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Abstract

Understanding how population dynamics are influenced by species interactions and the surrounding commu-
nity is crucial for addressing many ecological questions, but requires modelling of complex systems involving
direct, indirect and often asymmetric species interactions. Progress in developing multispecies models that
can tackle this task is being made in multiple subfields of ecology, often with varying approaches and end
goals but also facing shared challenges. We review some of the main challenges and the ways in which they
are being addressed, highlighting a wide variety of methods that can support the development of multispe-
cies models for understanding population dynamics. The main challenges that we examine are estimation of
species interactions from limited data, the necessity of simplifications, and handling uncertainty in complex,
multispecies models. In addition to reviewing a wide variety of approaches and methods for dealing with



these challenges, we discuss future directions and make suggestions for how we believe the development of
multispecies models for understanding population dynamics can move forward more efficiently.

Introduction

Understanding how population dynamics are influenced by species interactions and surrounding communities
is crucial for our understanding of the workings of whole communities and for our ability to better predict the
dynamics of individual species (Pimm 1982; Marzloff et al. 2016). Over recent years, it has become apparent
that single-species population models are often not sufficient to predict population dynamics in multispecies
systems, and that management decisions based on such models can have detrimental consequences (Kinzey &
Punt 2009; Legovi¢ & Gecek 2010; Engelhardt et al. 2020). Single-species models fail to adequately capture
dynamics in many real systems because communities are composed of complex networks of interactions with
continuous feedback effects. These feedbacks are ignored in single-species models, even when abundances
of interacting species are included as covariates, limiting the realism and predictive potential of the models
(Kissling et al. 2012). These limitations of single-species models are prompting an increased interest among
ecologists and managers in developing multispecies models that improve understanding of the functioning
of multispecies dynamics (Fultonet al. 2019), and that provide comprehensive information for effective
ecosystem management (Daan & Sissenwine 1990; Plagdnyiet al. 2014).

There are two main approaches to developing multispecies models. The first approach builds up from the
field of population ecology by joining single-species models into multispecies frameworks, incorporating
species interactions. Conceptually, this approach can be traced back to the classical deterministic Lotka-
Volterramodels 11Note: Bold terms in the text are explained in the Glossary and Multispecies model
types glossary used to describe the population dynamics of pairs of predator-prey or competing species
(Lotka 1925; Volterra 1928). These early models have since provided a basis for more complex models of
food webs and competitors, incorporating several species and more realistic characteristics such as spatial
dynamics, environmental variability and population structure (e.g. Roughgarden 1975; Holt & Lawton 1994;
Amarasekare 2008; Gamelon et al. 2019; Riiger et al. 2019; Lee et al. 2020). In addition, several types of
single-species population models aimed at quantifying population abundance and understanding drivers of
population dynamics have recently been extended to multispecies versions to improve the understanding of
the roles of interacting species (e.g. integrated population model s (Péron & Koons 2012; Barraquand
& Gimenez 2019), integral projection model s (Adler et al. 2010; Kayal et al. 2018)), while the use of
simulation models such as individual based model s (Breckling et al. 2005; DeAngelis & Grimm 2014;
Grimm et al. 2017) has also been shifted more towards multispecies modelling. Because models built up from
single-species population models handle individual populations and their interactions explicitly, they tend
to require large amounts of data and ecological knowledge, generally limiting their use to small subsets of
species within a community.

The second major class of multispecies models focuses on understanding systems at the community le-
vel, including attributes such as community structure, biomass, energy flow, species richness and stability
(Ulanowicz 1972; Pimm 1982; Tarnecki et al. 2016). Because these models focus on the dynamics of the
community as a whole, they have historically tended to treat species as interchangeable and have not been
concerned with the fate of specific species. Adding more species- or population-level detail to these models
is a second approach to producing new multispecies models to understand population dynamics. Currently,
most community-level models are unsuitable as predictors of population dynamics because they oversimplify
population processes and make broad assumptions about the systems under study (Hollowed et al. 2000).
However, they play an important role in identifying knowledge gaps and interactions (Plagdnyi 2007; Tra-
vers et al.2007; Collie et al. 2016), and are often essential tools for addressing macroecological issues, such
as consequences of harvesting, climate or habitat change (Pacifici et al. 2017) on community dynamics. By
adding more population-level detail and mechanisms to such models, they can also be used to understand
the dynamics of individual populations within communities (Garcia-Callejas et al. 2018).

Thus, we are seeing a shift towards multispecies modelling of population dynamics, both by expanding single-



species models to incorporate more species and by adding more species-specific dynamics to community-
level models. One can imagine an ultimate goal of these two approaches meeting in the middle, producing
multispecies models that can both describe the dynamics of individual species and capture the complexity of
whole communities. Recently, we have started to see hybrid modelsthat could provide a first step in such a
development by embedding a detailed population dynamic model within a community-level model allowing
information to flow back and forth between the two (e.g. Breckling et al. 2005; Makler-Pick et al. 2011;
Schmolkeet al. 2019). Such hybrid models have shown potential for exploring ecological questions such as
how ecosystem regime shifts affect the dynamics of a particular species (Gray & Wotherspoon 2015; Fulton
et al. 2019), but they currently remain limited to simpler systems due to their complexity and insufficient
species-specific data (Makler-Pick et al. 2011). Better collaboration between different modelling disciplines
could speed up progress on this front and unlock more of the innate potential of hybrid modelling (Mokany
et al.2016).

In parallel, some complex multispecies frameworks and software have been developed for exploring specific
questions, such as the effects of alternative harvesting strategies and protected areas, mainly in a fisheries
context (Tjelmeland & Bogstad 1998; Pauly et al. 2000; Begley & Howell 2004). These frameworks typically
use a combination of data, previously established parameter estimates and broadscale assumptions about
processes, and are presented as pre-packaged software for exploring specific systems and questions. While such
pre-packaged fisheries model frameworks have great value for their use, their context sets them somewhat
apart from the more general modelling challenges discussed in this paper. We will therefore not focus on
these types of model frameworks here, but refer our readers to the many reviews of these that already exist
in the literature (Hollowed et al. 2000; Plagdnyi 2007; Collie et al. 2016).

In general, development of multispecies models incorporating population dynamics and species interactions
faces numerous challenges. Natural systems are complex, containing many direct and indirect, often asym-
metric and environmentally sensitive, interactions (Montoya et al. 2006; Morin 2011; Ovaskainen et al. 2017).
This complexity, and the resultant high data demands, represents a major obstacle to achieving more rea-
listic multispecies models capable of providing accurate mechanistic understanding of ecological processes.
However, estimating the dynamics of a subset of species within a community carries the risk of omitting
important processes, introducing biases, and limiting the usefulness of models for understanding population
dynamics and projecting them into the future (Fath et al. 2007). In addition, uncertainty at different levels is
propagated in complex models, causing a trade-off between biological realism and parameter certainty (Collie
et al. 2016). It is therefore essential to find ways to simplify natural systems in models while capturing the
relevant biological processes and minimizing the introduction of biases, increased uncertainty and inaccurate
conclusions (Essington 2004; Berlowet al. 2009).

The current shift towards multispecies modelling is taking place across subfields of ecology simultaneously
but often independently (Mooijet al. 2010). Consequently, many of the challenges inherent in multispecies
modelling, such as estimation of species interactions, dealing with high model complexity or identification
and measuring of model uncertainty, are being addressed in different ways, with little coordination (Mooij et
al. 2010). In this paper, we review the ways in which the major challenges of developing multispecies models
and estimating their parameters have been addressed in the literature. We hope that by bringing together
different methods and approaches across fields, we can learn from each other and make faster progress towards
more realistic multispecies models for population dynamics. We discuss constructive strategies to promote
multispecies model development in light of promising techniques, as well as challenges and limitations.

Estimating interactions

Accurate understanding and representation of interspecific interactions is key for the development of
robust multispecies models but challenging because of the sheer number of potential interactions in
most natural systems and the many factors that can influence them. The number of potentially interacting
species pairs in a system with S species is S(S-1)/2. However, many potential interactions never occur due



to differences in biological traits, such as morphology, size and phenology (i.e., forbidden links; Olesen et
al.2011; Gonzélez-Varo & Traveset 2016). For example, nocturnal and diurnal species do not coincide in time
and some pollinator’s morphology prevents them from reaching the nectar of certain flowers (Olesenet al.
2011), reducing the number of interactions to be estimated for a given system. In contrast, other interactions
are age-, sex- or phenotype dependent, and special consideration of population structures and complex
life cycles are needed in the models, resulting in additional data requirements and more interaction terms
(Laffertyet al. 2008; Strauss et al. 2017; Gamelon et al.2019; Torres-Campos et al. 2020). Developing models
that consider variation in phenotypes, behaviours, and demography is important for understanding changing
interactions, and improving model projections and predictions (Gonzélez-Varo & Traveset 2016).

The number of realized interactions is further influenced by local conditions affecting aspects of foraging
biology and resource utilization, such as relative abundances, species assemblages and environmental conditi-
ons (Beckerman et al. 2006; Vdzquezet al. 2009; Spiesman & Gratton 2016; Delmas et al.2019). For example,
studies of simple arthropod food webs have shown that more prey species do not necessarily increase the
number of trophic interactions because predators tend to focus on preferred prey while ignoring the other
(Torres-Campos et al. 2020). Similarly, increasing the number of potentially competing pollinator species has
been shown to cause resource partitioning among pollinators, which can lead to divergence of floral traits
that benefit the main pollinating species while hindering access to others (Temeles et al. 2016). The dynamic
nature of species interactions presents a challenge for the development of realistic models aiming to capture
large portions of communities or extrapolate from one time and place to another (Chamberlain et al. 2014;
Gray & Wotherspoon 2015).

Several methods have been developed to identify and quantify species interactions, with variable suitability
depending on the species and study system. Some methods assess species interactions directly, while others
infer interactions indirectly based on species associations (i.e., inferred from species co-occurrences or
correlated density dynamics). Direct observations in the field can provide valuable information about how
species behave and interact under natural environmental conditions that correlational and comparative
studies cannot. This can, however, be infeasible in species-rich systems and when species and their interactions
are rare, weak and/or elusive (e.g. nocturnal, deep-sea, small or cryptic species) because the chance that
both species and their interaction occur when the observer is present is low (Jordano 1987; Trijoulet et al.
2019). Manipulation experiments (e.g. enclosure, exclosure, population augmentation treatments) represent
powerful tools to test hypotheses and better understand the mechanistic relationships between species but
they can be costly and logistically challenging, especially when studying large or highly mobile species
(Schmitz 2004; Wood et al. 2019). Here, we present additional alternative methods, discussing their potential
and challenges.

Diet analysis

Feeding plays a central role in many species’ interactions. Therefore, methods to understand what and how
organisms eat are important tools for assessing interactions. Instead of observing an animal eat, information
about the diet of a species can be obtained by analysing ingested or excreted material through stomach
content and faecal analyses (Nielsenet al. 2018). Historically, these types of analyses have mostly been
done visually, providing valuable information about the prey, such as size or life stage. However, visual
examinations can also produce biases, for example between hard and soft body prey, since soft tissues
dissolve faster (Nielsen et al. 2018). DNA analyses of the stomach content and faeces can greatly improve the
identification of prey to species level, and are particularly useful when studying smaller organisms, such as
insects (Titulaer et al. 2017; Horswillet al. 2018; Curtsdotter et al. 2019), but are less useful for identifying
subgroups or traits within the prey species. The main limitations of stomach content and faecal analyses
are that they provide diet information from relatively short periods (e.g. last foraging day), and might
provide little information if the animal has not fed recently or if the prey’s DNA degrades during digestion
(Russell et al.1992). Analyses of stable isotope ratios, mostly of nitrogen and carbon, and other biomarkers
provide information about assimilated materials, thereby providing long-term dietary information from an
individual (Nielsen et al. 2018). Stable isotope ratio analyses can identify a species’ trophic position and



preferred foraging areas, but are often unable to quantify prey to the species level (e.g. Vander Zandenet
al. 1999; Blois et al. 2013). Because no diet tracing method is bias free, there is a growing interest in
developing methods that combine different techniques to benefit from the advantages and minimize the
shortcomings (Nielsen et al. 2018). For example, using information from visual stomach content analyses
as priors in Bayesian isotope mixing models allows accurate quantitative diet estimates (Chiaradia et al.
2014). Similarly, combining stable isotope, DNA and morphological analyses provides good estimates of
prey diversity and subtle changes in trophic levels, while minimizing invasiveness and frequency of sampling
(Horswill et al. 2018).

Time series correlations

A variety of methods have been developed to infer interactions indirectly from other types of commonly
available data, such as counts, presence-absence data or species traits. When several species are monitored
at the same site, the changes in one species’ abundance or demographic rates (e.g. survival, reproduction)
can be related to the population dynamics of the other species (Certain et al. 2018). In some cases, the
predation or competition pressure of a species on others can be quantified by removing them in laboratory
or field experiments and measuring the changes in the dynamics of others (Pacala & Silander 1990; Wilson &
Tilman 1991; Wootton 2001). However, removing a species from an ecosystem is seldom feasible. Therefore,
other methods classically used in demography can be used to infer interactions indirectly through long-term
demographic data collected at the individual or population level, such as counts and capture-mark-recapture
(CMR) data. For example, by relating age-specific breeding success and survival of chamois Rupicapra ru-
picapra to annual population counts of cohabiting red deer Cervus elaphus , competition for food resources
was found to negatively influence chamois breeding success of primiparous and senescent females (Gamelon
et al. 2020). Thus, individual-based long-term monitoring programs running on several interacting species
at the same location can provide data to estimate species interactions, even in the absence of detailed direct
observations of the interaction.

Joint species distribution models

Analogously, spatial patterns in species abundances can reveal associations between species. Species dis-
tribution models(SDMs) were originally developed to infer species habitat preferences from spatial abun-
dance/occurrence data and environmental data (Kearney & Porter 2009). More recently, SDMs have been
developed that model multiple species jointly (joint species distribution model s; JSDMs). JSDMs as-
sume that biotic interactions create non-random spatial patterns in occurrence or abundance. Therefore,
by first accounting for the (dis)similarities in species’ responses to spatial environmental patterns through
an environmental covariance matrix, these models can reveal species’ spatial associations from the residual
covariance matrix (Ovaskainen & Abrego 2020). How well these species associations represent the true un-
derlying species interactions in a JSDM depends on whether the important environmental covariates have
been included in the model (Pollock et al. 2014; Dorazio et al. 2015; Ovaskainen et al. 2017; Zurell et al.
2018). In addition, because species associations can be influenced by common habitat preferences or mi-
gration patterns, additional information about the species, such as traits and phylogeny, are often used in
combination with spatial data to estimate the probability of an interaction occurring (Morales-Castilla et al.
2015). Dormann et al.(2018) present a useful checklist to facilitate the interpretation of such estimates and
avoid major pitfalls.

As long-term spatial datasets become increasingly available, approaches are also being developed that jointly
account for spatial and temporal dynamics to estimate species interactions (Schliep et al. 2018). For example,
using a multispecies competitive community dynamics framework, time-series JSDM s are being used to
infer species interactions from species associations as functions of local species abundances in previous years
and local environmental conditions (Mutshinda et al. 2011; Ovaskainen et al. 2017). By combining temporal
and spatial information, time-series JSDMs have a high potential to provide more accurate estimates of
underlying species interactions, since observed covariations are based on multiple points in time and space,
rather than representing only a snapshot or a summary of all the dynamics in a large region (Ives et al.



2003; Ovaskainen et al. 2016, 2017; Thorson et al. 2016). However, spatiotemporal models are also inherently
more complex, which makes them computationally challenging and less user-friendly (Norberget al. 2019).
Moreover, as with any inference method, model outputs are influenced by the amount, quality and spatial
structure of the data. It is therefore important to always evaluate the results in light of ecological knowledge.

Trait-based approaches

Trait-based approaches have emerged in recent decades as useful methods to study community dynamics
by characterizing individuals or species by key traits rather than as species with prescribed interactions
(McGill et al. 2006; Degen et al. 2018; Kigrboe et al. 2018). Trait-based models have the potential to
describe more sophisticated communities since they can reduce the number of parameters to be estimated
(Kigrboe et al. 2018; Curtsdotteret al. 2019). Well-defined biological traits comparable across species, such
as body size, mobility, or defense strategy, may provide useful information about an individual’s mortality,
growth, metabolism, and trophic role in a community. For example, larger competitors often exert a dominant
competitive pressure over smaller ones (Kohyama 1992), predators preferentially feed on prey of a specific
body mass relative to their own (Brose 2010; Kalinkat et al. 2011) and active-searching predators are more
likely to encounter prey but likely to attract predators, compared to passive ambush predators (Kigrboeet
al. 2018). These generalizations allow initial parameterization of interaction networks, even without direct
data on species interactions. Currently, the majority of trait-based approaches are size-based (Kigrboe et
al. 2018). Although the relationship between body mass and ecological interaction is well supported across
many taxa (Pope et al. 2006; Hartvig et al. 2011; Boitet al. 2012; Schneider et al. 2012; Curtsdotter et
al. 2019), body size is not sufficient to describe the complex interactions of many systems (Jonsson et al.
2018; Curtsdotteret al. 2019; Keppeler et al. 2020). Further examination of key biological traits and how
they interact with each other will therefore help improve the development of trait-based approaches. These
general relationships seem unlikely to be accurate or common enough to replace more targeted estimation of
interaction strength. Nonetheless, they can produce biologically plausible models (Brose 2010), and capture
major patterns of population dynamics in some systems, and can be a useful starting point to help us fill in
gaps in otherwise well-parameterized models.

Functional responses

Mathematically formulating the effects of realized interactions in a model of multispecies population dynamics
entails estimating the influence of one species’ population density on the population growth of the other (i.e.,
functional response ). This function of population density is for simplicity often assumed to be linear.
While linearity may adequately capture interspecific competition interactions, they may be less suited for
modelling interactions among trophic levels, e.g. predator-prey dynamics (Certain et al. 2018). For example,
functional responses can take different shapes depending on how a species searches, handles and processes
prey, with potentially large effects on population dynamics (Spalinger & Hobbs 1992; Koen-Alonso 2007;
Castillo-Alvino & Marva 2020). Additionally, functional responses can vary between habitats and life stages,
where a prey species might itself be an important competitor or even predator on young individuals of the
predator species (Essington 2004), highlighting the importance of considering population structure. While
assuming simple functional responses is a useful first step for multispecies models, it has been argued that
relying strongly on them could hinder advances towards better mechanistic understanding of multispecies
dynamics and limit their projectability into the future (Hunsicker et al. 2011; Kalinkat et al. 2011; Rosenbaum
& Rall 2018). Assessing the effects of several types of functional responses on model outputs is one suggested
solution, particularly because several functional response types can sometimes result in similarly well-fitting
models of empirical data (Butterworth & Plagdanyi 2004; Koen-Alonso 2007; Kinzey & Punt 2009).



Data collection and utilization

Sampling design and technology

The development of multispecies models relies heavily on access to high-quality data, but how can data
collection be improved to help estimation of species interactions and validation of multispecies models?
Ideally, long-term multispecies data sets for a wide number of cohabiting species and environmental variables
should be collected to ensure that the population dynamics and interactions are well covered under a wide
range of conditions. In practice, the high costs and logistic challenges of acquiring such data sets have limited
their availability to economically important species (e.g. harvested communities; ICES 2019) or simpler and
mostly self-contained communities (e.g. islands, lakes; Christensen et al. 2013). However, studies on the
effectiveness of different sampling designs have highlighted strategies through which data collection can be
improved to the benefit of multispecies modelling (Lahoz-Monfort et al. 2014; Trijouletet al. 2019; Zhang
et al. 2020). In particular, there is evidence that sampling a greater number of sites at low intensity gives
more representative system-wide estimates of interactions compared to sampling fewer sites at high intensity
(Bogstad et al. 1995; Latour et al. 2003). Sampling a single site more rigorously easily results in biases
towards the interactions occurring in that location, while sampling a greater range of sites gives a more
representative picture of species interactions across its range.

In addition to finding ways to improve the efficiency of sampling strategies, recent technological developments
have increased the quantity and quality of data for studying species interactions. Technologies that automate
data collection, such as drones, GPS trackers, movement sensors, video/audio recorders and image recognition
software (Weinstein 2015; Marvin et al. 2016), can reduce time and costs, thereby allowing greater sampling
coverages (e.g. number of species, geographical area, higher spatial and temporal resolutions) and increasing
the probability of recording an interaction. Increased environmental interest by the public has also led to
the development of citizen science and crowdsourcing initiatives that can provide unprecedented amounts of
data (Chandler et al. 2017; Devarajanet al. 2020). An example of this is the Global Biodiversity Information
Facility (GBIF) which as of April 2022 has more than 1.9 billion species occurrence observations publicly
available. However, citizen science data face limitations related to inconsistencies in sampling effort, sampling
biases, and errors (Zipkin & Saunders 2018). Various statistical techniques are being developed and used
to account for these sampling issues by, for example, modelling random effect and hierarchical structures
(Kelling et al. 2015), but the majority of such data remains unused or limited to broader macroecological
studies (Theobald et al. 2015; Heberling et al. 2021).

Data integration

As multispecies models tend to be data demanding, modelling methods that can simultaneously include and
take full advantage of a variety of data sources are valuable. Such approaches have the potential to shorten
the time series required to provide good estimates, improve the cost-effectiveness of monitoring programs,
and improve the modelling of data-poor species. For instance, Barraquand & Gimenez (2019) found that
combining data on capture-recapture, counts and reproduction to estimate dynamics of interacting multi-
stage populations using integrated community models could provide accurate estimates of interactions,
while also requiring shorter time series than studies using only count data. They evaluated the benefits
of the different types of data to the model results and the costs of collecting these, and concluded that
collecting reproduction data instead of capture-recapture data was a more cost-effective strategy, especially
for abundant species (Barraquand & Gimenez 2019).

Integrating similar data types collected in different ways, such as abundance data through camera traps and
transects, or citizen science and scientific surveys is a useful strategy in single-species population modelling
(Besbeas et al. 2002; Lee et al. 2015; Zipkin & Saunders 2018; Isaac et al. 2020). Recent studies indica-
te that the advantages inherent in data integration methods in single-species models are also present in
multispecies frameworks (Péron & Koons 2012; Fithian et al. 2015; Lahoz-Monfort et al. 2017; Barraquand
& Gimenez 2019; Miller et al. 2019). Data integration methods allow models to maximize the informati-
on extracted from each dataset, while considering the weaknesses and strengths of each one (Milleret al.



2019). Similarly, combining data on similar species can improve the estimates of each species individually
(Lahoz-Monfortet al. 2017), and of data-poor species in particular (Fithianet al. 2015). For instance, using
SDM, Fithian et al.(2015) found that when faced with presence-only data for a species, using presence-only
and presence-absence data from other species facilitated information sharing across species, which improved
parameterization for the data-poor species by leveraging information from closely connected species. Such
data sharing is an additional advantage of multispecies models over single species ones in many systems
(Kindsvater et al. 2018).

Model structure and simplifications

We have discussed methods that are helpful for estimating or inferring large numbers of species interactions
for multispecies models, as well as ways through which ecological data are becoming more detailed and
increasingly available. However, translating the high complexity of most natural systems to models often
leads to increased uncertainty, and difficulty parameterizing and interpreting the results. Therefore, even
the most comprehensive multispecies models require some simplifications. Dynamic multispecies population
models have historically started as simplified versions of the dynamics of a small subset of species (e.g., Lotka-
Volterra model), onto which complexity was added in the form of, for example, life stages, spatial dynamics,
or environmental influence. In contrast, community or network models aim to describe or understand entire
or large parts of an ecosystem and therefore need to simplify the description of these communities. They
tend to do this by finding ways to reduce the number of interactions that need to be estimated separately
in the model without reducing model performance (Morin 2011; Collie et al. 2016).

One way to reduce the number of interactions to be estimated is by reducing the number of nodes in
the model, i.e., the number of community components (Fig. 1). Aggregating species into groups based on
taxonomic, trophic or/and ecological similarity (i.e.,trophospecies or functional groups ), can help the
development of simplified community models that cover a large proportion of the community and yet
maintain key properties of more complex models (Hood et al. 2006; Ulanowicz et al. 2014; Olivier & Planque
2017). This strategy has the added benefit of helping to understand and make better predictions of rare
and data-poor species because it allows one to “borrow” information from common, closely related species,
or species with similar traits that are likely to respond similarly to the environment, thereby increasing the
sample size used to estimate the parameters of the node. Similarly, sampling error and stochasticity can have
a smaller negative effect on the model predictability when species are grouped (Agarwal et al. 2021). However,
since this approach regards various species as equal, information about individual species and their dynamics
is lost (Simmonset al. 2019). Thus, the model outputs become sensitive to the criteria used to classify species,
which is largely dependent on the research question (Fath et al. 2007; Pacifici et al.2014). For example, a
species classification based on taxonomical or ecological similarities might be better suited for addressing
impacts of habitat change, while trophic similarities might be better suited for modelling harvesting impacts
and energy flows. It is also important to assess the sensitivity of a model to different species classification
criteria because differences in classification methods (e.g. cluster analyses, expert knowledge, model-based)
can yield contrasting species groupings and model results (Picard et al. 2012; Olivier & Planque 2017).

Large communities can also be divided into subgroups or modulesbased on substructures within interaction
networks (Olesen et al.2007; Dormann & Strauss 2014; Fig. 1). Modules represent recurring non-random
groupings of species within the community that interact more with each other than with species from other
modules (Olesen et al. 2007). Identifying modules within ecosystems is therefore a good strategy to find
subsets of species that can be modelled independently from the rest of the community (Allesina et al. 2005).
Different modules within a system can then be used as nodes of a coarser community model. As a result of
fewer interactions, the task of modelling large communities becomes more manageable. Similarly, the number
of interactions can in some cases be reduced by identifying species with weak interactions with the rest of the
community and omitting them from the model. For example, rare species are sometimes assumed to exert
such weak competition or predation pressure in relation to common or dominant species that their influence
is ignored (Canard et al. 2012). However, extensive research of the system may be required before making



such assumptions (Terry & Lewis 2020). Weak interactions can increase in importance over time (Terry et
al. 2017) and, even if they remain weak, can still be important for maintaining the structure and stability
of complex systems (Mccann et al. 1998). Removal of weak interactions may therefore not always result in
realistic model predictions.

Instead of grouping or omitting species to reduce the number of nodes the same functions can sometimes be
used to describe different interactions and processes (e.g. growth, foraging, dispersal, reproduction, competi-
tiveness) while only varying their parameterization to best represent each species (McDermot & Rose 2000;
Reuter 2005; Buchmann et al. 2011; Grimm & Berger 2016). For example, some forest models use the same
function to describe competitive interactions (e.g. based on vertical leaf area distribution) and same growth
function, but adjust the growth parameters to each species (Kohyama 1992). Similarly, some models of fish
communities assume trophic interactions between fish to be size-dependent and species-independent, thus,
the same predation function can be used across species (Giacominiet al. 2013; Gonzélez-Varo & Traveset
2016). This type of simplification is often used in agent-based modelling, also known as individual-based
modelling (IBM) among ecologists when the agents represent individuals. IBMs can assign the same biolo-
gical “behaviour” (i.e., growth model, interaction model, dispersal model, etc.) to individuals from different
species or groups of species and efficiently simulate the complex dynamics of some interacting species within
a community (DeAngelis & Grimm 2014). It has also been argued that, analogous to how modellers tend
to use just a few well-established functional responses, there could be a small subset of well-established
functions to describe other types of species behaviours that influence interspecific dynamics, like foraging or
home range, with well-understood properties and requirements, thereby facilitating model development and
communication (Grimm & Berger 2016).

Latent variable approaches can also be a useful way to reduce the dimensionality of multispecies models.
Latent variables are unobserved variables that can be used to represent the main axis of (co)variation
among species (Warton et al. 2015). For instance, in JSDMs with latent variable structures, all pairs of
species associations or co-occurrences are modelled jointly by searching for the leading axes of variation
unaccounted for by the environmental effects. This creates linear combinations of several variables, limiting
the dimensionality of the multispecies data (Thorson et al. 2015; Ovaskainen & Abrego 2020; van der Veen
et al. 2021). Instructural equation modelling (SEM), latent variables typically represent a theorized
environmental effect measured by one or more indicator variables (Grace et al. 2010). In Bayesian network
analysis, latent variables are used to group nodes with similar roles in the network and can thereby reduce
the complexity of the modelled system (Kim et al. 2018). Latent variables can also be used to estimate
interaction probabilities where nodes with similar latent positions in the network structure are assumed to
be more likely to interact (Rohret al. 2016; Kim et al. 2018).

While simplifications are a useful and necessary part of modelling, oversimplifications can lead to poorer
model performance and loss of predictive power, especially under changing conditions (Raick et al. 2006;
Berlow et al. 2009). Ideally, one would always compare the simplified models to more complete and complex
models to assess their effectiveness and accuracy, as well as to identify the trade-offs of the simplifications
(Raick et al. 2006). However, that would entail having abundant data to develop the complex models first,
which is usually not an option. In practice, decisions on model structure and simplifications are often based
on data availability instead of robust knowledge about ecological functionality (see e.g. Lafferty et al. 2008;
Dunn et al. 2017). Because such decisions will continue to be necessary, especially in data-poor studies, it is
important that the simplification methods, (e.g. criteria used to aggregate species or standardize links) are
systematically documented to facilitate comparative studies that help highlight the strengths and weaknes-
ses of each approach (Olivier & Planque 2017). We must not overlook the importance of having a robust
understanding of the individual building blocks of natural ecosystems even if we aim to model whole systems
(Koen-Alonso 2007). In the long run, this will promote the development of more encompassing and realistic
models, while enabling us to limit their complexity and data requirements through ecologically grounded
simplifications.
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Dealing with uncertainty

Uncertainty is a feature of all statistical and mathematical models that result from simplifying natural
processes using imperfect data to estimate unknown processes (Berlow et al. 2009). Epistemic or systematic
uncertainty (Regan et al. 2002) enters the modelling process because of (1) errors in data or insufficient
data, (2) random and non-random variation in nature, and (3) assumptions and simplifications about the
parameters and model structure (Regan et al. 2002; Walkeret al. 2003; Koo et al. 2017; Fig. 2). While many
of these sources of uncertainty are shared with single-species models, the greater complexity in multispecies
models complicates the task of quantifying their effects, increases the number of pathways through which
uncertainty can propagate and increases their potential influence on the overall model output (Zhang et
al. 2015). It is therefore crucial that sources of uncertainty are identified, quantified and reported in any
multispecies model.

Uncertainty in population-specific data can be accounted for through techniques derived from single-species
frameworks, such as observation models that estimate sampling error. However, as multispecies models
require more diverse data, accounting for measurement errors and /or systematic biases associated with all the
data sources becomes more challenging (Regan et al. 2002). For instance, estimation of species interactions
often requires sampling multiple sources (i.e., several species) and types of data (e.g., interaction types,
frequencies) simultaneously, each with some degree of sampling error. Also, species interactions are expected
to be influenced by environmental variables, which are themselves estimated with some degree of uncertainty
(Koo et al. 2017). Similarly, because species interactions are sometimes estimated indirectly within the
models (e.g., Ovaskainen et al. 2016), interaction estimates become model outputs and subject to additional
uncertainty. Expanding datasets and improvements in measuring and identification techniques have great
potential to reduce the degree of uncertainty in the data and make models less sensitive to prior assumptions
(Cressie et al. 2009). However, obtaining more and better data is still limited by logistical challenges (Zhang
et al. 2015). This is another reason why diversifying the types of independent data collected can be beneficial,
as different model parameters can be informed by multiple data sources (e.g., fecundity, census, mortality-
at-age) simultaneously in a single framework (Kindsvater et al. 2018). Identification and propagation of data
uncertainty through the modelling process, and critical assessments of the conditions under which the models
are useful are important to minimize errors, biases and misleading projections (Wells & O’Hara 2013; Certain
et al. 2018; Engelhardt et al. 2020).

As mentioned in previous sections, multispecies models often have to rely on inferred interactions or rese-
archers’ assumptions about the processes giving rise to the observed data (Milner-Gulland & Shea 2017).
However, different assumptions lead to different results. This source of uncertainty can be particularly diffi-
cult to quantify because the resulting measurements of uncertainty associated with the likelihood function
of the model do not inform about the correctness of the model, but about the certainty in the parameters,
already assuming the model structure is true (Kinzey & Punt 2009). Instead, this structural uncertainty
can be accounted for, quantified or reduced through model comparison, model averaging, or validation of
predictions (Regan et al. 2002; Koo et al. 2017).

Uncertainty cannot be reduced to zero (Milner-Gulland & Shea 2017), but we can explore ways to minimize
uncertainty and report it transparently. Recognizing and quantifying all sources of uncertainty is essential
for evaluating model usefulness and identifying model weaknesses for future research (Zhang et al. 2015).
Acknowledging uncertainty can also improve models directly. For example, including prior knowledge about
ecological preferences in multispecies SDMs as uncertain, instead of fixed, has been shown to improve both
predictability and accuracy (Vermeiren et al. 2020). However, recognition and analysis of uncertainty in
multispecies models has received relatively little attention, a lack that has been argued to be a major
hindrance for the use of multispecies models in management contexts (Thorpe et al.2015). Development of
methods to consistently quantify and reduce uncertainty in multispecies models is therefore important going
forward and should happen simultaneously with the development of the models themselves. This will ensure
that we have the necessary toolkit to achieve usable model outputs and give biologically meaningful insights
that can be used in management and conservation contexts. This will also help us to identify parts of the
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community or sampling designs associated with higher uncertainty, providing a simple way to improve data
collection.

DISCUSSION

Multispecies models have huge potential as tools for understanding and predicting the dynamics of interacting
species, and helping to disentangle the effects of these interactions from other processes affecting population
dynamics, such as climate change, habitat changes and harvesting (Kinzey & Punt 2009; Péron & Koons
2012; Swallowet al. 2016). Rapid progress is made towards fulfilling this potential, but important challenges
remain. Currently, the greatest limitations to multispecies model development are data availability and model
complexity, leading to difficulties in parameterization and large uncertainty.

Data availability is improving (McCallen et al. 2019), but data collection will always be burdened by logisti-
cal limitations. It is therefore important that the right types of data are collected to maximize their use for
multispecies modelling, for instance by ensuring that data collection gives attention to species interactions
and data are collected for multiple cohabiting species simultaneously (Trijouletet al. 2019). Still, collecting
data on all components and processes is virtually impossible in most ecosystems. Therefore, it is important
to consider grounded ecological knowledge about a system before making decisions regarding the community
components that are sampled or omitted during data collection. This may be achieved by, for example,
identifying community modules and impossible or missing links (Dormann & Strauss 2014; Terry & Lewis
2020). Additionally, prior assumptions about our knowledge of community functioning must be challenged,
given that ecosystems are ever-changing and discrepancies between experts’ knowledge can have important
impacts on the models (Picard et al. 2012; Terry & Lewis 2020). Evaluations of ongoing multispecies mo-
nitoring programs can help identify weaknesses in the data collection (e.g., poor sampling of a particular
species or region), which, when addressed, could greatly benefit multispecies model performance (Carvalho
et al. 2016; Zhang et al. 2020). In addition, it would be extremely beneficial to foster collaborations among
researchers and improve organization of data collection. By increasing collaborations, researchers working on
different species could coordinate sampling efforts in the same region, thereby producing data more useful
to multispecies modelling without incurring additional costs. Finally, development of methods that promote
more efficient use of limited data, such as data integration, have an important role to play in multispecies
modelling development.

Model complexity is another major challenge for the development of multispecies models. Attempting to
capture the inherent complexity of natural ecosystems in mathematical models causes issues related to
computational and data requirements, model parameterization, number of potential error sources, and in-
terpretability and transferability of model outputs. Assumptions and simplifications will continue to be
necessary. For example, multispecies population dynamics models need to rely on the assumption that the
subset of species and processes included in the models are sufficient to describe the dynamics of interest, and
simplified community models must rely on the criteria chosen to group certain species or simplify species
interactions. It is crucial that such simplifications are grounded on robust ecological knowledge, rather than
on data limitations (Lafferty et al. 2008), and that they are transparently reported so that future studies
can compare and assess the effects of different simplifying strategies on model outputs (Fultonet al. 2003).

The lack of adequate quantification and reporting of uncertainty currently represents a major challenge
for the development of multispecies models. Uncertainty is inevitable in ecological modelling, and it is often
accentuated in increasingly complex models. In multispecies models, uncertainty comes associated with many
sources, which makes the quantification and propagation of individual sources of uncertainty more difficult.
There is a great need for methods to assess uncertainty consistently so that models can be compared and
evaluated. Although uncertainty is often viewed as a negative model characteristic with regard to practical
applications (Pappenberger & Beven 2006), a model with unknown uncertainty is certainly less useful than
a model with high, but reported, uncertainty (Keenan et al. 2011). In some cases, high uncertainty in
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multispecies models can be a positive outcome if it means that the model accounts for important external
processes affecting the populations rather than regarding these as random variation, as single-species models
would do (Hollowed et al. 2000; Kinzey & Punt 2009).

Ultimately, a promising way forward that maximizes data use is the combination of modelling approaches
with contrasting strengths and weaknesses (Strauss et al. 2017). For example, Schmolke et al. (2019) built
a hybrid model consisting of a food web simulation model for an aquatic system coupled with an IBM for
a single species of interest (Fig. 3). For each time step, the food web model provided biomass estimates
for different parts of the food web, based on environmental variables, estimates of vital rates, and expected
interactions. Estimates of prey biomass from this model were then fed into the IBM, which modelled in
detail the transfer of prey biomass to individuals of the focal species, and the resulting biomass estimate for
the focal species was fed back into the food web model. While this model did not include stochastic effects
and focused on a single species, the general approach of coupling more detailed population models with
a system-wide community model could represent a promising method for incorporating species interaction
effects into predictive models of population dynamics (Ernest et al. 2011). Other types of hybrid modelling
frameworks have also been proposed, for example, by linking a spatially explicit dynamic model of a plant
community to an IBM describing the behaviour of frugivorous birds to account for the effect of the birds
on seed dispersal (Vincenot et al. 2011). As hybridizing models is a relatively new approach within ecology,
and their development requires a diverse range of expertise, their potential and benefits remain largely
unexplored, representing an exciting path moving forward (Kim et al. 2019).

In this review, we have identified common themes in relation to the challenges faced by different subfields
of ecology aiming to model multispecies dynamics. Working together on shared challenges across subfields
should promote faster and more fruitful progress towards a better understanding of multispecies dynamics.
It has become customary for modelling studies to compile their developed models as readily available open-
source software and code, which will undoubtedly promote development (Powers & Hampton 2019; Alston
& Rick 2021). Moving forward, we emphasize that it is important that multispecies studies clearly outline
the model objectives and assumptions. We also encourage increased communication across multispecies
modelling disciplines, and hope that this leads to the development of new hybrid frameworks that successfully
combine models with contrasting strengths and weaknesses, representing cost-effective ways to advance our
understanding of multispecies dynamics (Gray & Wotherspoon 2015; Strauss et al.2017).
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Captions

Figure 1. Diagram illustrating four methods for reducing complexity of natural systems. Centre figure shows
a hypothetical system with the true interactions and variables. Functional groups/trophospecies illustrates
the idea of grouping species by trophic/functional similarity and treating each group as one component.
Modules represent sub-groups of mostly mutually interacting species which can be modelled independently.
Modules can also be linked to each other. General functions can define interactions between individuals
based on traits (e.g., size), rather than between species. Latent variables are used to represent the variability
caused by unknown factors (e.g., species or environmental variables).

Figure 2. Representation of potential sources of uncertainty. The thick/grey arrows on top illustrate the
propagation of uncertainty through the modelling process. The red symbols highlight example causes for
uncertainty, such as: (a) interactions taking place at night (represented by the moon symbol) or in difficult
to observe/monitor places, (b) incorrect assumptions about the presence or absence of species interactions
and, (c) uncertainty in estimated parameters. Lastly, model uncertainty can be reduced through increasing
transparency.

Figure 3. Example of hybrid model that combines a food web model (brown) and individual based model
(IBM; blue) to represent a focal species (S3) in more detail. For each model iteration, values of the food web
model components influence responses of individuals in the IBM, like movement, metabolism, excretions,
fecundity, growth or behaviour. In turn, total changes in the population of the focal species (S3) produced
by the IBM feed back into the food web model, affecting the species that interact with the focal species in
the following iteration (i.e., S; and Ss).
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Figure 1. Diagram illustrating four methods for reducing complexity of natural systems. Centre figure shows
a hypothetical system with the true interactions and variables. Functional groups/trophospecies illustrates
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the idea of grouping species by trophic/functional similarity and treating each group as one component.
Modules represent sub-groups of mostly mutually interacting species which can be modelled independently.
Modules can also be linked to each other. General functions can define interactions between individuals
based on traits (e.g., size), rather than between species. Latent variables are used to represent the variability

caused by unknown factors (e.g., species or environmental variables).
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Figure 2. Representation of potential sources of uncertainty. The thick/grey arrows on top illustrate the
propagation of uncertainty through the modelling process. The red symbols highlight example causes for
uncertainty, such as: (a) interactions taking place at night (represented by the moon symbol) or in difficult
to observe/monitor places, (b) incorrect assumptions about the presence or absence of species interactions
and, (c) uncertainty in estimated parameters. Lastly, model uncertainty can be reduced through increasing

transparency.

24



Food web model

individual,

individual,

individual .

Figure 3. Example of hybrid model that combines a food web model (brown) and individual based model
(IBM; blue) to represent a focal species (Sg) in more detail. For each model iteration, values of the food web
model components influence responses of individuals in the IBM, like movement, metabolism, excretions,
fecundity, growth or behaviour. In turn, total changes in the population of the focal species (S3) produced
by the IBM feed back into the food web model, affecting the species that interact with the focal species in
the following iteration (i.e., S; and Ss).
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