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1 Introduction

Based on [24], the question arises why one should learn more about stochastic calculus? Stochas-
tic partial differential equations (SPDEs) play an important role in a wide range of active research in
mathematics, chemistry, fluid mechanics, microelectronics, theoretical physic and finance.

Fractional differential equation has attracted increasing attention due to their application in several
field including mathematics, mechanics, physics, chemistry, engineering, control theory and finance.

In contrast, the huge number of studies in deterministic fractional differential equations, there have
been only a few papers in connection with fractional stochastic differential equations (FSDEs) especially
Caputo fractional time derivative. Previous studies have been limited to the existence and uniqueness of
mild solution. Interesting papers for existence and uniqueness are found in [3, 25, 28].

In recent years, there has been a big development in numerical solution of SPDEs. For example, au-
thors of [30] employed a compact finite difference method for solving stochastic space fractional advection-
diffusion equation of Itô. They used Fourier analysis to prove stability and convergence of presented
scheme similar to [27]. In [33], a Galerkin finite element method is considered for time fractional stochas-
tic diffusion equation with multiplicative noise. A numerical scheme for the nonlinear time fractional
stochastic reaction-diffusion equation is carried out in [12] wherein mixed finite element and BDF2-θ is
considered to discretize in spatial and temporal directions, respectively. Kamrani [8] investigated the
numerical solution of FSDEs using Galerkin method based on Jacobi polynomials. The main aim of [34]
is to develop a fourth-order central difference scheme and the semi-implicit Crank-Nicolson scheme for
obtaining a new fully discrete scheme of space fractional wave equation by additive and multiplicative

∗Email: zsoori@mail.kntu.ac.ir (Corresponding Author)
†Email: ataei@kntu.ac.ir
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noise. In [26], a nonlocal backward problem is proposed for fractional stochastic diffusion equations
wherein the eigenfunction expansion of the solution is reduced to an integral equation. Authors of [5]
considered an approximate controllability for fractional stochastic wave equation of Riemann-Liouville
type.

The POD technique has a long history. The POD method is derived from eigenvector analysis method
which was initially proposed by K. Pearson in 1901. The POD [6] is an effective technique to decrease
the degrees of freedom. The essential features of the POD-based reduced are in the following two aspects,
i.e., preserve the accuracy of numerical solutions and reduce the computational time. It has been used
to develop some POD-based reduced-order numerical computational methods for the time dependent
PDEs. Known studies are reduced-order finite differences, the reduced-order finite element methods and
reduced-order finite volume element methods which are found in the book [13]. The POD method are
needed more for scheme that are on fine grids. For example, there is more computation cost in the
Richardson extrapolation algorithms on fine grids. Hence, we able to use POD technique instead of
parallel computing to overcome with this problem.

A reduced-order finite element method based on POD scheme for fractional Tricomi-type equation is
considered in [11]. Authors of [1, 2, 32] presented some efficient compact finite difference schemes based
on POD for PDEs such as two-dimensional distributed-order Riesz space-fractional diffusion equation,
multi-dimensional parabolic equation and Korteweg-de Vries equation. Some reduced finite difference
schemes based on POD scheme for parabolic and hyperbolic equations are utilized in [16, 29]. Fu et
al. [4] investigated a reduced-order for time fractional diffusion equation based on POD technique and
disceret empirical interpolation method. Luo et al. [18] developed a reduced-order extrapolation and finite
difference scheme by POD for two dimensional time-space tempered diffusion-wave equation. Authors of
[9, 10] utilized a Galerkin POD for parabolic problems and general equation in fluid dynamics. For more
information about POD method, one can refer to [14, 15, 17, 19, 20, 21, 22].

In this paper, we study the time FSA-DE of order α (0 < α < 1) as follows:

C
0Dα

t u(x, t) = (β + γ
dB(t)

dt
)
∂2u(x, t)

∂x2
+ σ

∂u(x, t)

∂x
+ f(x, t), (x, t) ∈ [a, b]× [0, T ], (1)

with the initial condition:

u(x, 0) = ψ(x), x ∈ [a, b],

and the boundary conditions:

u(a, t) = φ1(t), t ∈ [0, T ],

u(b, t) = φ2(t), t ∈ [0, T ],

where C
0Dα

t is the α− th Caputo fractional derivative defined by

C
0Dα

t u(x, t) =
1

Γ(1− α)

∫ t

0

∂2u(x, t)

∂s2
(t− s)−αds,

here, β, γ, σ are real constants, ψ(x), φ1(t), φ2(t) are the stochastic process defined on the propability
space (Ω,F ,P), f(x, t) is a known function and u(x, t) is an unknown stochastic process which should
be estimated. The term B(t) denots one-dimensional standard Brownian motion process which satisfy in
the following properties :
1) B(0) = 0.
2) For all 0 ≤ s < t < T , B(t) − B(s) is random variable with expectation zero and variance t − s.
Therefore, B(t)−B(s) ∼

√
t− sN (0, 1) denotes normal distribution with expactation zero and variance

1.
3) For 0 ≤ s < t < u < v < T , the increments B(t)−B(s) and B(v)−B(u) are independent.

We point that the Brownian motion is a function very commonly used in stochastic calculus. It is a
continuous process but it is not a differentiable function.

In this paper, first, we employ the classical L1 formula to approximate the Caputo fractional deriva-
tive of order α (0 < α < 1) and the second-order IFD scheme for discretization of spatial derivatives.
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Then, combination of POD technique and IFD scheme is considered for FSA-DE wherein POD-IFD is
constructed. It can not be only reduced into a scheme with lower dimension number, but also gurantee
high accuracy. The error analysis is discussed as well. What distinguishes the current paper from previ-
ous works is its numerical solution aspect. To our knowledge, the POD-IFD scheme has never employed
to solve time FSA-DE.

the outline of this paper is as follows: In Section 2, the IFD scheme is employed to approximate spatial
derivatives and the classical L1 formula to discretize time Caputo fractional derivative. In Section 3, we
introduce the POD method and then we combine the POD technique with the IFD scheme. In Section 4,
The analysis of errors for the IFD and RIFD schemes are discussed. Two numerical examples have been
included in Section 5 to verify the accuracy and efficiency of our proposed method. Finally, concluding
remarks are given in Section 6.

2 Numerical scheme

In this section, we construct difference approximation to the Eq. (1). For this purpose, we define
xi = a + ih, i = 0, 1, . . . ,M , tn = nτ , n = 0, 1, . . . , N , wherein h = b−a

M and τ = T
N are the spatial

and temporal step sizes, respectively, and M, N are some given positive integers. For any grid function
u = {uni |1 ≤ i ≤M, 0 ≤ n ≤ N}, denote

δ̂xu
n
i =

uni+1 − uni−1

2h
, δ2xu

n
i =

uni+1 − 2uni + uni−1

h2
,

dB

dt
=
Bn −Bn−1

τ
. (2)

Here, we employ the L1 formula [35] to approximate the Caputo fractional derivative as follows:

C
0Dα

t u(x, tn) =
1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

∂u(x, s)

∂s
(tn − s)−αds

≈ 1

Γ(1− α)

n−1∑
k=0

u(x, tk+1)− u(x, tk)

τ

∫ tk+1

tk

(tn − s)−αds

=
τ−α

Γ(2− α)

n−1∑
k=0

ak
[
u(x, tn−k)− u(x, tn−k−1)

]
+O(τ1−α), (3)

Lemma 1 The coefficients ak = (k + 1)1−α − (k)1−α, k = 0, 1, . . . , n− 1, satisfy

(1)1 = a0 > a1 > a2 > . . . > ak . . . −→ 0,

(2)(1− α)(k + 1)−α < ak < (1− α)(k)−α.

Substituting Eqs. (2) and (3) into Eq. (1), the IFD is obtained as follows:

τ−α

Γ(2− α)

[
uni −

n−1∑
k=1

(an−k−1 − an−k)u
k
i − an−1u

0
i

]
= (β + γ

Bn −Bn−1

τ
)
uni+1 − 2uni + uni−1

h2

+ σ
uni+1 − uni−1

2h
+ fni , (4)

1 ≤ i ≤M − 1, 1 ≤ n ≤ N.

After simplification, the above equation can be rewritten in the following form :[
− µ

h2
(
β + γ(

Bn −Bn−1

τ
)
)
− µσ

2h

]
uni+1 +

[
1 +

2µ

h2
(
β + γ(

Bn −Bn−1

τ
)
)]
uni

+ (− µ

h2
(β + γ(−Bn −Bn−1

τ
)) +

µσ

2h
)uni−1 =

n−1∑
k=1

(an−k−1 − an−k)u
k
i − an−1u

0
i + µfni , (5)

i = 1, 2, . . . ,M − 1,

3



where µ = ταΓ(2− α). In order to facilitate computations, the difference scheme (5) can be represented
to the following matrix-vector multiplication:{

Knu
1 = µF 1 +G1,

Knu
n = c1u

n−1 + c2u
n−2 + . . .+ cn−1u

n−1 + an−1u
0 + µFn +Gn, n > 1,

(6)

where the tridiagonal matrices in (6) are given by

Kn = tri

[
− µ

h2
(
β + γ(

Bn −Bn−1

τ
)
)
− µσ

2h
, 1 +

2µ

h2
(
β + γ(

Bn −Bn−1

τ
)
)
,− µ

h2
(
β + γ(

Bn −Bn−1

τ
)
)
+
µσ

2h

]
,

Fn =

[
fn1 , f

n
2 , . . . , f

n
M−1

]T
,

Gn =

[
− µ

h2
(
β + γ(

Bn −Bn−1

τ
)
)
+
µσ

2h
, 0, . . . , 0,− µ

h2
(
β + γ(

Bn −Bn−1

τ
)
)
− µσ

2h

]T
,

and cn = an−1−an(n = 1, 2, . . . , N). The approximate solutions {uni } (i = 1, 2, . . . ,M−1) are obtained
from solving IFD scheme (6).

3 The RIFD scheme based on POD method

in this section, we employ the POD technique for creating the RIFD scheme. There exist different
interpretations for the POD method. Three of the most methods are Karhunen-Loeve decomposition
(KLD), the principal component analysis (PCA), and the singular value decomposition (SVD). In this
paper, we use the direct form of the POD based on SVD [16].

3.1 Formulate the POD basis

Step 1. Form snapshots

For this aim, we choose first L ≪ N sequence of solutions {uni }Ln=1 (i = 1, 2, . . . ,M − 1) from the N
sequence of approximate solutions {uni }Nn=1 (i = 1, 2, . . . ,M − 1) of IFD (6).

S =


u11 u21 . . . uL1
u12 u22 . . . uL2
...

...
. . .

...
u1M u2M . . . uLM


M−1×L

, (7)

Step 2. apply the SVD form on Matrix S

S = U

(
Dr 0
0 0

)
V T ,

where Dr = diag(σ1, σ2, . . . , σr). The singular values σi can be arranged as σ1 ≥ σ2 ≥ . . . ≥ σr >
0 and r = rank(S). U = UM−1×M−1 and V = VL×L are orthogonal matrices. The matrice U =
(Φ1,Φ2, . . . ,ΦM−1) and V = (ψ1, ψ2, . . . , ψM−1) contain the orthogonal eigenvalues to the SST and
STS, respectively and λi = σ2

i (i = 1, 2, . . . , r). We define a projection PM by

PM (SL) =

m∑
j=1

(Φj , S
l)ϕj , (l = 1, 2, . . . , L), (8)

where Sl =
[
ul1, u

l
2, . . . , u

l
M−1

]
, besides, m < r and (Φj , S

l) is inner product of vectors ϕj and Sl. The
following inequality for orthogonal projection are result:∣∣sl − Pm(sl)

∣∣
2
≤ σm+1 =

√
λm+1. (9)
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The {Φi}mi=1 is a set of optimal basis and Φ = (Φ1,Φ2, . . . ,Φm) is s matrix created by the orthogonal
eigenvectors such that ΦTΦ = I. Now, we construct a RIFD scheme, if un of (6) is substituted by

Pm(un) = u∗n = Φwn = Φ(M−1)×m(wn)m×1, n = 0, 1, . . . , N. (10)

Considering ΦTΦ = I, we obtain RIFD scheme as follows:{
Hw1 = µHΦTF 1 +ΦTG1,
Hwn = c1w

n−1 + c2w
n−2 + . . .+ cn−1w

n−1 + an−1w
0 + µΦTFn +ΦTGn, n > 1,

(11)

where H = ΦTKΦ. Having computed wn from (11), we obtain POD optimal solution u∗n = Φwn. The
RIFD only contains m×N equations, while IFD contains (M − 1)×N equations (usually m≪M − 1).
In fact, the number of degrees of freedom in RIFD scheme (11) reduces in comparision with IFD (11).
Henece, we use RIFD method.

4 Error estimation

This section is devoted in analysing the errors of the IFD and RIFD solutions. First, we state the following
remark and that which is basic in the whole theory.

Remark

Matrix Kn in IFD scheme (6) is not a symmetric tridiagonal matrix. By Numerical computations, assume
that each product of off-diagonal entires is strictly positive bici.
A transform matrix D define as follows:

D = diag(δ1, . . . , δn),

and

δi =

{
1, i = 1,√

ci−1...c1
bi−1...b1

, i = 2, . . . n− 1.

Based on [36], a symmetric tridiagonal matrix J can be obtained as follows:

J = D−1TD =



a1 sgnb1
√
b1c1

sgnb1
√
b1c1 a2 sgnb2

√
b2c2

. . .
. . .

. . .

sgnbn−1

√
bn−1cn−1

sgnbn−1

√
bn−1cn−1 an


,

(12)

For simplicity, we assume that th entires of Kn define as follows:

T =


a1 b1
c1 a2 b2

. . .
. . .

. . .

bn−1

cn−1 an

 .

Now, matrices of J and T have the same eigenvalues. Here, matrix Kn = T . Now, we can obtain the
eigenvalues of martix Kn by Thomas algorithm [31]:

λi(Kn) = 1 +
2µ

h2

(
β + γ

(Bn −Bn− 1

τ

))
+ 2

√
µ

h2
(Bn −Bn− 1

τ

)
− µ2σ2

4h2
cos(

iπ

M
). (13)

5



Theorem 2 Let un be the solution of (6) and Un the exact solution (6), then

∥Un − un∥ ≤ Cn

n∑
k=1

θn,k(h
2 + τ1−α).

Proof. From (6), we get:

KnU
n =

n∑
k=1

(an−k−1 − an−k)U
k + an−1U

0 + µFn +Gn + Tn, 1 ≤ n ≤ N, (14)

where Tn be the local truncation error. Let en = Un − un and e0 = 0. Subtracting (6) from (14), we
obtain:

Kne
n =

n∑
k=1

(an−k−1 − an−k)e
k + Tn, 1 ≤ n ≤ N,

utilizing the inner product with en, we get:

(Kne
n, en) =

n−1∑
k=1

(an−k−1 − an−k)(e
k, en) + (T, en), 1 ≤ n ≤ N. (15)

For any symmetric matrix R, we have the following properties of Rayleigh-Ritz ratio from [7] as follows:

λmin(R) ≤
(Rv, v)

(v, v)
≤ λmax(R), (16)

which v is a vector in RM−1 and v ̸= 0. Hence, we have:

λmin(Kn)∥en∥22 = λmin(Kn)(e
n, en) ≤ (Kne

n, en).

From the above equation, Eq. (15) becomes:

∥en∥2 ≤ 1

λmin(Kn)

( n−1∑
k=1

(an−k−1 − an−k)∥ek∥2 + ∥Tn∥2
)
, 1 ≤ n ≤ N.

From (12), we have 1
λmin(Kn)

≤ 1 + 2 µ
h2

(
β + γ

(Bn−Bn−1

τ

))
. Therefore, we obtain:

∥en∥2 ≤ Cn

( n−1∑
k=1

(an−k−1 − an−k)∥ek∥2 + ∥Tn∥2
)
, 1 ≤ n ≤ N,

where Cn = 1 + 2 µ
h2

(
β + γ

(Bn−Bn−1

τ

))
. By mathematical induction, we can obtain:

∥en∥2 ≤ Cn

n−1∑
k=1

θn,k∥T k∥2, 1 ≤ n ≤ N,

where

θn,j =

n−j∑
k=1

Ck+j−1(an−(k+j−1)−1 − an−(j+j−1))θk+j−1,j .

From Eqs. (2) and (3) , we obtain:

∥en∥ ≤ Cn

n∑
k=1

θn,k(h
2 + τ1−α).

6



Theorem 3 Let un and u∗n be the solution vectors of (6) and (11), respectively. If we consider the first
L ≪ N sequence of solutions {uni }Ln=1, i = 1, 2, . . . ,M − 1, from the N sequence solutions {uni }Nn=1, i =
1, 2, . . . ,M − 1, as snapshots, then

∥u∗n − un∥2 ≤ σm+1, n = 1, 2, . . . , L,

and

∥u∗n − un∥2 ≤ CLσm+1, n = L+ 1, . . . , N.

Proof. Let e∗n = u∗n − un. From (9), we get:

∥e∗n∥2 = ∥u∗n − un∥2 ≤ σm+1, n = 1, 2, . . . , L, (17)

once n = L+ 1, . . . , N , replacing un in (6) by u∗n, we obtain:

Knu
∗n =

n−1∑
k=1

n−1∑
k=1

(an−k−1 − an−k)u
∗n + an−1u

∗0 + µFn +Gn, (18)

By subtracting (18) from (6) and utilizing the inner product with e∗n, we can obtain:

(Kne
∗n, e∗n) =

n−1∑
k=1

(an−k−1 − an−k)(Kne
∗k, e∗n), n = L+ 1, . . . , N.

From (12), the above equation can be rewritten as:

∥e∗n∥2 ≤ 1

λmin(Kn)

n−1∑
k=1

(an−k−1 − an−k)∥e∗k∥2.

From Lemmma 1, it follows that

an−k−1 − an−k ≤ an−k−1 < a0 ≤ 1.

Now, From the above inequality and mathematical induction, we obtain:

∥e∗n∥2 ≤ Cn

n−1∑
k=1

∥e∗k∥2 =≤ Cn

L∑
k=1

∥e∗k∥2 +
n−1∑

k=L+1

∥e∗k∥

≤ Cn(Lσm+1 +

n−1∑
k=L+1

∥e∗k∥2) ≤ Cn(CLσm+1).

Therefore, the theorem is proved.

Theorem 4 Under the conditions of Theorem 3, let u∗n be the solution vector of the RIFD scheme (11)
and unbe the solution vector of the IFD scheme(6), then we have:

∥un∗ − un∥ ≤ σm+1 + Cn(h
2 + τ1−α), n = 1, 2, . . . , L,

and

∥un∗ − un∥ ≤ Cn(CLσm+1) + Cn(h
2 + τ1−α), n = L+ 1, 2, . . . , N,

where m is the number of POD bases.

5 Numerical experiments

In this section, we present two experiments to verify the feasibility and efficiency of the RIFD scheme
based on the POD method.
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Experiment 1:

Consider the time fractional stochastic advection-diffusion type equation as follows:

C
0Dα

t u(x, t) =

(
1

π2
+
dB(t)

dt

)
∂2u(x, t)

∂x2
+
∂u(x, t)

∂x
+ f(x, t), (x, t) ∈ [0, 1]× [0, 1], (19)

with the initial condition:

u(x, 0) = 0,

and the boundary conditions:

u(0, t) = 0,

u(1, t) = 0,

where f(x, t) = 2τ2−α sin(πx)
Γ(3−α) +

(
1
π2 + dB

dt

)
π2t2 sin(πx) − πt2 cos(πx). The exact solution is u(x, t) =

t2 sin(πx).

Table 1: Comparison of exact and approximate solutions with h = τ = 1
200

of Experiment 1.

x Exact Approximate
α = 0.2 α = 0.4 α = 0.6 α = 0.8

0.1 0.30901699 0.30904178 0.30904202 0.30904760 0.30903757
0.2 0.58778525 0.58783269 0.58783312 0.58784369 0.58782973
0.3 0.80901699 0.80908265 0.80908321 0.80909770 0.80908988
0.4 0.95105652 0.95113401 0.95113470 0.95115169 0.95116014
0.5 1.00000000 1.00008110 1.00008256 1.00010037 1.00013076
0.6 0.95105694 0.95113489 0.95113536 0.95115226 0.95120253
0.7 0.80901694 0.80908400 0.80908435 0.80909869 0.80915854
0.8 0.58778525 0.58783420 0.58783441 0.58784480 0.58789851
0.9 0.30901699 0.30904287 0.30904297 0.30904842 0.30908019

Eq. (19) is solved with the help of IFD scheme (6) with the M,N = 100 wherein exact and approximate
solutions for different values of α = 0.2, 0.4, 0.6 and 0.8 are tested. Table 1 confirms that the approxi-
mate solutions are colse to exact solutions. Figure 1 verify the above mentioned solutions for values of
α = 0.2, 0.4, 0.6 and 0.8.

Table 2: The maximum absolute errors and CPU time in scheme (6) of Experiment 1.

N M α = 0.25 α = 0.5 α = 0.75
25 50 3.45× 10−4 4.05× 10−4 7.29× 10−4

0.28s 0.24s 0.23s

50 100 7.94× 10−5 6.04× 10−5 7.10× 10−5

6.08s 6.38s 6.48s

100 200 2.03× 10−5 1.06× 10−4 7.10× 10−5

39.01s 36.30s 41.66s
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Table 3: The maximum absolute errors and CPU time in scheme (11) of Experiment 1.

(N, L,m) M α = 0.25 α = 0.5 α = 0.75
(25, 5, 4) 50 3.45× 10−4 4.05× 10−4 7.29× 10−4

0.09s 0.14s 0.1s

(50, 5, 4) 100 7.94× 10−5 6.04× 10−5 7.10× 10−5

1.10s 1.12s 1.06s

(100, 5, 4) 200 2.03× 10−5 1.06× 10−4 7.10× 10−5

2.71s 3.02s 2.93s

What extracts from Tables 2 and 3 is that in RIFD scheme the computational time is less than IFD
scheme while the accuracy is preserved. The above tables confirm preference of the RIFD than IFD.
Figure 2 shows this fact for m = 4 and L = 7.

Figure 1:
Plots of the exact solution and numerical solution at T = 1 with h = τ = 1

200
of Experiment 1.

Experiment 2:

Consider the time fractional stochastic advection-diffusion type equation as follows:

C
0Dα

t u(x, t) =

(
1 +

dB(t)

dt

)
∂2u(x, t)

∂x2
+
∂u(x, t)

∂x
+ f(x, t), (x, t) ∈ [0, 1]× [0, 1], (20)

with the initial condition :

u(x, 0) = x3 sin2(x), x ∈ [0, 1],

9



Figure 2:
The error curves RIFD (right) and IFD (left) schemes at T = 1 with h = τ = 1

200
of Experiment1.

and the boundary conditions:

u(0, t) = 0,

u(1, t) = (t+ 1)3 sin2(1), t ∈ [0, 1].

The exact solution is u(x, t) = (t+ x)3 sin2(x).

Table 4: Comparison of exact and approximate solutions with h = τ = 1
200

of Experiment 2.

x Exact Approximate
α = 0.2 α = 0.4 α = 0.6 α = 0.8

0.1 0.01326569 0.01326496 0.01327203 0.01327957 0.01254461
0.2 0.06819635 0.06819635 0.06821064 0.08822284 0.06688063
0.3 0.19186883 0.19185156 0.19187281 0.19188511 0.19039249
0.4 0.41611839 0.41608838 0.41611604 0.41612591 0.41512638
0.5 0.77573986 0.77569711 0.77572984 0.77574066 0.77543421
0.6 1.30589132 1.30583877 1.30587406 1.30589462 1.30592716
0.7 2.03897571 2.03891953 2.03895351 2.03899038 2.03930321
0.8 3.00114581 3.00109540 3.00112301 3.00117005 3.00218402
0.9 4.20868958 4.20865723 4.20867307 4.20870845 4.20996679

In Table 4, exact and approximate solutions for different values of α = 0.2, 0.4, 0.6 and 0.8 forM,N = 100
are tested. Table 4 confirms that the approximate solutions are colse to exact solutions that this fact is
shown in Figure 3.

Table 5: The maximum absolute errors and CPU time in scheme (6) of Experiment 2.

N M α = 0.25 α = 0.5 α = 0.75
50 50 2.38× 10−4 3.58× 10−4 8.29× 10−4

4.82s 5.00s 5.14s

100 100 1.70× 10−5 3.79× 10−5 3.69× 10−5

29.95s 27.18s 28.45s
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Table 6: The maximum absolute errors and CPU time in scheme (11) of Experiment 2.

(N, L,m) M α = 0.25 α = 0.5 α = 0.75
(50, 10, 6) 50 2.38× 10−4 3.58× 10−4 8.29× 10−4

2.15s 2.10s 1.81s

(100, 11, 7) 100 1.70× 10−5 3.79× 10−5 3.69× 10−5

5.53s 5.64s 5.42s

From Tables 5 and 6, we conclude that RIFD scheme is better than in sence that time taken is less
compared with IFD scheme.

Figure 3:
Plots of the exact solution and approximate solution at T = 1 with h = τ = 1

200
of Experiment 2.

Figure 4 shows the error curves for the IFD scheme with h = t = 1
200 and with L = 11,m = 7 for

RIFD scheme which are observing alike.

6 Conclusions

In this paper, we have benefitted from the POD technique to derive reduced IFD scheme for FSA-DE in
order to make the proposed scheme better and useful than previous studies. The main features of the
paper is to introduce a new scheme for FSA-DE in order to preserve accuracy and alleviate cpu time. We
have tested the correctness of our scheme with two numerical experiments. Tables and figures confirm
the efficiency of the presented scheme.
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Figure 4:
The error curves RIFD (right) and IFD (left) schemes at T = 1 with h = τ = 1

200
of Experiment 2.
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