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ON A NON-LOCAL NON-HOMOGENEOUS FRACTIONAL
TIMOSHENKO SYSTEM WITH FRICTIONAL AND
VISCOELASTIC DAMPING TERMS

SAID MESLOUB, EMAN ALHAZZANI, GADAIN HASSAN ELTAYEB

ABSTRACT. We are devoted to the study of a non-local nonhomogeneous
time fractional timoshenko system with frictional and viscoelastic damping
terms. We are concerned with the well-posedness of the given problem.
The approach relies on some functional analysis tools, operator theory, a
prori estimates and density arguments.

1. INTRODUCTION

Vibrations of beams are not always safe and welcomed because of their great
and irreparable damages effects. In this situation, researchers try to introduce
some damping mechanisms (viscous damping, thermoelastic damping, modal
damping, frictional damping, Kelvin-Voigt damping) in such a way that these
damaging and destructive vibrations are perfectly reduced. In other words,
an intensive investigation has been carried out to impose minimal conditions
to provide and guarantee stability of Timoshenko systems using several types
of dissipative mechanisms. Several authors studied and investigated problems
involving the previous mentioned type of dampings (local or global) where
different kind of stability have been showed. In this regard, we refer the reader
to the references [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62] and the references
therein.

As a classical and a simple model [1], Timoshenko studied the following
coupled hyperbolic system

p19tt - R(‘gw - QS)J: =0, (:E? t) <
p2¢tt = ’{*qb:z:a: + K(Qaﬂ - Qb) (ZE,t) € 0
(02 = ¢) [5=6=10, ¢, [;=6=0,

describing the transverse vibration of a beam. where L is the length of the
beam in its equilibrium configuration. The function # models the transverse
displacement of the beam and ¢ models the rotation angle of its filament. The
coefficients p;, py, k and k* are respectively the density, the polar moment
of inertia of a cross section, the shear modulus and the Young’s modulus
of elasticity. Timoshenko system (1.1) was generalized and studied by many
authors. As mentioned at the beginning of the introduction, different types
of dampings were added to the Timoshenko system for the purpose of its

, L) x (0, 00)
x (0, 00), (1.1)
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stabilization. For example, in [4], researchers investigated the exponential
stability for a Timoshenko system having two weak dampings

Iolett - R(ew - (b)m - 9157 in (07 L) X (07 OO),
p2¢tt - "i*d)xa: - K(Qm - ¢>I - ¢t7 in (07 L) X (07 OO)? (12)
Q(O,t) = Q(L,t) = ¢(0,t) = qb(L,t) =0, t>0.

In [2], authors proved some exponential decay results for a Timoshenko
system with a memory damping term

P10 — K1(02 + B)r = in (0,L) x (

p2¢tt ’%2¢x$ + K1<9 + ¢) + h x ¢$$(m7 t) = 0 in
0(0,¢) = 0(L,t) = ¢(0,t) = ¢(L, ):
9(%,0) = 0o, Qt(xv()) =01, ( ) ¢07 ¢t( Z, )

Authors considered and studied in [5] the effect of frictional and viscoelastic
dampings, and proved some exponential and polynomial decay results for the
system

ett - (ex + gb)x -

G — w4 0s + b+ Of 9(t — $)(a()b, (2, 5))ads + b@)h(d) = 0, (L)
0(0,1) = 0(1,1) = 6(0,£) = ¢(1,4) =0, >0

We also mention that in [43], the authors investigated the exponential stabi-
lization of a Timoshenko system by a thermal effect damping.

P10y — k10 + @), =0, in (0, L) x (0,00)
Poby — K2y + £1(0, + @) + Yw,, in (0, L) x (0,00)
¢

p2wtt — R3Wgy + ﬁ fg<t - s)wm(a;, S)dS + ’y(bttz? in (07 L) X (07 OO)
0

(1.5)
In [3], the author considered a Timoshenko linear thermoelastic system with
linear frictional damping and a distributed delay. He proved the well-posedness,
and proved that the system is exponentially stable regardless of the speeds of
wave propagation. There are many other papers in the literature dealing with
the stabilization of different version of Timoshenko systems. For more results
concerning the stabilization and controllability of Timoshenko systems, we
refer the reader to [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31].

Recently, a generalization of the Timoshenko system (1.1) into fractional
setting is studied in [44] by using a fractional version of resolvents. The au-
thor established the well posedness of a fractional Timoshenko system, and
proved that lower order fractional terms can stabilize the system in a Mittag-
Leffler fashion. More precisely, the author considered the initial boundary
value problem

p107(0p0) — k1(0z + @), =0, 1in (0,1) x (0, 00)
P20 (0 p+ag) — koo, + Ki(f: + @), in (0 ) (0, 00)
0(0,£) = 0(1,£) = 0, $(0.4) = d(1,¢) = 0, £ >0
9(1’,0)—90( ), ¢(z,0) =Y(z )
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For some other fractional and integer order Timoshenko systems, the reader
can refer to [63, 64, 65, 66, 67, 68]. Motivated by the above results on Tim-
oshenko systems, we consider a non local initial boundary value problem for
a non-homogeneous fractional Timoshenko system with a frictional damping
in the first equation and a viscoelastic memory damping term in the second
equation. The system is complemented with initial conditions and non lo-
cal purely boundary integral conditions. At the beginning of the year 1963,

Cannon [20] was the first researcher to investigate a non local problem with a
!

non local constraint (energy specification) of the form [ x(x)U(z,t)dt = 7(t),
0

where x(z), and 7(t) are given functions. More precisely, he used the potential

method to investigate the well posedness of the heat equation subject to the
specification of energy. This type of conditions arise mainly when the data can-
not be measured directly on the boundary, but only their averages (weighted
averages) are known. Due to their importance, physical significance (mean,
total flux, total energy,..) and numerous applications in different fields of sci-
ence and engineering, such as underground water flow, vibration problems,
heat conduction, medical science, nuclear reactor dynamics, thermoelasticity,
and plasma physics and control theory, several authors extensively studied
this type of problems. We can cite for example [16, 21, 22, 23, 24, 25, 26,
28,29, 30, 31]. Note that theoretical study of non local problems is connected
with great difficulties, since the presence of integral terms in the boundary
conditions can greatly complicate the application of classical methods of func-
tional analysis method, especially when it comes to the fractional case . A
functional analysis method based on some a priori bounds and on the density
of the range of the unbounded operator corresponding to the abstract formu-
lation of the given problem is used to prove the well posedness of the posed
problem. This is shown through the introduction of some multiplier opera-
tors, some classical and fractional inequalities, and the establishment of some
properties, involving fractional derivatives.

To the best of our knowledge, the treated fractional system problem (2.1)-
(2.4) has never been studied and explored in the literature. This work can be
considered as a contribution in the development of the traditional functional
analysis method, the so called energy inequality method used to prove the well
posedness of mixed problems with integral boundary conditions. For some clas-
sical cases, the reader can refer for example to example [16, 17, 18, 19, 27], and
for some fractional cases, the reader should refer to [32, 33, 34, 36, 37, 38, 39, 40].
We should also mention here that there are some important papers dealing with
numerical aspects for Timoshenko systems, and having many applications, for
which the reader can refer to [46 47, 48, 49]. There are some papers dealing
with Timoshenko system with fractional operator in the memory [41, 42].
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2. FORMULATION OF THE PROBLEM AND FUNCTION SPACES

Given the interval I = (0, L), we consider the non-homogeneous fractional
viscoelastic beam model with frictional damping of Timoshenko type

L1(0,0) = p10270 — k1(0, + @) + 0; = F(x,t)
L:(0,0) = p07 76 — Kadyy + K1(0 + 0) + [ m(t — 5),,(x, 5)ds = G(x, 1),
0

(2.1)
in the unknowns (0, ¢) : (z,t) € I x [0,7] — R, the strictly positive constants
P1, Pas k1 and ko satisfy the relation

Pr_ P2

K1 K9 ’
and [, g, ¢, 1, F,and G are given functions, and m : R — R* is a twice
differentiable function such that

T
Ko — /m(t)dt =1>0, m'(t) <0, Vt >0. (2.2)
0

The system (2.1) is complemented with the initial conditions

{ F19 = 9(3:70) = 90<:U) ) F2‘9 = et(x70) = w<x> ’ (2 3)
F1¢:¢(l’,0) :f<CL’) ) F2¢:¢t($70) :g<l‘), .

and the non local boundary integral conditions

L L L

L
/de:O,/dex:O,O/gbdx:O,/xgzﬁdx:O. (2.4)

0 0 0

This system of coupled hyperbolic equations represents a Timoshenko model
for a thick beam of length L,where # is the transverse displacement of the
beam and ¢ is the rotation angle of the filament of the beam. The coefficients
P1, P2y k1 and ko are respectively the density, the polar moment of inertia of
a cross section, the shear modulus and the Young’s modulus of elasticity.
The integral conditions represent the averages (weighted averages) of the total
transverse displacement of the beam and the rotation angle of the filament of
the beam.

Our aim is to study the well posedness of the solution of problem (2.1),
(2.4). That is on the basis of some a priori bounds and on the density of the
range of the operator generated by the problem under consideration, we prove
the existence, uniqueness and continuous dependence of the solution on the
given data of problem (2.1), (2.4). We now introduce some function spaces
needed throughout the sequel. Let L?(QT) be the Hilbert space of square
integrable functions on Q7 = (0,1) x (0,7T), T' < oo, with scalar product and
norm respectively

(2, 9) i) = / Z8dadt, |17 2agr, = / Zdvdt.  (25)
QT QT
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We also use the space L?((0,1)) on the interval (0,1), whose definition is
analogous to the space on Q. Let B3 (0, L) be the space obtained by completion
of the space C°(0, L) of real continuous functions with compact support in the
interval (0, L) with respect to the inner product

L
(777*)B%(0,L) = /Ixfy%xﬁy*dxv
0

where Z,7 = [~(¢)d¢ for every fixed € (0,L). The associated norm is

0
L —

HVHZBg(o,L) = «/(%7)35(0,@ = f (IUW)Q dz. We denote by C(J; L?(0, L)) with
0

J = (0,T) the set of all continuous functions 7(.,t) : J — L*(0, L) with norm

2 2
HVHC(J;B(O,L)) = sup ||'7(‘:t>HL2(O,L) < 0, (2.6)
0<t<T

and C(J; B(0, L)) the set of functions ~(.,¢) : J — B3(0, L) with norm
”7“%’(7;3%(0,@) = |’II7('7t)Hi2(O,L) = H”Y(-J)HJQB;(U,L) <oo.  (27)

To obtain a priori estimate for the solution, we write down our problem (2.1),
(2.4) in its operator form: GZ = H with Z = (0,¢), GZ = (S1(0, ¢), S2(0, ¢))
and H = (Hy, Hy) where

Sl (97 ¢) = {'Cl (97 ¢)7 Flea F20}
82(67 ¢) - {£2(07 ¢)7 F1¢7 F2¢} J (28)
Hl = {Fagpaw}a H2 = {G7fag}

The operator G is an unbounded operator of domain of definition D(G) consist-
ing of elements (0, ¢) € (L*(J; L*(0, L)))2 such that 0, ¢, 0s, &, 0st, Drys Oy G
belonging to L2(.J; L2(0, L)) verifying initial and boundary conditions (2.3) and
(2.4). The operator G is acting from the Banach space B into the Hilbert space
&, where B is the Banach space obtained by completing D(G) with respect to
the norm

1213 = 10C, )12 7020.00) + 160 D12 500200 1 (2.9)

And € = [L2(QT) x (L*(0,L))?] x [L*(QT) x (L*(0, L))?] is the Hilbert space
consisting of vector-valued functions H = ({F, ¢, v}, {G, f, g}) for which the
norm
152z = F172qr) + lellizon + 1200 + 1G]72gr)
+||f||%2(O7L) + ||g||%2(O,L)‘ (2.10)

is finite.
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3. PRELIMINARIES (DEFINITIONS AND LEMMAS)

In this section, we provide some definitions and lemmas needed for estab-
lishing different proves in the sequel.

Definition 1. [50] The time fractional derivative of order 3, with 5 € (1, 2)
for a function V is defined by

t

B 1 Vir(x,T)
COPY (. 1) = F(z_ﬁ)O/(t_T)B_ldr, (3.1)

and for $ € (0,1) it is defined by

B 1 / Vi (x,7)
C@fV(x,t)— 1_‘(1_6)()/(75_7_>5(17'

where I'(1 — ) is the Gamma function.
Definition 2. [50]. The fractional Riemann-Liouville integral of order
0 < B < 1 [52] which is given by

D (1) = P(lﬁ) / (t“_(‘i’;)_ﬁdr (2.6)

Lemma 2.1 [35]. Let E(s) be nonnegative and absolutely continuous on
[0, 7], and suppose that for almost all s € [0,7T], R satisfies the inequality
dE

= < A(s)E(s) + B(s), (3.2)

where the functions A(s) and B(s) are summable and nonnegative on [0, 7.
Then

S S

E(s) < exp / Aydt S | B(0) + / B(t)dt | . (3.3)

Lemma 2.3. [34] Let a nonnegative absolutely continuous function Q(¢)
satisfy the inequality

COPQ(t) < b1 O(t) + bo(t), 0<p <1, (3.4)

for almost all ¢ € [0, T, where b, is a positive constant and bs(?) is an integrable
nonnegative function on [0, 7]. Then

Q(t) < Q(0)Es(bit”) + T'(8) Es5(bit”) Dy "ba(t), (3.5)
where
Eg(z) = ; T(Bn +1) and Eg ,(z) = ; TBnT 1)

are the MlIttag-Leffler functions
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4. A PRIORI ESTIMATE AND ITS CONSEQUENCES

In this section, we establish an energy inequality from which we deduce the
uniqueness and continuous dependence of solution of problem (2.1)-(2.4) on
the given data.

Theorem 3.1. For any function Z = (0, ¢) € D(G) the following a priori
estimates holds

2 2
He(wt)Hc(j;[ﬁ(o,L)) + ||¢('vt)||c(j;L2(0,L))
F* (||90||%2(0,L) + ||¢||%2(0,L) + HgH%Z(O,L) + ”f“i?(O,L)

HIF 22 005220 + NG 0si22000 ) (4.)

IN

and
D (116l 0.0y + 194l g0y
F* (Ielaony + 01320,y + 9200 + 1120

P20 + G s 0sz0.9) (4:2)

IN

where F* is a positive constant independent of Z =(0, ¢) given by

* re
F —MWIH&X{l,m},

with

M=t (s 1)
w = WWeVT 41,

and W* is given by (4.24).
Proof. Define the integro-differential operators M0 = —Z260; and My =
—T2¢,, where

z & z £

T20(x,t) //977, Ydnd€é, T2g(x,t) //¢ t)dndg,
0

0

and consider the identity
(p18“+19 ./\/l H)LQ 0,L) Hl((ex + ¢)gg, M19)L2(07L) + ((9,5, Mle)LZ(O,L)
(928a+1¢ Mad)r20.0) — K2((Ppes Ma®) 12(0,0) + £1((02 + @), M20) 1201,

/m G, 8)ds, My
L2(0,L)

= (F(,t), M10) 200,y + (G(x,1), M2®) 12(0,1)- (4.3)
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The standard integration by parts of each term in (4.3) and conditions (2.3),

(2.4) give
(0% p (0%
(Pla +19 M 9)L2 (0L) — ?l(at (ngt)vzmet)H(O,L)
P1 aa
> ?1815 1Z20e | 20,1y -
(0% p (0%
(102a +1¢ M2¢)L2 0,L) = 52(815 (:Z’.qust)71—$¢t)L2(0,L)
P2 aa
= 52815 ||Ix¢t||L2(O,L)’
— (00, M10) 20,1y = 1 Zo0ulI72(0,1)
L L
/{1(9:535,156,5)3(0,,;) = /ﬁI ‘915 /Ix del' = Iil/
0 0

= 7&”9%2(0@7

and in the same manner, we have

H2(¢m7 m¢t)L2 0,L) 9 at||¢||L2 0,L)>

L
(ngml'zet)LQ((O,L)) = lilIfthﬁ]édt—/ﬁ/Ithgbdx

0
L

= —ﬁl/Lﬂt.qﬁdl‘,

0

L

—k1(0,, x¢t>L2(Q‘r —ml/quﬁtﬂdﬂc,

0
—H1(¢>I§¢t)L2(0,L)

T L
= TS0k + / / T, T,bddt
0 0

10
= §§||Ix¢||%2(o,m7

(4.4)

0.0dx

(4.7)

(4.8)

(4.10)

(4.11)
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/ it — 8).6,,(x, 5)ds, T2,

L2(0,L)

= /(/mts ¢,.(z,5) S)Iﬁqstda:

L

/m@@¢@wmsﬁ@Hm+/(jm@g@@@@)z@m

0

L/t
o(x,8)ds) | T,¢,)5dx — / /m(t— s).0(x,s)ds | ¢,dx
0o \0

|
o\ o

3

T

L
= / /m (t —s).0(x,s)ds | ¢ dx. (4.12)
0

Substituting equalities (4.4)-(4.12) into ((4.3)),we obtain

P1 A P2 Aa K1 0
PL 08 Wl oy + 2208 Wty + o o 100
10
2 8t||¢“L2 o) + 11 Z: ‘9t||L2 0,1) 28t”z ¢||L2(0 L)
L
= m1/¢1x0td:c—/€1/91x¢tda:—/ (/m(ts).¢(x,3)ds) ¢ dx

0 0 0 \D

L L
—/Fﬁ@h—/Gﬁ@m. (4.13)

0 0
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Replacing t by 7, integrating with respect to 7 from zero to ¢ and using the
given conditions, we obtain

P1 e P2 o K1
DD Tl oy + 2D Tl oy + 00 D0

) 1
+7H¢(-, 7202y + 1Za0- 122 00.0220.0)) + §||Ix</>(., 1720,z
= £1(0,Zu07) r20,1:12(0,1)) — K1 (0, Z: d)r)L?(O,t;L?(O,L))

2 2
R e—, T - —1||¢||; .
201 — a)(1 - a)) 20, T 5 (0.1)
thl—a ) Ko )
7, q|%, )
= i) Fleen + 5 e

t L T
1
+§]|Ixf|]%2(07L)—// /m(T—S).¢(LL‘, s)ds | ¢.dxdr. (4.14)
0 0 \0

The last term on the right-hand side needs to be evaluated as follows

(=] \ 3
3.
S
|
»
\'_/
=
8
»
N~—
L
Vo)
-
—
8
2
U
8
U
\]

+// /m T — 8).6(z, s)ds | ¢dudr. (4.15)

By replacing (4.15) into (4.14), and estimating different terms on the right-
hand side of (by using Cauchy e inequality, a Poincare type inequality) (4.14)
as follows

K1 (9, Zobt) 12(0,6:12(0,1)
K1€1

R1
oy 18000 + 5 1T R 0ns 0.1y (4.16)

IA

—K1 (071m¢ )L2 (0,¢L2(0,L))

f€1€2 R1
< 0022 04020,0)) T 5 20 1Z26- 1720 4:22(0,1) (4.17)
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- /L /t m(t — s).¢(z, s)ds | ¢(x,t)dx

2

L L/t
1
< 6—3/¢2($,t)dx+— /m(t—s)gb(x, s)ds | dx
2 263
0 0o \0
L X L/t ¢
< %/¢2(I,t)dx+2— /m2(t—s)d5 /¢2(x,s)d5 dz
€
0 0 \0 0
L - Lt
< 6—3/q§2(x,t)d:c+ — sup m%t)//&dxdr, (4.18)
2 €3 0<t<T
0 00
t L T
// (/ m/ (1 — s).¢(x,s)ds | ¢dxdr
o 0 \0
t L t L T T
< %//¢2dxd7+2—// /m’Q(T—s)ds /gb2(x7 s)ds | dzdr
€
00 ‘20 \b
t L t L T
€4 2 T 2 2
< —//gzﬁ dxdt + — sup m (t)// /qﬁ (x,s)ds | dedr
2 2€4 0<t<T
00 0 0 \0
t L e LT T t ¢
= 9 [ [Gautr+ s w0 [| [ [ oo |~ [rotar| a
2 2€4 o<t<T
00 o L\ 0 0 0
t L L[t
€4 2 T 2 2
= —//gb drdr + — sup m (t)/ /(t—T)gb (z,7)dr | dz
2 €4 0<t<T
00 0o Lo
t L Lt
€4 2 T2 2 2
< = ¢“dxdr + — sup m'“(t) ¢ drdx
2 2€4 o<t<T
00 00
- t L
= (6—4 + —— sup m’2(t)) //¢2d1'd7', (4.19)
2 2e€4 0<4<T
00
2 €5 9 L? 9
- (F, I:CQT)LQ(O,t;LQ(O,L)) < §||F||L2(o,t;L2(o,L)) + 2_65||I$07'||L2(0,t;L2(0,L))7 (4.20)

€6 L2
- (G’Iz¢T)L2(O,t;L2(O,L)) < E”GH%2(O¢;L2(O,L)) + 4_66"I$¢T|‘%2(O,t;L2(O,L)), (421)
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Combination of (4.16)-(4.21) and (4.14), leads to

p a— p a— K1
EID IZeOell 20,1y + EZD NZe@ell 2o,y + EH@(-a t)1220,1)

) 1
+—||¢(-775)H%2 ©or) T ||I$9T||%2(O,t;L2(O,L)) + §|’Ix¢(-a f)”%z(o,L)
plTl aL2 "‘31 )
4(F(1 —_ &)(1 )) ”w”L2 0,L) 2 ||90||L2(0,L)
poT L2 Ko

L2\ .o
T )( @) l9lz20.0) + ( 5 Z) 1/ 1220,

2

K1€1 T )
+—+—su m2(t) + L4 sup m(t) + m(0 .
( 2e3 0<t£T ®) 2 2¢ 0<t£T (t) ( )) HQﬁHL?(O,t,L?(O,L))

IN

K1 L2 k1 L2
# (24 o ) Wb Boaaoan + (g + 1 ) Weblraussonmy

R1€2
+_||0HL2(075L2(0L) Euﬁb( )||L2(0L)+ ||F||L2(OtL2(OL))

+5||G||L2(07t;L2(07L))' (4.22)

The choice g1 = K1, €5 = L?/2, €3 = ko /2, €9 = €4 = €6 = 1, and cancellation of
the last term on the left-hand side of (4.22) reduce it to the following estimate

Dt 1 Z26%ll 20,1y + Dot | Zo®4ll 20,1y + 10C, ) 1720,y + N80 ) l72(0,1

< W (HIIQTH%?(O,::;L?(O,L)) + ||I:v¢f||%2(o,t;L2(o,L)) + HQH%Q(O,t;LQ(O,L)) + ||¢||%2(0,t;L2(0,L))

+||<P||%2(O,L) + 1l 20,y + HfH%Q(O,L) + ||9||%2(0,L) + ||F||%2(o,t;L2(o,L)) (4.23)
+||GH%2(0,15;L2(0,L))) 5
where
" (/{%_}_T 2(15)4_14_T2 2(8) + m(0) 3 li1+L2 K2
= max|—+ — sup m — sup m m(0), =, — + —, —,
2 K2 ogth 2 2 0<t£T 27 2 47 4
TlfaLQ TlfozL2 1
& R Jmin (22 2 BLUT2 20 g o)
4T1—a)(1—a)) 41 —a)(l —a)) 272727272

By omitting the first and second term on the left-hand side of (4.23), and
applying the Gronwall-Bellman lemma ( [45]), where

( ) = 11011720, 220,y T 121720 15200,
= [16(., )HL2(O,L) + o, )”LZ(O,L)’ (4.25)
0(0) = 0.

we obtain
y(t) < WMt (||Ix97||%2(o,t;L2(o,L)) + ||Ix¢7||%2(o,t;L2(o,L))
Hleleorn + 190200y + 17200y + 190720y (4-26)

+ ”FH%Z(O,t;LZ(O,L)) + HGHi?(O,t;L?(O,L))) :
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Then by omitting the last two terms on the left-hand side of (4.23), and using
(4.26), we have

D (IZabil 0.1y + 124l 2000
< W VT 1) (I oy + IZer o)
+H90||%2(0,L) + ¥l 20,y + ||f“%2(07L) + ||9”%2(0,L) (4.27)

1P 020,00 + G 022000 ) -

Now, Lemma 3.2, can be applied to remove the first two terms on the right-
hand side of (4.27), by taking

Qt) = 1Z:0: 1220 1220,y + 1 Ze®- 11220 1220,
et = D (T8l oy + 1Tt ooy (428)
Q(0) = 0.
From (4.27), it follows that

ot) < M{D (I1F 20 + G a0y

+ etz + 191200 + 11200 + HgHi2<o,L)} , (4.29)

where T
M= F(Q)Ea,a(wta) (maX {1’ @F—@}) ’
with
w=WWeVT 4 1),
Now since
T t
D7t (HFH%a(o,L) + HGHiz(o,L)) = m/ (HF“%?(&L) + ”GH%Q(O’“) ar,

0
(4.30)
then, we infer from (4.29), (4.30), and (4.23) the following inequality

DMLl 20,1y + D N Zetell p2g0,) + 100 O 72(0,0) + [10C D F200,0)
< F (”wH%%O,L) +llelZeon) + 1 F 17200y + 97201

+||F||%2(O,T;L2(O,L)) + ||G||%2(O,T;L2(O,L))> : (4.31)

The first estimate (4.1) follows, if we disregard the first and second term on
the left-hand side of (4.31), and pass to the supremum with respect to t over
(0,7). The second estimate (4.2) follows from (4.31) if we drop the last two
terms on the left-hand side of the inequality (4.31).

Since the range of the operator G is subset of £, that is R(G) C
extend G so that inequality (4.31) holds for the extension, and R (?)
can easily show that the following

Proposition 3.2. The unbounded operator G : B — £ admits a closure G

with domain of definition D(G ).

£, so we
=£&. We
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Definition 3.3. The solution of the equation G Z =H = ({F, p, v}, {G, f,g})
is called a strong solution of problem (2.1), (2.3), (2.4).
The a priori estimate (4.1), can be extended to

12z < 77lG 2lz. V2 eD(G). (4.32)

The estimate (4.32) shows that the operator G is one to one and that G is
continuous from R(G ) onto B. Consequently if a strong solution of problem
(2.1), (2.3), (2.4) exists, it is unique and depends continuously on the input
data ,1, f,g and the external forces F' and G. Also as a consequence of

(4.32), the set R(G ) C € is closed and R(G ) = R(G).

5. EXISTENCE OF SOLUTION

Theorem 4.1. Problem (2.1), (2.3), (2.4) admits a unique strong solu-

tion 2 = () ({F.e, v} {G. f.9}) = G({F,¢.0}.{G. f.g}).which de-
pend continuously on the given data, for all F,G € L?*(0,7T;L?*(0,L)),and
b, f.g € L2(0, L),
Proof. It follows from above that in order to prove the existence of the
strongly generalized solution of problem (2.1), (2.3), (2.4), it suffices to prove
that R(G) = €. To this end, we first prove the density in the following special
case.
Theorem 4.2. If for some function W (z,t) = (A (z,t), Aa(z,t)) € (L*(0,T; L*(0, L)))?
and for elements Z € Dy(G) ={Z : Ze D(G)andI'd =T9p=0,i=1,2}
we have

(81(‘97 ¢)7 AI)LQ(O,T;LQ(O,L)) + (82(€7 ¢)7 AQ)L2(O,T;L2(O,L)) = 07 (51)
then W (x,t) = (Ai(z,t), As(x,t)) = (0,0) a.e in Q7.
Proof. The identity (5.1) is equivalent to
T T T

T
/(P1aa+19 Av)200,0)dt — Kq /(Qxx,Al r2(0,0)dt — /ﬁ/ Gur M) 2001 dt—i‘/ s, A1) 20,1
0 0 0

T T

T
+/ P07 0, As) )r2(0,)dt — K2 /(¢x$7A2 r2(0,0)dt + Fél/ (02, A2) 20, ydt
0 0

0
T t

T

Ty / (6, o) oyl + / ( / (it — 8)y (2, 5)ds, Ao) oo 1 dsdt (5.2)
0 0

= 0.

Assume that the functions &(x,t), n(x,t)and satisfy the boundary and the
initial conditions (2.3), and (2.4) and such that &, &,,n,, Z:&, Im, T, L2,
T,1%, T2€¢, Ty and 97 '¢, 87y € L2(0,T; L2(0, L)), we then set

0(x,t) = T2 = //5xzdzds¢xt =TI = //n:vzdzds (5.3)
0

0
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and introduce the functions
A (z,t) = T, + T2T.€, No(z,t) = Tin + T2y, (5.4)
Equation (5.2) then reduces to

T T

/ (P Of T I2E T + T2T,€) 12 (0,1 dt — K / (Z2€ 40, T + T2T18) 1200y dt

0 0
T T
_’fl/ (I}, Ti& + T2T€) &) 2(0,0)dt + / 7.5, T + IgItf)L%O,L)dt
0 0
T T
+/ (P20 T, Tom + Z2Tim) 120, 1) dt — ff2/ L g Tem + L2Tim) 20,1 A1
0 0

T
+K1 I gx,Itn +I ItT] L2(0, L)dt + Hl/ tT],ItT] +I ItT])L2 OL)dt
0

O\’ﬂ

T ¢
—|—/ /m (t — 8)I2n,, (v, s)ds, I;n + T Im)Lz(o rydt
0 0

= 0. (5.5)

Invoking boundary integral conditions and carrying out appropriate integra-
tions by parts of each inner product term, we have

(01 Of T TRE, T + T2T€) r2(o0.n)
= (pOfL, &) + (/713?1-x1—t57IxItf)LQ(o,L)7 (5.6)

—k1 (1-1&252717 Ité- + I2It£)L2(O,L)

516 2 /4;1(9 9
= 2815”15 ||L2 0,L) 28t”z fHL2 (0,L)> (5-7)

—k1 (T L€ + T2TeE) 12(0,1)
= —k1(Tn, TeE) 1200,y + K1(Zin ToTi€) 12 (0.1 (5.8)

(7.6, 7,¢ + Iiztg)LZ(o,L)
= ISl 22000y — 1237201 (5.9)

(P20 T2, Tin + Iifm)ﬂ(o,m
= (00 Tin, i) + (p20; T Zin, Lo Lin) 2(0,1) (5.10)

— k2 (TN e Ten + T2Li) 120,1)

Hga /’620
= 2875” t77x||L2 0,L) 2(%” thL?(OL) (5.11)
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k(L€ T + LT r2(0,r)
= m(ZPE Tin) 2o,y — k1 (Z2E, TaTim) 20,1, (5.12)

(/ m(t - S)I§n$$<x7 S>d571-t77 + Iiz’-tn)lﬂ(O,L)
0
t
= / m(t — YT, (2, s)ds, T, ) o) + ( / m(t — s\T2n(z, 8)ds. Tin) o 1)
0

L t
- jt 77, / m (1~ 5) (Z2n,)(r, $)ds | d

L

L
‘f’/ItQ% /m Ian)(m s)ds dx+/m(0) (Int)de
0

0

+ / mlt = $)Tn(a,)ds, Tz (.19
0

Insertion of equations (5.6)-(5.13) into (5.5), and using Lemma 2.2, yields
/{18

P1¢ na P1€ a
O R TN a0y + 2 O ITTON a0y + oy 1T Bt
/i18 p C o
282& ||I2§||L2(0 nt ||It§||L2 0,L) ?2 9, HIﬂ?)HIﬁ (0,L)
e’ 2 /4228 11128
o at ||I:vIt77)||L2(0L 2at||1t277m||L2(0 T 28t||1t277||L2 0,L)
L
+/h(0) (Ifnz)Zd:U

0
k1 ({0, Ti6) 120,y — K1 (Zin, Loid) 120,0) + 1 ZeTié Iz o)
_’f1<125xa1t77)L2(0 L)+ kK1 (Z7¢,T. +LiM) 12(0,1)

a L

0
L

- [, / ! (t — ) (T2n,) (@, 5)ds | da

0

IA

~( / m(t — )20z, s)ds, o) 20,0, (5.14)

By using Cauchy ¢ -inequality, we estimate each term of the right-hand side
of previous relations to get
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R1 R1

k1 (T2, i) 120,1) < ?Hl—tzan%?(O,L) + ?HztgH%?(O,L)’ (5.15)
1y (T2, T, T, < Bizzp2 BT 762 5.16
k1(Zin, Lo Te€) 12 0,n) < 9 I t77”L2(0,L)+ 9 [ t£HL2(O,L)7 (5.16)
ey (126 T < Blizze 2 UARTET 5.17
k1(Z; € Tin)r2o,n) < 9 | tfa:”L2(0,L)+ 9 | t77HL2(0,L)a (5.17)
126 1,7 < Bliz2e)2 LARTE P 5.18
"31( 1 &Ly t77)L2(0,L) = 9 || t§||L2(0,L)+ 2 || z thL2(O,L)7 ( : )

t

L
[z | [ -9 @) s)is | do
0 0

1 T2
< Laup (1 ; —) 1220, a0 (5.19)
QOStST 2

t
—< / m(t — s)Z2n(x, 8)ds, Tin) o1,
0

1 T?
5 8 [ml|Zunllzz 0,0y + 5 sup [ml [ Z70]72(0,1)- (5.20)
0<t<T 0<t<T

By combining equality (5.14) and inequalities (5.15)-(5.20), we obtain

64 2 e} 2 o4 2
RN 2000y + O N r20,0y + O NTZi) 200,

0 0

o 2

+90; 1ZeZen)l| 220,y + a”ﬁ@”%z(o,m + §||It277z||2L2(0,L)
L

0 0 2
4T sy + 1Tl + [ (Zn.)" o+ |ZElEaos
0

< W (1B 0.0y + 1T 300y + 1Tl N300y + I T Tl 20
HIZZE N 2 0.0y + 1T, 220,y + N ZPEN 20,0y + ||It2n||%2(O,L)> (5.21)

where

= min{l,pl P2 K1 K2 h(o)} . (522)

By discarding the last two terms from the left hand side of (5.21), replacing ¢
by 7 in (5.22) and then integrating with respect to 7 over the interval (0,1),
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we obtain

DM T 20 + D8 T 220y + DF T 0.0y

+D¢ NI 20,0y + 1Tl 20 ) + 1T 20,0

‘|‘HII:2§H%2(0,L) + HIEUH%%O,L)

Ja% ("It€‘|i2(o,t;L2(o,L)) + HIth%Q(O,t;LQ(O,L)) + HImIfH%?(o,t;U(o,L)) + HIwIth%Q(O,t;LQ(O,L))
+||It2§x||%2(0,t;L2(O,L)) + ||It27]m||%2(0,t;L2(0,L)) + ||It2§’|%2(0,t;L2(O,L)) + ||It277||%2(0,t;L2(0,1()§)23)

If we omit the first four terms on the left hand side of (5.23), and use Gronwall-
Bellman lemma, by taking

IA

( R(t) = |l125 ||L2 (0,t;L2(0,L)) +2||Itz77rH%Q(O,t;LQ(O,L))
+|Z; €HL2(0t r20.0)) T 1 Zenlz20.00200.0)
(9'R
t) = || 22,112 o) T |5 77$HL2 (0,L) (5.24)
+||I2€|| 20,0) T ||I15277||L2 (0,L)
\ R( ) =0,
we obtain
R(t) < Te™ (”ItfH%%Qt;B(QL)) + HIt77H%2(o,t;L2(0,L)) + HIIEItﬂ'%?(O,t;L?(O,L))
+HI:BZ”]H%Q(O,?&;L?(O,L))) : (5.25)

Next, if we disregard the last four terms on the left-hand side and take into
account the inequality (5.25), we end with

Dyt ||Itf)||i2(o,1;) + Dy ||Itn)||iQ(O7L) + D! ||I$It§)||iQ(O,L)
+D;! HI:CItn)HiQ(O,L)

< W (Te™ +1) (HItgHi?(O,t;LQ(O,L)) +1ZnllZ20.020.0))
+ 1Z2€ 032 0220y + 1T 022000 ) - (5.26)

Now, we are able to apply lemma 2.2, by letting

([ Q) = = IT&lzzq05220.) + ITllieo a0
|1Z; §||L2(0tL2(0 L)) + HIth]ﬂ (0,6;L2(0,L))

CoprQ(t) = D 1T 2oy + DF ||It77)||L2 0.L) (5.27)
+D7 7|7 Tig )HL2(OL Da Iz, It77>HL2 0,L)
\ Q(0) =
we infer from (5.26) that
Q(t) < T(a)Ey oW (Te™ + 1) t*)D;%(0) = 0. (5.28)

We conclude from (5.28), and (5.27) that £ = 0,7 = 0. Consequently, W (z,t) =
(Ay(z,t), Ax(z, 1)) = (0,0) a.e in QT.

We now consider the general case for density

Since & is a Hilbert space, then R(G) = £ & R(G)* = {0} & (GZ,K)s =0,
for all Z € B N and IC € S,then K= (ICI,,C2> = {(Jl, Jg, J4), (JQ, J5, Jﬁ)} =
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(0,0), that is J; = Jo = J3 = Jy = J5 = Jg = 0. So suppose that for some
element IC = (Kl,’CQ) = {(Jl, J3, J4), (JQ, Js, J@)} S R(Q)L

(GZ,K)e
({8100, 9), S2(0, o}, {1, Ko })e
= ({S1(0,0¢),110,120},{52(0,9), 10, Ta0} }, {{J1, J2, 3}, {Jas s, J6 } })e
(8100, 9), J)r2qry + (I8, J2) 20,1y + (D20, J5) 20,1
+(82(0, ), Ju) r2(gry + (T'10, J5)2(0,0) + (T'20, J6) 20,1
= 0, (5.29)

where Z runs over the space B, we have to prove that K = 0.
Let Z € Dy(G), then equation (5.29) becomes

(81 (Q, Qb), Jl)Lz(QT) + (SQ(Q, qb), J4)L2(QT) = 0. (530)

Hence, by virtue of Theorem 4.2, it follows from (5.30) that J; = J; = 0.
Consequently, equation (5.29) takes the form

(110, J2) 2(0,0) + (T20, J3) 120,y + (T'10, J5) r200,0) + (T'20, J6) 1200,y = 0. (5.31)

Since the four terms in (5.31) vanish independently and since the ranges
R(T'1), R(T'y) of the trace operators I';,I'y are everywhere dense in the space
L*(0, L), then it follows from (5.31) that J, = J3 = J5 = Jg = 0. Consequently
K =0, that is R(G)*" = {0}. Thus R(G) = €.

Conclusion: In this paper, we investigated a non-local non-homogeneous
fractional Timoshenko system with frictional and viscoelastic damping terms.
This fractional order system is supplemented with some initial conditions and
classical and non local boundary conditions of integral type. The well posed-
ness of the given non local initial boundary value problem is established. The
used approach relies on some functional analysis tools, operator theory, a prori
estimates and density arguments. To the best of our knowledge, the treated
fractional Timoshenko system problem has never been studied and explored
in the literature. This work can be considered as a contribution in the de-
velopment of the traditional functional analysis method, the so called a priori
estimate method or the energy inequalities method used to prove the exis-
tence, uniqueness and stability of initial boundary value problems with non
local boundary conditions such as integral conditions.
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