2 levels (Zhu et al., 2018). Importantly, the health of estimated 138 million
to 1.4 billion people may have been impacted by the apparent nutrient declines.

Notably, in this study, the nutritional analysis indicated that WisDM Green-pinpointed combinations were
able to achieve improved yield without compromising the nutritional contents. Red spinach grown in 6-
BAP/HA/SWE/Starch and 6-BAP/EDTA-Fe demonstrated an increase in iron content when compared to
the control plant. In this study, only the %Yield parameter was optimized. Future studies may incorporate
multi-parametric optimization to include nutrient content to drive both yield and nutrition to the most
desired and balanced levels. Therefore, aside from food security, maintaining nutritious food sources is also
a critical challenge that must be addressed.

Food Security in Global and Singapore Contexts

Climate change and socioeconomic considerations have contributed to food security problems globally (Fu-
jimori et al., 2019; Nelson et al., 2018; Cottrell et al., 2019; Meng-Tian HUANG, 2020; Mal et al., 2017;
Prosekov and Ivanova, 2018). The outbreak of COVID-19 pandemic has further amplified the issue across the
world (O'Hara and Toussaint, 2021). In a global context during this difficult time, 663 million people cannot
consume enough food to stay nourished and 1.9 billion people are at least moderately food insecure (Prosekov
and Ivanova, 2018; Hazra and Bhukta, 2020; Behnassi et al., 2019). Food security is a complex challenge
that requires multiprong approach that includes limiting food waste, increasing food production and adjus-
ting agriculture techniques to achieve high yield in changing climate environment without expanding land
dedicated to agriculture. WisDM Green can potentially be deployed to optimize compound combinations
regionally and specifically to enhance the production yield of crops in food insecure areas. Singapore also
faces food security challenges. Specifically, with limited farming land, Singapore imports 90% of its food
products, and 13% of its vegetable supply is locally grown (eat). WisDM Green may serve as a potential
strategy to address local, regional, and global challenges in increasing agricultural yield through rational and
optimal yield enhancement design. As a highly versatile, dynamic platform, it may optimize combinations
based on the availability of compounds regionally and further improve crop yield with optimal combinations
in places with limited arable land.

Limitations of WisDM Green

The WisDM Green workflow represented the first step towards designing and optimizing compound combi-
nations to effectively and sustainably enhance the yield of plants. However, to fully resolve the underlying
conflicts between fertilizer-driven yield and sustainability, the WisDM workflow must overcome and address
several constraints and limitations. This study was conducted under well-controlled, indoor experimental
conditions and has yet to explore multi-compound optimization in outdoor settings, which may require re-
optimization, specifically of the compounds’ concentration ratios. Therefore, WisDM Green implementation
in an outdoor setting may reduce its ability to increase %Yield.

This work optimized compound combinations via a second order quadratic series, which was previously
applied towards drug combination optimization against a broad spectrum of indications. In drug development,
the dose selection is typically limited as toxicity and clinically actionability are critical limiting factors.
However, the concentration selection of compounds in this study was not limited by induced toxicity and
was mostly referenced to previous studies. The concentration levels were however limited to three per the
design of OACD. Therefore, the interrogated compound-concentration parameter space was only limited
to the tested concentrations. As such, downstream concentration-escalation studies or OACD designs that
incorporate more concentration levels may provide further insight into concentrations that improve plant
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yield.

This work was based on prospective optimization and validation with the selected 8 compounds. Though
the top WisDM Green-pinpointed combinations were able to achieve 15 – 35% increase in %Yield, further
studies with an expanded list of compounds may add additional insight into even further improving yield.
Importantly, the optimal compound combinations may not have any effect, or sub-optimal outcome, in other
species of plants or different experimental conditions. A proof-of-concept study with a single validation
model to design compound combinations is unlikely to broadly enhance yield across multiple types of plants.
However, subsequent studies to optimize compound combinations in multiple species of plants may enable
the discovery of a universal compound combination. Nonetheless, this work provided insight into the role of
properly combining compounds at the correctly pinpointed respective concentrations during the process of
optimal yield enhancement in agricultural applications.

Furthermore, biological variations were observed across all experiments in this study. All germinated red
spinach were obtained from Everything Green Pte Ltd, and they were grown in well-controlled conditions
with sufficient lighting and water supply. This study did not pre-select seeds based on germination status.
The inherent variability in germination rates across plants contributed to subsequent %Yield data variability,
even though all samples were subjected to well-controlled growth conditions in the 9-pod gardening machines.
Moreover, the inter-plant variability in morphological features, such as growth rate, may also have resulted
in the overall observed variabilities. The red spinach samples randomized across the pods in the gardening
machines all had a substantial variation in morphological features (e.g. leaf size, shoot length). For example,
we observed that plants provided with compound combinations that resulted in their fast growth tended to
limit the space and block light source for a slower growing neighboring plant. The observed trends suggested
that a non-randomized design that places plants applied with the same compound in the same proximity
may potentially reduce the effects of neighboring samples that exhibit different responses to the compounds.
These aforementioned factors may have been the key drivers of the variability observed in %Yield data. As
a result, the explanatory power and correlation for the response surfaces were not significant even though
they did however provide insight into the changes in morphological features with respect to input compounds
(Figure 9 and 12).

In this study, compound combinations were manually added to each sample. Experiments relied on the
diligence of the study team in terms of ensuring homogeneity of the compound combinations within each
sample. The uniform dispersion of the compound combinations applied to each red spinach may be affected
by the density of peat moss in each pod. The compaction of peat moss, or soil, may lead to poor root growth,
which subsequently affects nutrient uptake. Additionally, due to inter-plant variability in the root system,
the uptake of compounds may have contributed to the variability in yield.

Prior to scale-up of the WisDM Green workflow, downstream studies may need to incorporate mixing me-
thodologies or other design considerations that can ensure homogeneity of compound combinations and peat
moss in each pod and potentially improve the uniformity of the growth conditions across all samples. Nonet-
heless, the consistency between predicted and validated outcomes of WisDM Green-pinpointed combinations
confirmed the utility of the platform. Further studies may incorporate strategies to address the uniformity
of seed selection and spatial layout in order to improve the %Yield data and compound interaction analysis.

Conclusion

In this proof-of-concept study, WisDM Green was experimentally validated towards the prioritization of
compound combinations for sustainable farming. Compound combinations pinpointed by WisDM Green
demonstrated substantial increase in %Yield, without fertilizer-driven enhancement. Further analysis on
compound combinations revealed concentration-dependent interactions, which suggest that properly pairing
and designing compound combinations and their respective concentration ratios are critical to achieving
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improved plant yield. Furthermore, continuous effort to refine and improve WisDM Green is essential before
the scale-up and potential integration of the platform for farming applications.
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