Green-up and brown-down: Modelling grassland foliage phenology responses to soil moisture availability

Jinyan Yang¹, Belinda Medlyn¹, Craig Barton¹, Amber Churchill¹, Martin De Kauwe², Mingkai Jiang¹, Arjunan Krishnananthaselvan¹, David Tissue¹, Elise Pendall¹, and Sally Power¹

¹Western Sydney University Hawkesbury Institute for the Environment ²University of Bristol School of Biological Sciences

April 27, 2022

Abstract

Grassland responses to drought are strongly mediated by leaf phenology, with greening and browning being highly sensitive to soil moisture. However, this process is represented overly simplistically in most vegetation models, limiting their capacity to predict grassland responses to global change factors. We derive functions representing grassland phenological responses to soil water content (SWC), by fitting an empirical model to greenness data. Data were obtained from fixed cameras (phenocams) monitoring phenology at several grassland experiments in Sydney, Australia. The data-model synthesis showed that the sensitivity of growth to SWC exhibited a concave-down response in most species. For senescence, we found a strong nonlinear increase in senescence rate with declining SWC. Both findings contradict common assumptions in vegetation models. Incorporating nonlinear responses in the empirical model reduced the error in cover predictions by 12%. Model evaluation against data from drought treatments indicated that differential sensitivity of phenology to SWC helps explain differences among species' responses to variable rainfall. Our work provides a new methodology, and new evidence, to support the development of improved representations of grassland phenology for vegetation models.

Hosted file

yang et al 2022.docx available at https://authorea.com/users/479016/articles/567007-greenup-and-brown-down-modelling-grassland-foliage-phenology-responses-to-soil-moistureavailability