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Abstract

The paper is concerned with the following Schr\”{o}dinger-Poisson system $$ \left\{\begin{array}{ll} -\Delta u+u+\phi
u=|u|ˆ{p-1}u+|u|ˆ4u, &x\in \mathbb{R}ˆ3, \\[0.25cm] -\Delta\phi=uˆ2, &x\in \mathbb{R}ˆ3, \end{array} \right. $$
where $3
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NONEXISTENCE OF GROUND STATE SIGN-CHANGING

SOLUTIONS FOR AUTONOMOUS SCHRÖDINGER-POISSON

SYSTEM WITH CRITICAL GROWTH

YING WANG∗ AND RONG YUAN

Abstract. The paper is concerned with the following Schrödinger-Poisson system −∆u+ u+ φu = |u|p−1u+ |u|4u, x ∈ R3,

−∆φ = u2, x ∈ R3,

where 3 < p < 5. With the help of an odd Nehari manifold and “energy dou-
bling” property, we prove the nonexistence of ground state sign-changing solutions

on H1(R3). In this sense, our result explains why the existing literature can on-

ly consider the existence of the ground state sign-changing solutions in the radial
Sobolev space H1

r (R3).

1. Introduction

In the present paper we are interested in the following Schrödinger-Poisson system{
−∆u+ u+ φu = |u|p−1u+ |u|4u, in R3,
−∆φ = u2, in R3,

(1.1)

where 3 < p < 5. Due to its physical relevance as described in [4], system (1.1) or its
more general form has been extensively investigated via the variational methods in the
past decades, such as [1, 3, 5, 12,18] and the references listed therein.

Recently, many authors began to focus on sign-changing solutions for Schrödinger-
Poisson system. For this topic, there are many interesting works for the case that the
nonlinearity is of subcritical growth, such as [2,9,10,13,15] and the references mentioned
therein. Due to the lack of compactness of H1(R3) ↪→ L6(R3), the investigations on
Schrödinger-Poisson system with critical growth are more complicated and challenging
from the mathematical point view. For this case, as far as we know, only [6,8,11,14,16,
17,19] dealt with the existence of sign-changing solutions. Meanwhile, it must be pointed
out that, in [14, 17], to verify the (PS) condition conveniently, the radial space H1

r (R3)
is a good choice for autonomous case as the energy space due to the compactness of the
embedding H1

r (R3) ↪→ Lq(R3), q ∈ (2, 6). Therefore, it is a very interesting problem
whether there exist ground state sign-changing solutions for autonomous system (1.1) in
the usual Sobolev space H1(R3).

The aim of this paper is to supplement the existing results in [14, 17] and give a
negative answer to the above problem. In fact, our main result is stated as follows.

Theorem 1.1. Assume that p ∈ (3, 5), then system (1.1) does not possess ground state
sign-changing solutions in H1(R3).

As is known to all, weak solutions of system (1.1) can be obtained as critical points
of the energy functional

I(u) =
1

2

∫
R3

(|∇u|2 + |u|2)dx+
1

4

∫
R3

φuu
2dx− 1

p+ 1

∫
R3

|u|p+1dx− 1

6

∫
R3

|u|6dx,
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2 YING WANG∗ AND RONG YUAN

where φu is the unique solution satisfying −∆φ = u2 obtained by the Lax-Milgram theo-
rem. Recall that u is a weak solution of system (1.1) if u ∈ H1(R3) satisfies 〈I ′(u), ϕ〉 = 0
for any ϕ ∈ H1(R3). Moreover, if u is a solution of system (1.1) with u± 6≡ 0, then u
is called a sign-changing solution (nodal solution), where u+(x) = max{u(x), 0} and
u−(x) = min{u(x), 0}. A solution is called a ground state solution if its energy is mini-
mal among all nontrivial solutions.

To find ground state sign-changing solutions of system (1.1), the usual strategy is to
deal with the following minimizing problem

cM := inf
M
I(u), (1.2)

where M is the corresponding sign-changing Nehari manifold

M := {u ∈ H1(R3)\{0} : 〈I ′(u), u+〉 = 0 = 〈I ′(u), u−〉, u± 6= 0}.
In our context, to reach the conclusion, we not only need to consider the Nehari manifold
N but also seek for the help of an odd Nehari manifold Nodd defined as Nodd := N ∩
H1
odd(R3). Here, N is the usual Nehari manifold given by N := {u ∈ H1(R3)\{0} :
〈I ′(u), u〉 = 0} and H1

odd(R3) is the Sobolev space of odd functions respect to the third
component (introduced in [7]) denoted by H1

odd(R3) := {u ∈ H1(R3)\{0} : u(x′,−x3) =
−u(x′, x3),∀x = (x′, x3) ∈ R3}. At this point, define the corresponding levels on N and
Nodd by

cN := inf
N
I(u) and codd := inf

Nodd

I(u), (1.3)

respectively. Then, by contradiction and discussing the relationship among these three
levels cM, cN and codd, we are able to accomplish the proof of Theorem 1.1.

Throughout this paper, we denote by C a positive constant whose value may change
from line to line, by ‖ · ‖ the norm of H1(R3), and by x = (x′, x3) the point in R3. For
any R > 0 and any x ∈ R3, BR(x) is the ball of radius R centered at x. The rest of the
present paper is organized as follows. In Section 2 we state two useful lemmas related
to the energy functional and the Nehari manifold. In Section 3, we give the proof of
Theorem 1.1.

2. Preliminaries

Firstly, we present a technical lemma which is essentially related to the energy func-
tional.

Lemma 2.1. Define ψβ : R+
0 → R by ψβ(t) = αt2 + βt4 − γtp+1 − δt6, ∀t ≥ 0, where

α, β, γ, δ be positive constants and p > 3. Then

(i) ψβ has a unique critical point t∗ corresponding to its maximum. Moreover, ψβ(t)
is strictly increasing in (0, t∗) and strictly decreasing in (t∗,+∞);

(ii) if β1 > β2 > 0 and ψ′β1
(t∗1) = ψ′β2

(t∗2) = 0 with t∗1, t
∗
2 > 0, we have t∗1 > t∗2.

Proof. A direct calculation gives the derivatives of ψβ up to five order:

ψ′β(t) = 2αt+ 4βt3 − (p+ 1)γtp − 6δt5,

ψ′′β(t) = 2α+ 12βt2 − (p+ 1)pγtp−1 − 30δt4,

ψ
(3)
β (t) = 24βt− (p+ 1)p(p− 1)γtp−2 − 120δt3,

ψ
(4)
β (t) = 24β − (p+ 1)p(p− 1)(p− 2)γtp−3 − 360δt2,

ψ
(5)
β (t) = −(p+ 1)p(p− 1)(p− 2)(p− 3)γtp−4 − 720δt.

Since p > 3, it is obvious that ψ
(5)
β (t) < 0 for any t ∈ (0,+∞), which means that ψ

(4)
β (t)

decreasing on the interval [0,+∞). Note that ψ
(4)
β (0) = 24β > 0, then there exists a

unique t4 > 0 such that ψ
(4)
β (t4) = 0 and ψ

(4)
β (t)(t4 − t) > 0 for t 6= t4. As for ψ

(3)
β (t),

since ψ
(3)
β (0) = 0 and ψ

(4)
β (t) > 0, ∀t ∈ (0, t4), ψ

(3)
β (t) increases and takes positive values
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for t ∈ (0, t4]; ψ
(3)
β (t) decreases for t > t4 and tends to −∞ thanks to ψ

(4)
β (t) < 0, ∀t > t4.

Then, there exists a unique t3 > t4 such that ψ
(3)
β (t3) = 0 and ψ

(3)
β (t)(t3 − t) > 0 for

t 6= t3.

Repeating the argument for ψ′′β and ψ′β as we did for ψ
(4)
β and ψ

(3)
β , we can conclude

the existence of t∗ > 0 such that ψ′β(t∗) = 0 and ψ′β(t)(t∗ − t) > 0 for t 6= t∗. Therefore,

t∗ is the unique critical point of ψβ corresponding to its maximum. Moreover, ψβ(t) is
strictly increasing in (0, t∗) and strictly decreasing in (t∗,+∞).

Next, we turn to (ii). Note that ψ′β(t) = 2αt+ 4βt3 − (p+ 1)γtp − 6δt5. Clearly, the

assumption β2 < β1 implies that ψ′β2
(t∗1) < ψ′β1

(t∗1) = ψ′β2
(t∗2) = 0. As a direct result of

(i), it brings that t∗1 > t∗2. �

Next, we show some properties related to the Nehari manifold N .

Lemma 2.2. The following statements are true:

(i) there exists ρ > 0 such that ‖u‖ ≥ ρ for any u ∈ N ;
(ii) for each u ∈ H1(R3)\{0}, there exists a unique tu > 0 such that tuu ∈ N and

I(tuu) = maxt≥0 I(tu). Moreover, the map H1(R3)\{0} → (0,+∞) : u 7→ tu is
continuous;

(iii) if u ∈ H1(R3)\{0} satisfies I ′(u)u < 0, then there exists a unique tu ∈ (0, 1)
such that tuu ∈ N ;

(iv) cN > 0.

Proof. (i) For any fixed u ∈ N , using Sobolev inequality, we have

‖u‖2 <
∫
R3

(|∇u|2+|u|2)dx+

∫
R3

φuu
2dx =

∫
R3

|u|p+1dx+

∫
R3

|u|6dx ≤ C(‖u‖p+1+‖u‖6).

The above inequality indicates that there exists ρ > 0 independent of u ∈ N such that
‖u‖ ≥ ρ.

(ii) For any given u ∈ H1(R3)\{0}, consider the fibering map gu : R+ → R defined
by

gu(t) := I(tu) =
t2

2
‖u‖2 +

t4

4

∫
R3

φuu
2dx− tp+1

p+ 1

∫
R3

|u|p+1dx− t6

6

∫
R3

|u|6dx, t ≥ 0.

Therefore, apply Lemma 2.1 (i), gu has a unique maximum point tu > 0 such that
g′u(tu) = 0 and gu(tu) = maxt≥0 gu(t). Namely, tuu ∈ N and I(tuu) = maxt≥0 I(tu).

To show the continuity of tu, suppose un → u in H1(R3) as n → +∞. Note that,
for each un, there exists a unique tun

> 0 such that tun
un ∈ N . Since un → u 6= 0

and 〈I ′(tunun), tunun〉 = 0, we infer that {tun} is bounded. Up to a subsequence if
necessary, still denoted by {tun}, there exists t0 ≥ 0 such that tun → t0 as n → +∞.
In fact, using (i), we deduce that ‖tun

un‖ ≥ ρ, which implies that t0 > 0. Then,
from 〈I ′(t0u), t0u〉 = 0 = 〈I ′(tuu), tuu〉 and the uniqueness of tu, we readily derive that
tu = t0.

(iii) In view of tuu ∈ N , we have

t2u‖u‖2 + t4u

∫
R3

φuu
2dx− tp+1

u

∫
R3

|u|p+1dx− t6u
∫
R3

|u|6dx = 0,

which equals to

1

t2u
‖u‖2 +

∫
R3

φuu
2dx− tp−3

u

∫
R3

|u|p+1dx− t2u
∫
R3

|u|6dx = 0. (2.1)

Since I ′(u)u < 0, there exists

‖u‖2 +

∫
R3

φuu
2dx−

∫
R3

|u|p+1dx−
∫
R3

|u|6dx < 0,

from which and (2.1), it immediately yields that(
1

t2u
− 1

)
‖u‖2 −

(
tp−3
u − 1

) ∫
R3

|u|p+1dx−
(
t2u − 1

) ∫
R3

|u|6dx > 0.
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If tu ≥ 1, the above inequality is meaningless. Thus, it must be 0 < tu < 1.
(iv) To show c0 > 0, it is sufficient to notice that

I(u) = I(u)− 1

4
I ′(u)u =

1

4
‖u‖2 +

(
1

4
− 1

p+ 1

)∫
R3

|u|p+1dx+
1

12

∫
R3

|u|6dx ≥ 1

4
‖u‖2,

and use (i). �

3. Proof of Theorem 1.1

In this section, we are dedicated to finishing the proof of Theorem 1.1. To accomplish
this purpose, we use the “energy doubling” property and estimate the level codd defined
in (1.3). To make the proof clear, we divide it into two steps.
Proof of Theorem 1.1.

Step 1. If c is achieved, then cM > 2cN .
Assuming that there exists some û ∈ M such that I(û) = cM, from the definition of

M, we have

0 = I ′(û)û± =

∫
R3

(|∇û±|2 + |û±|2 + φû±(û±)2 + φû∓(û±)2 − |û±|p+1 − |û±|6)dx

>

∫
R3

(|∇û±|2 + |û±|2 + φû±(û±)2 − |û±|p+1 − |û±|6)dx

= I ′(û±)û±.

Then, using Lemma 2.2, we get the existence of tû± ∈ (0, 1) such that tû± û± ∈ N .
Therefore, we deduce that

I(û) =I(û)− 1

4
〈I ′(û), û〉

=
1

4

∫
R3

(|∇û|2 + |û|2)dx+

(
1

4
− 1

p+ 1

)∫
R3

|û|p+1dx+
1

12

∫
R3

|û|6dx

>
1

4

∫
R3

(|tû+∇û+|2 + |tû+ û+|2)dx+

(
1

4
− 1

p+ 1

)∫
R3

|tû+ û+|p+1dx+
1

12

∫
R3

|tû+ û+|6dx

+
1

4

∫
R3

|tû−∇û−|2 + |tû− û−|2dx+

(
1

4
− 1

p+ 1

)∫
R3

|tû− û−|p+1dx+
1

12

∫
R3

|tû− û−|6dx

=I(tû+ û+) + I(tû− û−) ≥ 2cN ,

which indicates that cM > 2cN .

Step 2. codd ≤ 2cN .
The idea here is to find an element in Nodd such that the value of I is less than or

equal to 2cN on this element. We firstly observe that

cN = inf{I(u) : u ∈ N ∩ C∞c (R3) and u ≥ 0 in R3}. (3.1)

Actually, if u ∈ N , then |u| ∈ N and it holds that cN = inf{I(u) : u ∈ N and u ≥
0 in R3}. Since C∞c (R3) is dense in H1(R3), for each u ∈ N with u ≥ 0, there exists a
sequence {un} ⊂ C∞c (R3) with un ≥ 0 such that un → u in H1(R3). For each un, by
(ii) of Lemma 2.2, there is a unique tun > 0 such that tunun ∈ N . In view of un → u
H1(R3) and the continuity of tu, we see that tun → 1 as n→ +∞. Therefore, we obtain
a sequence {tun

un} ⊂ N ∩ C∞c (R3) satisfying tun
un > 0 and tun

un → u as n → ∞.
Based on this point, (3.1) is verified. Consequently, for any ε > 0, we can find a positive
function u ∈ N ∩ C∞c (R3) such that 〈I ′(u), u〉 = 0 and I(u) ≤ cN + ε. Namely, one has

I(u) = I(u)− 1

4
I ′(u)u

=
1

4
‖u‖2 +

(
1

4
− 1

p+ 1

)∫
R3

|u|p+1dx+
1

12

∫
R3

|u|6dx

≤ cN + ε.

(3.2)
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For this u, we assume its support is contained in BR(0) for some R > 0, that is, supp(u) ⊂
BR(0).

Secondly, for each r > 0, we define the function ũr(x) : R3 → R by

ũr(x) = vr(x)− v̄r(x),

where vr(x) := u(x′, x3 +R+ r) and v̄r(x) := u(x′,−x3 +R+ r), ∀x = (x′, x3) ∈ R3. It
is clear that supp(vr) ∩ supp(v̄r) = ∅ and ũr ∈ H1

odd(R3). From Lemma 2.2 (ii), there
exists a unique tũr > 0 such that tũr ũr ∈ N , that is,

t2ũr
‖u‖2+t4ũr

(∫
R3

φuu
2dx+

∫
R3

φvr v̄
2
rdx

)
−tp+1

ũr

∫
R3

|u|p+1dx−t6ũr

∫
R3

|u|6dx = 0. (3.3)

Combining with Sobolev inequality, we derive that

t2ũr
‖u‖2 ≤ tp+1

ũr

∫
R3

|u|p+1dx+ t6ũr

∫
R3

|u|6dx ≤ C(tp+1
ũr
‖u‖p+1 + t6ũr

‖u‖6),

which indicates that there exists τu > 0 such that tũr
≥ τu.

Thirdly, we talk about the monotonicity of
∫
R3 φvr v̄

2
rdx respect to r. Notice that∫

R3

φvr v̄
2
rdx =

1

4π

∫
R3

∫
R3

v2
r(x)v̄2

r(y)

|x− y|
dxdy

=
1

4π

∫
R3

∫
R3

u2(x′, x3 +R+ r)u2(y′,−y3 +R+ r)

|x− y|
dxdy

=
1

4π

∫
R3

∫
R3

u2(x)u2(y)

|(x′, x3 −R− r)− (y′,−y3 +R+ r)|
dxdy

=
1

4π

∫
BR(0)

∫
BR(0)

u2(x)u2(y)√
|x′ − y′|2 + |x3 + y3 − 2(R+ r)|2

dxdy

and |x′−y′|2 + |x3 +y3−2(R+r)|2 is strictly increasing about r > 0 for any x, y ∈ BR(0).
We see that

∫
R3 φvr v̄

2
rdx is strictly decreasing about r > 0. Hence, the application of

Lemma 2.1 (ii) signifies that tũr is strictly decreasing with respect to r, which guarantees
the existence of t̂ ≥ τu such that tũr → t̂ as r → +∞. Meanwhile, taking into account
dist(supp(vr), supp(v̄r)) ≥ 2r and (3.2), we have∫

R3

φvr v̄
2
rdx =

1

4π

∫
supp(vr)

∫
supp(v̄r)

v2
r(x)v̄2

r(y)

|x− y|
dxdy

≤ 1

8πr

(∫
R3

|u|2dx
)2

≤ 2(c0 + ε)2

πr
→ 0 as r → +∞.

(3.4)

Therefore, based on (3.3) and (3.4), we are led to

t̂2
∫
R3

(|∇u|2 + |u|2)dx+ t̂4
∫
R3

φuu
2dx− t̂p+1

∫
R3

|u|p+1dx− t̂6
∫
R3

|u|6dx = 0.

Since u ∈ N , it immediately gives that t̂ = 1. Thus, tũr
→ 1 as r → +∞. As a result,

due to tũr
ũr ∈ N , we deduce that

I(tũr
ũr) =

1

4
t2ũr

∫
R3

(|∇ũr|2 + |ũr|2)dx+

(
1

4
− 1

p+ 1

)
tp+1
ũr

∫
R3

|ũr|p+1dx+
1

12
t6ũr

∫
R3

|ũr|6dx

=
1

2
t2ũr

∫
R3

(|∇u|2 + |u|2)dx+

(
1

2
− 2

p+ 1

)
tp+1
ũr

∫
R3

|u|p+1dx+
1

6
t6ũr

∫
R3

|u|6dx

→ 1

2

∫
R3

(|∇u|2 + |u|2)dx+

(
1

2
− 2

p+ 1

)∫
R3

|u|p+1dx+
1

6

∫
R3

|u|6dx
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as r → +∞. This together with (3.2) implies that for any ε > 0 there exists rε > 0 large
enough such that

I(tũr
ũr) ≤ 2cN + 3ε, ∀r > rε. (3.5)

Since ũr ∈ H1
odd(R3), equivalently, tũr ũr ∈ Nodd. Therefore, taking the limit in (3.5), we

deduce that codd ≤ 2cN .
Taking into account Step 1 and Step 2, we readily reach to the following contradic-

tion
2cN < cM ≤ codd ≤ 2cN ,

by observing that Nodd ⊂ M implies codd ≥ cM. Naturally, we complete the proof of
Theorem 1.1. �
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