The promotion effect of salt-alkali on ammonia volatilization in coastal soil

Zhenqi Shi¹, Dongli She¹, Yongchun Pan¹, and Yongqiu Xia²

¹Hohai University ²State Key Laboratory of Soil and Sustainable Agriculture

May 3, 2022

Abstract

Globally, soil salinization is intensifying, with alkalization coexisting. In particular, coastal ecosystems are more susceptible to salt problems due to their formation process and geographical locations. The nitrogen (N)-cycling processes of coastal ecosystems are bound to salt-alkali changes. Ammonia (NH 3) volatilization from agricultural ecosystems is one of the most important pathways of N loss and has also been considered the main contributor to air pollution in coastal ecosystems. As the most accessible land resource on earth, clarifying and quantifying the effect of saline-alkali on N content and on NH 3 volatilization in coastal ecosystems are pivotal to promote coastal agriculture productivity. The challenge in demonstrating the effect is how to identify the direct effects of salt-alkali and how these two factors indirectly impact NH₃ volatilization through interactions. By combining incubation experiments with the structural equation modeling method (SEM 'element' model), we revealed the net effects of salt-alkali on NH 3 volatilization and the roles of environmental factors in mutual interaction networks. Compared to the CK treatment, NH₃ volatilization increased by 9.31-34.98%, 3.07-26.92% and 2.99-43.61% with salt gradient increases from 10.10alkalinity from 0.5significantly increased by 8.36-56.46%, 5.49-30.10% and 30.72-73.18%, respectively. According to the element model, salt and alkali both promoted NH₃ volatilization directly and had an indirect negative effect by altering the N contents and N transformations of microbes. The N contents in the incubation system showed a direct positive effect on NH 3 volatilization, with an obvious decrease under elevated salinity and alkalinity. Additionally, the gene abundance of N-transformed microbes strengthened NH 3 volatilization indirectly. The indirect prohibitory effect on NH 3 volatilization resulting from salt and alkali was compensated by the direct stimulating effects on the pH and NH 4 + contents, and the overall positive contribution of salt was less than that of alkali. Our results indicated that the potential of NH 3 emissions from coastal saline areas could be enhanced by concomitant soil alkalization.

Hosted file

The promotion effect of salt-alkali on ammonia volatilization in coastal soil.docx available at https://authorea.com/users/480245/articles/567744-the-promotion-effect-of-saltalkali-on-ammonia-volatilization-in-coastal-soil