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Abstract

The ‘design-build-test-learn’ (DBTL) cycle has been adopted in rational high-throughput screening for ob-
taining high-yield industrial strains. However, the mismatch between build and test slows the DBTL cycle
due to the lack of high-throughput analytical technologies. In this study, a highly-efficient, accurate, and
non-invasive detection method of gentamicin (GM) was developed, which can provide timely feedback for the
high-throughput screening of high-yield strains. Firstly, a self-made tool was established to obtain datasets
in 24-well based on the coloring of cells. Subsequently, the random forest (RF) algorithm was found to have
the highest prediction accuracy with 98.5% for the training and 91.3% for verification. Finally, a stable
genetic high-yield strain (998U/mL) was successfully screened out in 3005 mutants, which was verified to
improve the titer by 72.7% in a 5 L bioreactor. Moreover, the verified new datasets were updated to the
model database in order to improve learning ability of DBTL cycle.

Keywords: Non-invasive method; Gentamicin; Machine learning; High-throughput screening; Computer-
aided vision technology.

Introduction

Gentamicins (GMs) belong to one kind of aminoglycoside antibiotics produced by the microorganisms such as
Micromonospora purpura andMicromonospora echinospora (Houghton, Green, Chen, & Garneau-Tsodikova,
2010). It was discovered in 1963 and then introduced into clinical usage in 1971 (C. Chen, Chen, Wu, & Chen,
2014). Because of the low price, wide antibacterial spectrum, strong antibacterial effect, and stable efficacy,
it has been widely used in clinics (Liu et al., 2018; Nordang & Anniko, 2005; Sohail, Esquer Garrigos, Elayi,
Xiang, & Catanzaro, 2020). Moreover, it is a well-known kind of antibiotic with a large production scale at
present due to mature fermentation technology (Liu et al., 2018). However, a higher GM producing strain is
considered to be a key factor in the fermentation process which significantly improve the competitiveness of
companies (Zhou, Tian, Lin, Zhang, & Chu, 2019). Therefore, the ‘design-build-test-learn’ (DBTL) cycle is
an engineering paradigm that is widely applied in rational high-throughput screening for obtaining high-yield
industrial strains. In general, it is easy to create a large mutant library. For example, mutagenesis and genetic
engineering, as well as adaptive evolution, are the main approaches to improve the performance of strains
to build large libraries of mutants (Zhou et al., 2019). Moreover, the atmospheric and room temperature
plasma (ARTP) is a novel mutagenesis technology widely used for microbial strain improvement (Y. Chen et
al., 2020; Shu et al., 2020; Wang et al., 2019). However, the rapid and efficient acquisition of target strains
from a large strain variants library through high-throughput screening technology remains a great challenge.
The main bottleneck technology is low efficient high-throughput analytical methods during DBTL cycle.

Currently, there are several methods for GM detection, including chromatography (high-performance liquid
chromatography, HPLC), spectroscopy (nephelometry), and biological method (Aunon et al., 2020; Doadrio
et al., 2004; Lukáč et al., 2019). Nevertheless, GM has to be pre-column derivatized for titer detection by
HPLC due to the absence of conjugated double bonds in the molecular structure (no UV absorption peaks)
(Cabanes et al., 1991). Although this method is precise, the sample stability after derivatization is poor,
and it is inefficient for high-throughput screening in rapid detection during the whole mutation breeding
process. On the other hand, spectrophotometry is regarded as a rapid detection method. GM reacts in
a solution of sodium phosphotungstate under an acidic environment, and the absorbance at a maximum
absorption wavelength correlates positively with GM titer, thereby completing rapid GM detection (Tian et
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al., 2019). Although this method improves the efficiency, it still suffers from some disadvantages, such as
tedious procedure, poor stability, and restricted detection range. In fact, the above methods do not really
run DBTL cycles with high efficiency. Besides that, the endpoint assay resulted in more false positives and
lower sample screening efficiency during the high-throughput screening of mutants. Therefore, it is urgent
to develop a simple, efficient, self-learning, and non-invasive method for screening mutants after cultivation
in 24- well plates to achieve the purpose of rapid and high-throughput screening.

Computer vision technology is all the rage at the moment. It is an advanced technology related to computer
graphics, image processing, pattern recognition, and machine learning with rapid, non-destructive, real-
time, economic characteristics. Moreover, the target image information is acquired via the imaging system
and then transmit to the image processing system, which converts the image (color, texture, brightness,
pixel distribution, etc .) into digital information, which can be further calculated, processed, and resolved
for identifying, detecting and controlling the target object. Besides that, this technology has widened
application areas because of its stability, flexibility, accuracy, and so forth (Agarwal, Kumar, Varadwaj, &
Tiwari, 2020; Memmolo et al., 2022; Phromphithak, Onsree, & Tippayawong, 2021; Zhu et al., 2021). In
addition, advances in artificial intelligence are changing all areas of chemistry,and biological processes at an
increasingly rapid pace, without an in-depth understanding of the internal operation of biological systems.
The results obtained from the phenomena can better guide biological research(Hesami & Jones, 2020; Nandy
et al., 2021).

In this study, the computer-aided vision technology upon integration with machine learning was used for the
quick and non-invasive detection of GM titer after cultivation in microplates during the primary screening of
mutants of Micromonospora echinospora , as shown in Fig. 1 (a). M. echinospora 49-92S exhibited a coloring
effect in the fermentation broth, and there was a strong correlation with GM titer during 0-6 days of culture.
Meanwhile, a picture grab tool was developed for 24-well plates by Python+OpenCV , which allows rapid
and high-throughput pixel capture of 24 wells and generation of a data matrix of 15 features. Then, three
widely used machine learning models were evaluated by 768 training datasets, and one model was determined
to be the best fit for this dataset based on 50-fold cross-validation scores. In addition, we used 94 datasets of
non-identical biological batches to validate the model and found that the random forest (RF) possessed the
best prediction effect in the same batch or different batch. To verify the feasibility of the method for quick
screening application, the utilization of the proposed method in this study was executed to complete the
primary screening of 3005 mutants. As a result, the high-yielding producers were successfully screened and
updated the model database. Thus, this systematically modeled approach can be performed for the real-time
monitoring of the changes in GM titer due to the non-invasive method preferable to reduce the probability
of false positives and increases DBTL clycle efficiency in mutant screening. Moreover, the high-throughput
characteristic makes the GM detection from a single well, endpoint (2D) evolved into timelines, multipoint
(face) (3D).

Materials and Methods

Image system

The equipment of the established system is consisting of a camera (FUJIFILM X-A2), a fixed light source,
a bracket, and an enclosed space. In the system, it is significant for working well to avoid reflection effects.
For all experiments, digital images of 24-well plates were saved and stored in JPG format (pixel size is 3264
*3264). Moreover, the parameter of the camera is F5.6, the speed of the shutter is 0.4 s, ISO is 200, manual
focus, and manual white balance.

24-well plate images capture and digital matrix extracting

Accurately, the most crucial step was efficiently locating and cutting the position of each hole digital image in
the 24-well plate in order to obtain the picture of color changes in GM fermentation process, and effectively
converted the images into numerical information. All images were processed to obtain a piece of digital
information by an executable file written by Python+OpenCV . Image processing operations include the
following steps:
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Pre-processing, import the image file path; change the color mode toGRAY; and Media blur was used to
eliminate picture noise.

Image binarization, the function of OpenCV.threshold was used to binarize images. The image was converted
to a binary image according to the custom threshold by the following function:

dst (x, y) =

{
maxval, if src (x, y) > thresh

0, otherwise

src: source image; dst : output image; thresh: threshold; maxval : maximum value in dst image.

The acceptable threshold value was in the range of 160-190, which can accurately highlight the spatial
position of each 24 holes (distinguish the foreground color and background color), as shown in Fig. 1 (b).

Contour detection, the contour detection function (cv2.findContours( image, mode, method)) was used to
detect the information about contour position.model : cv2.RETR_LIST, contour no hierarchical relation-
ship.method : cv2.CHAIN_APPROX_SIMPLE, this method can effectively reduce the amount of calcula-
tion by compressing the elements in the horizontal direction, vertical direction and diagonal direction, and
only retaining the end coordinates in this direction. The minimum circumscribed rectangle was established
by the contour information. The new images were cut and retained the circumscribed rectangle that meets
the specifications after setting constraints.

Feature extraction, the quadrant of 500 * 500 pixels in the new image was used to calculate the mean of red
(R ), green (G ), blue (B ), brightness (L , the mean of R, G andB ), three relative colors (relative red (rr
= R/L ), relative green (rg = G/L ), relative blue (rb = B/L )), hue (H ), saturation (S ), L-lab (brightness
inLab mode), cyan (c ), magenta (m ), yellow (y ), black (k ) and fermentation days (day ).

Machine learning model selection

The titer of GM was quickly detected by colorimetry, and the images of 8 groups of 24 well plates were
obtained at different fermentation stages (4 detection repetitions in each group). The regression model was
established by a 768 * 15 matrix. The regression methods include Partial least squares regression (PLS),
support vector machine (kernel function: ”linear”, ”RBF”, ”poly”), RF and gradient lifting decision tree
(GBR), using the scikit-learn library in a python programming language(Python 3.8) .

The model scores were evaluated by modeling 768 data with 50-fold cross-validation under the default
parameters. Then the learning curves were drawn to evaluate the acceptability of models to different amounts
of data, and the prediction ability of samples in the same batch (10-fold cross-validation).

Stability test

Six levels of GM titers were used to capture images at 8 time points within 24 hours in M. echinospora 49-92S
fermentation systems. The principal component analysis (PCA) and Duncan multiple comparison (P<0.05)
were used to analyze the stability and accuracy of the system in different time periods (Gonzalez-Freire et
al., 2018). The closer a data point from the others, the stronger will be the correlation in the PCA scores
plot.

RF parameter optimization

RF regression is efficient on large datasets, in which it combines the advantages of predictions from multiple
decision tree algorithms (Phromphithak et al., 2021). The scikit-learn library module performs RF pa-
rameter adjustment. The model function is as follows:RandomForestClassifie r (n_estimators, max_depth,
min_samples_split, min_samples_leaf, max_features, max_leaf_nodes, random_state =20) . Parameter
adjustment priority:

n_estimators > max_depth > min_samples_leaf > min_samples_split > max_features.

Model validation

4
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GM fermentation was carried out in 24-well plates of 4 groups of non-training dataset batches. Images of
different fermentation degrees were captured within 0-6 days, 94 * 15 training dataset matrix was generated
for model verification, and the generalization ability of the training model in different biological batches was
evaluated.

Determination of GM content (UV spectrophotometry)

First of all, an appropriate amount of fermentation broth was taken and adjusted the pH to 1.5-2.0 with 20%
H2SO4 solution. Then, the pH was adjusted to 6.4-6.8 via NaOH after 30 minutes of ultrasound sonication.
After that, the supernatant was taken for standby after centrifugation at 4000 r/min for 20 minutes. The
supernatant of acidified fermentation broth was mixed with the 1.5 mL sodium phosphotungstate aqueous
solution. After 30 min, the volume was fixed to 100 mL and centrifuged at 4000 r/min for 10 min. The
supernatant was then taken to measure the GM content by using the spectrometer at a wavelength of 450
nm. Finally, GM content was calculated according to the standard curve.

Determination of GM content (HPLC)

Derivatizing agent: phthalaldehyde (1 g) and boric acid (2 g) were dissolved in 100 mL of 5% methanol
solution, respectively. After that, 2 mL mercaptoacetic acid was added to this solution. The pH was
adjusted to 10.4 with 45% NaOH and then stored in a 4 dark refrigerator.

Mobile phase: sodium heptanesulfonate (4 g) was dissolved in 1 L methanol acetic-acid solution (225 mL
ultrapure water, 730 mL methanol, 45 mL acetic acid).

HPLC conditions: the chromatographic separation of GM was performed using Agilent chromatograph (1260
Infinity, HPLC), equipped with a quat pump, UV detector, and a C-18 unitary column (ZORBAX SB; 5 μm,
4.6×150 mm). The GM was detected at 330 nm and the cycle was set for 8 min, with column temperature
at 40 °C, injection of 20 μL, and flow rate of 1.4 mL/min.

Sample treatment: 0.2 mL acidified sample was taken in 1.8 mL ultrapure water with 0.8 mL derivant and
2.2 mL methanol. After that, it was stored in a 60 water bath and incubated for 15 minutes.

Media and culture conditions of microorganism and ARTP mutagenesis

M. echinospora 49-92S was used as the original strain for GM production and it was stored at -80°C in 20%
glycerol solution. The basal solid medium contained (in g/L) soluble starch 10, asparagine 0.02, CaCO3 1,
MgSO4·7H2O 0.5, KH2PO40.3, NaCl 0.5, KNO3 1, agar 13, bran 13. The solid plate was cultured at 35°C
for 8-10 days. The basal seed medium contained (in g/L) soluble starch 10, glucose 1, corn flour 15, soybean
powder 10, peptone 2, KNO3 0.5, CaCO3 5. The seed cultivation was carried out at 250 rpm and 34°C for 60
h. The fermentation medium contained (in g/L) soluble starch 30, glucose 5, corn flour 25, soybean powder
26, peptone 10, KNO3 0.5, CaCO3 7, (NH4)2SO4 1, CoCl 0.03. The fermentation was carried out at 250
rpm and 34°C for 5-6 days.

The fermentation medium in the 5 L bioreactor was the same as described above (Shanghai Guoqiang
Bioengineering Equipment Co., Ltd., China). All the media were sterilized at 115°C for 30 min. The initial
working volume of 3 L with an inoculum of 12% was cultured at 34°C for 130 h. Aeration at 0.5 vvm
and dissolved oxygen (DO) above 30% of the saturation concentration were maintained by adjusting the
agitation in a stepwise manner. pH of 7.6 was maintained by the addition of ammonia solution during the
whole process.

For ARTP mutagenesis, 10 μL cell suspension was treated by ARTP with a mutagenesis time of 210 s. Single
colonies were obtained by culturing on plates. The seed culture was performed in well plates, with 5 single
colonies in each well.

Fermentation parameter determination

Residual sugars were measured by dinitrosalicylic acid method (DNS) method (Lee et al., 2013). Microbial
packed mass volume (PMV) was used to characterize the cell concentration (Xia et al., 2009). A certain
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volume of fermentation broth V1 was centrifuged at 3000 rpm 10 min. The volume V2 of the supernatant
was rapidly determined, and the cell concentration was calculated from the formula as given below:

PMV (%) =
V1 − V2

V1
× 100%

Results and Discussion

Selection of machine learning model

In this study, the imaging stability of system at different times was assessed in eight-time points within 24
h. Also, six levels of GM were chosen for imaging. PCA analysis and multivariate difference analysis were
performed on the sample matrix. As shown in Fig. 2 (a), samples of the same titer maintained a higher
aggregation degree at different times and better separation between different titers. Multivariate analysis
(P < 0.01 ) of the feature factors were listed in Table 1, where factors R, G, rr, rg, m, and k all showed
extremely significant differences in the parameters between different titers, while others also showed different
degrees of differences. Thus, these results illustrated that the imaging system had excellent reproducibility
in different time dimensions.

Several machine learning models were employed to model the color features of GM from M. echinospora
49-92S, including three support vector machines with different kernel functions (SVM linear, SVM rbf, and
SVM poly), PLS, RF, and GBR. 50-fold cross-validation of the 768 *15 dataset modeling was performed
under default model parameters, and the model scores are shown in Fig. 2 (b), where RF, GBR and PLS are
better suited for the dataset than SVM. The score of ensemble algorithm RF and GBR performed were higher
than PLS. These results suggest that an ensemble algorithm could provide a higher prediction performance
than a single approach (Duran et al., 2018). The error decreases as the number of samples increases by
contrasting the learning curve scores (10-fold cross-validated), where PLS, RF and GBR could converge on
a higher score level compared to SVM, especially RF has a higher training set score (98.2%). Furthermore,
the results showed that training RF from the whole dataset provided the highest performance model in the
same biological batch, as shown in Fig. 2 (c-h).

RF regulation and model validation

In machine learning, overfitting and underfitting models will lead to the increase in generalization error
(Eken, 2021; Salam, Azar, Elgendy, & Fouad, 2021). RF could be balanced by adjusting parameters and
the prediction power for unknown samples would be fully realized (Hou et al., 2021; Torre-Tojal, Bastarrika,
Boyano, Lopez-Guede, & Graña, 2022). 768 sample datasets were modeled under the default parameters.
Whereas, 94 sample data from different batches were used as the validation set for model validation. The
scores of RF and GBR training sets were R2 = 0.982 and R2 = 0.976 respectively, and the verification sets
were R2 = 0.893 and R2 = 0.887. The score of PLS training set R2 = 0.913, verification set R2 = 0.881, as
shown in the following Fig. 3 (a, b, c).

The parameter n estimators,max depth,min samples leaf, max features were adjusted by plotting the learn-
ing curve. Under the default parameters, the model score R2 = 0.9821. The optimal parameter n estimators
= 186 and the model score is 0.98264. The complexity of the model was unchanged. The optimalmax depth
= 19 caused the score to 0.98265, and the complexity moved to a simple direction. The parameters of
min samples leaf were adjusted for continuing to move in the simple direction, and the score decreases. The
model in the simple direction has moved to the limit. The max features the larger, the more complex the
model was (default was 3). The maximum score was 0.98469 (features = 6) . At this time, the model had
reached the parameter adjustment limit, the score of regression was about 98.469% for the training set and
91.3% for verification. After parameter adjustment, the score of the model training set was increased by
0.259%, and the score of the verification set is increased by 2%, as shown in Fig. 3 (d).

Feature factor

6
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Heat maps were drawn for 15 feature factors and titers, as shown in the following Fig. 3 (e). There was
an obvious correlation between the factors change trend involved in the modeling and the GM titer ofM.
echinospora 49-92S. Through Pearson correlation coefficient analysis, the factors with strong correlation
(|r|[?]0.8 ) were r, G, B, L, k. While, the factors of moderate correlation (0.5[?]|r|<0.8 ) were H, S, RR,
l-lab, c day, and the factors of low correlation (0.3[?]|r|<0.5 ) were rg, rb, m, y. There were no unrelated
factors were found (|r|<0.3 ). The importance of the characteristic factor was returned via function feature -
importance , as shown in Fig. 3 (f), in which the factors of L, R, and k (Pearson |r|[?]0.8 ) also showed
a strong contribution to the model. In addition, the ”day” variables as environmental parameters are also
incorporated into the machine learning model to improve the accuracy and robustness. Removing the features
of rg, m, c, etc. with low contribution reduces the score, indicating that the selection of 15 groups of feature
factors in this model was a necessary condition to maintain the high quality of the model.

Comparison of detection methods

GM is a group of multi-component aminoglycoside antibiotics with similar structures produced by M. echi-
nospora 49-92S. Therefore, it is divided into group C and group A/B according to the difference in molecular
structure, in which component C is regarded as an effective component (Wagman, Oden, & Weinstein, 1968).
In this study, it was necessary to accurately quantify the samples by HPLC after derivatization treatment,
and HPLC of the derivatized standards mainly contains four peaks, C1, C1a, C2, C2A as shown in the fol-
lowing Fig. 4 (a). The linear relationship between GM titer and peak area was established by averaging the
areas of four peaks, R2 = 0.999. Spectrophotometry was more efficient than HPLC in the rapid screening
of GM mutagenesis because of without derivation (Kumar, Himabindu, & Jetty, 2008; Tian et al., 2019).
Its accuracy has also been experimentally confirmed in this study, and an excellent linear relationship R2 =
0.99, as shown in Fig. 4 (b). However, this method must terminate the fermentation of microporous culture,
and the complex pretreatment process also makes its accuracy affected by the proficiency of operators such
as acidification, matching measuring range, etc. As a result, the current detection efficiency was still not
matched with a large number of mutation samples, the cycle of DBTL was broken between build and test.

In this work, firstly, the tool has completed the upgrading and promotion than the previous screening works,
as presented in Table 2. The 862 high coverage GM fermentation samples with different titers ensure the
same high accuracy of the model as spectrophotometry and HPLC in the same batch (R2 > 0.99). The
positive sample after verification could improve the quality and robustness of model to avoid detection error
due to the exceeding the range in the above method.

Besides that, different from (Zhu et al., 2021), who combined computer vision technology with machine
learning applied in plant cell culture, which realized the breakthrough of plant cell culture from point to a
line in shake flask (1D to 2D). In this work, there is an advancement from a single point (1D) evolved into
the surfaces (3D) for quick screening technology. Therefore, it could be rapid, accurate, and non-invasive
detection for high-through screening, which ensured the precision. For example, the detection efficiency
was 3.83-fold higher than for spectrophotometry and 228-fold higher than for HPLC because of the above
advantages.

Moreover, it could realize the real-time high-throughput process detection of GM synthesis without stopping
the fermentation process, as shown in Fig. 4 (c). Now the samples can be screened by a multi-dimensional
scheme. For example, the total yield, specific yield, product synthesis rate, and other process parameters can
be considered comprehensively to screen the mutants, which is an advantage that endpoint detection does
not execute. This simplifies the tedious operation, reduces the probability of false positives, and maximizes
the efficiency of rapid screening.

High-throughput screening of high-yield GM mutants

The method developed in this work could realize rapid, real-time, non-invasive and high-throughput detection
of GM titer in 24-well plate fermentation culture. 3005 mutants were obtained by ARTP mutagenesis. After
24-well plate culture for preliminary screening, the determination results were shown by this method in the
Fig. 5 (a). Among them, 405 mutant strains present higher titers than that of the parent strain, of which
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the highest titer is 988.0 U/mL, 71.0% higher than the control (577.9 U/mL). Subsequently, 175 mutants
(10% higher than the control group) were re-screened by shake flask, as shown in the Fig. 5 (b). The 15
mutants above 10% of the control group were obtained. Among them, the highest titer of re-screening was
998 U/mL, which still exhibited high-yielding characteristics after 5 consecutive generations of plate transfer
culture.

Significant differences in GM titers during fed-batch fermentation were observed between mutant and parent
strains when the same inoculum size, ventilation, temperature, and rotation rate of the fermentation phase
were maintained. The mutant strain presented an immense advantage in GM titer in contrast to the parent
strain in the whole fermentation process, as shown in Fig. 5 (c). Moreover, the mutant showed a faster rate
of growth and carbon source consumption Fig. 5 (d, e). Thus, all these results indicated that the mutant
strain had a stronger metabolic capacity and production level.

Future prospects

The rapid, accurate, and process features make the final titer the only screening index in the high-throughput
screening. This would cause some ’seed players’ to be ignored, which have outstanding production potential
only in the upfront period because culture conditions limit total yield. Following up on work we hope
to introduce more features besides color into the model to achieve comprehensive detection of biomass,
titer, etc. In addition, the process features such as specific productivity, biomass, and total production as
a comprehensive index to establish multidimensional screening network. Therefore, the screening method
developed here could provide researchers with a novel and efficient way for high-yield antibiotic-producing
mutants selection. In addition, the DBTL cycle will be adopted in rational high-throughput screening for
high-yield industrial strains in quality, fast, and intellect patterns, as shown in Fig. 6.

Conclusions

In this work, the phenomenon of coloring in GM fermentation was a real-time photo captured in 24-well
plates by a self-made laboratory image recognition tool, establishing the model database. RF model was
successfully applied to predict the titer of GM, using highly influential 15-features consisting of color and
time characteristics. The score of model was about 98.5% for the training and 91.3% for verification. In
addition, the process titer of 3005 mutants was screened by this method, and a high-yielding strain (998
U/ml) was successfully observed, which was verified to improve the titer by 72.7% in a 5 L bioreactor.
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Tables

Table 1

The mean, SD, and MA about 15 features in six levels GM titers at 8-time points.

Parameter Titer Mean SD MA Parameter Mean SD MA Parameter Mean SD MA

R 326 0.55948 0.02405 A S 0.77459 0.02670 B L(Lab) 0.07307 0.00894 B
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. Parameter Titer Mean SD MA Parameter Mean SD MA Parameter Mean SD MA

392 0.49601 0.01189 B 0.77782 0.01656 B 0.05619 0.00070 BC
450 0.45512 0.01146 C 0.80807 0.01116 A 0.06613 0.00045 BC
586 0.16287 0.01413 D 0.59727 0.00971 C 0.02562 0.00137 C
790 0.11471 0.00964 E 0.47874 0.02516 D 0.06623 0.03706 BC
863 0.07912 0.00691 F 0.43262 0.01213 E 0.49438 0.06056 A

G 326 0.45965 0.02397 A L 0.39630 0.02166 A c 0.00000 0.00000 B
392 0.30730 0.01327 C 0.30552 0.01193 B 0.00000 0.00000 B
450 0.35059 0.01130 B 0.30166 0.01007 B 0.00000 0.00000 B
586 0.10695 0.00950 E 0.11254 0.01019 C 0.00000 0.00000 B
790 0.19259 0.01021 D 0.12567 0.00920 C 0.39800 0.02251 A
863 0.06984 0.00541 F 0.06614 0.00588 D 0.00000 0.00000 B

B 326 0.14669 0.02208 A rr 0.15942 0.00621 C m 0.16795 0.00936 D
392 0.11326 0.01102 B 0.18048 0.00295 A 0.38067 0.01321 A
450 0.09925 0.00791 B 0.16768 0.00158 B 0.22979 0.00647 C
586 0.06779 0.00763 C 0.16087 0.00236 C 0.34295 0.02583 B
790 0.06892 0.00770 C 0.10221 0.00144 E 0.00000 0.00000 F
863 0.04946 0.00541 D 0.13293 0.00110 D 0.11643 0.01756 E

H 326 0.11200 0.00108 B rg 0.13785 0.00720 B y 0.75332 0.02870 B
392 0.07960 0.00099 BC 0.11174 0.00060 E 0.77198 0.01713 AB
450 0.09368 0.00064 BC 0.12914 0.00034 C 0.78215 0.01270 A
586 0.03629 0.00193 C 0.10565 0.00288 F 0.58458 0.01197 D
790 0.09386 0.05248 BC 0.17020 0.00388 A 0.64565 0.02149 C
863 0.70037 0.08579 A 0.11744 0.00181 D 0.37587 0.01541 E

S 326 0.77459 0.02670 B rb 0.04094 0.00406 D k 0.43910 0.02492 F
392 0.77782 0.01656 B 0.04111 0.00242 D 0.50399 0.01189 E
450 0.80807 0.01116 A 0.03651 0.00178 E 0.54488 0.01146 D
586 0.59727 0.00971 C 0.06682 0.00164 B 0.83713 0.01413 B
790 0.47874 0.02516 D 0.06075 0.00241 C 0.80702 0.01069 C
863 0.43262 0.01213 E 0.08296 0.00175 A 0.92088 0.00691 A

Abbreviation: GM, gentamicin; SD, standard deviation; MA, multivariate analysis (P < 0.01).

Table 2

Comparison of GM detection methods

Preprocessing Derivatization Continuity Precision (R2) Destructive Time (hour) Num
HPLC Yes Yes No ≥0.99 Yes 2 1
Spectrophotometry Yes No No ≥0.99 Yes 0.042 1
Novel method No No Yes ≥0.99 No 0.0087 24

Note: “Time” indicates spend time (hour) to detect one sample.

Abbreviation: GM, gentamicin.

Figure caption

Fig. 1 (a) High-throughput screening procedure. (b) The binary images of GM fermentation on a 24-well
plate at thresholds 110, 130, 160, 180, 190, 200.

Fig. 2 (a) Principal component analysis of 6 GM titers at 8-time points, PC is the principal component
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contribution. (b) Model scores of 50-fold cross-validation in machine learning models. (c-h) The scores
change of training set and testing set (all from 768 * 15 matrix) with data volume (learning curve), and
“linear”, “rbf”, “poly” are three kernel functions of SVM in (c), (d), (e).

Fig. 3 (a), (b), (c) are the scores of machine learnings in default parameters. (d) is the model score under
optimal parameters. The “TRAIN” is the training set matrix 768 * 15, and “Verifi.” is the validation set
matrix 94 * 15, which is not the same batch as “TRAIN”. (e) left is a correlation between GM titer (y t)
and feature factors, and right is a correlation between factors.

Fig. 4 (a) shows liquid chromatogram of eight different titers of GM standard samples. (b) shows a linear
relationship between the methods of HPLC and spectrophotometry under different GM titers. (c) shows the
change of GM titer and color were measured by the novel method in the 24-well-plate mutant screening.

Fig. 5 (a) Preliminary screening of 3005 mutants was completed by this rapid detection; (b) the titers of 175
mutants were re-screened by rapid detection; note: one point represents five mutants. (c), (d), (e) represent
the changes of total carbohydrate, PMV and GM of mutant and parent strain in 5 L bioreactor respectively.

Fig. 6 The design-build-test-learn cycle in high-yield antibiotic-producing mutants selection.

Figures

Fig.1

Hosted file

image1.emf available at https://authorea.com/users/481354/articles/568448-an-efficient-high-

throughput-screening-of-high-gentamicin-producing-mutants-based-on-titer-determination-

using-an-integrated-computer-aided-vision-technology-and-machine-learning

Fig. 2
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