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Abstract

In this paper, we analyze multi-dimensional Besicovitch almost periodic type functions. We clarify the main structural properties

for the introduced classes of Besicovitch almost periodic type functions, explore the notion of Besicovitch-Doss almost periodicity

in the multi-dimensional setting, and provide some applications of our results to the abstract Volterra integro-differential

equations and the partial differential equations.
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MULTI-DIMENSIONAL BESICOVITCH ALMOST PERIODIC

TYPE FUNCTIONS AND APPLICATIONS

M. KOSTIĆ

Abstract. In this paper, we analyze multi-dimensional Besicovitch almost

periodic type functions. We clarify the main structural properties for the

introduced classes of Besicovitch almost periodic type functions, explore the
notion of Besicovitch-Doss almost periodicity in the multi-dimensional setting,

and provide some applications of our results to the abstract Volterra integro-

differential equations and the partial differential equations.

1. Introduction and preliminaries

As is well known, the notion of almost periodicity was introduced by the Danish
mathematician H. Bohr around 1924-1926 and later generalized by many other
authors (see the research monographs [8], [20], [30], [33], [40], [41], [50], [55] and [61]
for further information concerning almost periodic functions and their applications).
Suppose that (X, ‖ · ‖) is a complex Banach space and F : Rn → X is a continuous
function (n ∈ N). Then it is said that the function F (·) is almost periodic if and
only if for each ε > 0 there exists l > 0 such that for each t0 ∈ Rn there exists
τ ∈ B(t0, l) ≡ {t ∈ Rn : |t− t0| ≤ l} with∥∥F (t + τ)− F (t)

∥∥ ≤ ε, t ∈ Rn;

here, | · − · | denotes the Euclidean distance in Rn and τ is usually called an ε-
almost period of F (·). Any trigonometric polynomial in Rn is almost periodic, and
we know that a continuous function F (·) is almost periodic if and only if there
exists a sequence of trigonometric polynomials in Rn which converges uniformly to
F (·).

If the function F : Rn → X is locally p-integrable, where 1 ≤ p <∞, then we say
that F (·) is Stepanov-p-almost periodic if and only if for every ε > 0 there exists
l > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, l) ∩ Rn with∥∥F (t + τ + u)− F (t + u)

∥∥
Lp([0,1]n:X)

≤ ε, t ∈ Rn.

Further on, we say that a locally p-integrable function F : Rn → X is:

(i) equi-Weyl-p-almost periodic if and only if, for every ε > 0, there exist two
finite real numbers l > 0 and L > 0 such that for each t0 ∈ Rn there exists
τ ∈ B(t0, L) ∩ Rn with

sup
t∈Rn

[
l−

n
p

∥∥F (τ + ·)− F (·)
∥∥
Lp(t+l[0,1]n:X)

]
< ε.
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2 M. KOSTIĆ

(ii) Weyl-p-almost periodic if and only if, for every ε > 0, there exists a finite
real number L > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, L)∩Rn
with

lim sup
l→+∞

sup
t∈Rn

[
l−

n
p

∥∥F (τ + ·)− F (·)
∥∥
Lp(t+l[0,1]n:X)

]
< ε.

It is well known that any Bohr almost periodic function is Stepanov-p-almost
periodic, as well as that any Stepanov-p-almost periodic function is equi-Weyl-p-
almost periodic. The most general class is the class of Weyl-p-almost periodic
functions which contains all others. Furthermore, we know that any equi-Weyl-
p-almost periodic function is Besicovitch-p-almost periodic, and that there exists
a Weyl-p-almost periodic function f : R → R which is not Besicovitch-p-almost
periodic ([41]).

The notion of Besicovitch-p-almost periodicity for a function F : Rn → X can
be introduced in many equivalent ways; traditionally, if F ∈ Lploc(Rn : X), then we
first define

‖F‖Mp := lim sup
t→+∞

[
1

(2t)n

∫
[−t,t]n

‖F (s)‖p ds

]1/p

.

It can be simply proved that ‖ · ‖Mp is a seminorm on the space Mp(Rn : X)
consisting of those Lploc(Rn : X)-functions F (·) for which ‖F‖Mp < ∞. Denote
Kp(Rn : X) := {f ∈Mp(Rn : X) ; ‖F‖Mp = 0} and

Mp(Rn : X) :=Mp(Rn : X)/Kp(Rn : X).

The seminorm ‖ · ‖Mp on Mp(Rn : X) induces the norm ‖ · ‖Mp on Mp(Rn : X)
under which Mp(Rn : X) is complete; hence, (Mp(Rn : X), ‖ · ‖Mp) is a Banach
space. It is said that a function F ∈ Lploc(Rn : X) is Besicovitch-p-almost periodic
if and only if there exists a sequence of trigonometric polynomials (almost periodic
functions, equivalently) converging to F (·) in (Mp(Rn : X), ‖ · ‖Mp). The vector
space consisting of all Besicovitch-p-almost periodic functions is denoted by Bp(Rn :
X). Clearly, Bp(Rn : X) is a closed subspace of Mp(Rn : X) and therefore a Banach
space itself. Concerning the Banach space Mp(Rn : X), we would like to recall that
this space is not separable for any finite exponent p ≥ 1; see, e.g., [58, Theorem 18]
which concerns the one-dimensional case.

For further information about Besicovitch almost periodic functions, Besicovitch
almost automorphic functions and their applications, we refer the reader to [1, 2,
4, 5, 6, 7, 9, 11, 12], [13, 14, 15, 16, 29, 31, 32, 35], [36, 49, 51, 53, 54, 56, 57, 58, 60]
and references cited therein; we would like to specially emphasize here the impor-
tant research monograph [55] by A. A. Pankov. The spatially Besicovitch almost
periodic solutions for certain classes of nonlinear second-order elliptic equations,
single higher-order hyperbolic equations and nonlinear Schrödinger equations have
been investigated in the fifth chapter of this monograph. For the basic source of
information about homogenization in algebras with mean value and generalized
Besicovitch spaces (the work of J. L. Woukeng and his coauthors), we refer the
reader to [41, Part II, Chapter 9, pp. 619–621].

On the other hand, in [17], A. Chávez et al. have analyzed various classes of
almost periodic type functions of the form F : Λ × X → Y, where (Y, ‖ · ‖Y ) is
a complex Banach space and ∅ 6= Λ ⊆ Rn. This research has been continued in
[18] and [28], where we have analyzed the Stepanov classes and the Weyl classes of
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multi-dimensional almost periodic functions F : Λ×X → Y. Here it worth noticing
that the concept Besicovitch-p-almost periodicity has not been well explored for
the functions of the form F : Λ → X, where ∅ 6= Λ ⊆ Rn and Λ 6= Rn (some
particular results in the one-dimensional setting are given in the monograph [40],
with Λ = [0,∞)). This fact has strongly influenced us to write this paper, in which
we continue the research studies [17, 18, 28, 39, 46] by investigating the multi-
dimensional Besicovitch almost periodic type functions F : Λ × X → Y, where
(Y, ‖ · ‖Y ) is a complex Banach space and ∅ 6= Λ ⊆ Rn. It is worth noting that
this is probably the first research article which examines the existence and unique-
ness of Besicovitch-p-almost periodic solutions for certain classes of PDEs on some
proper subdomains of Rn; even the most simplest examples of quasi-linear partial
differential equations of first order considered here vividly exhibit the necessity of
further analyses of Besicovitch-p-almost periodic functions which are not defined
on the whole Euclidean space Rn.

The organization and main ideas of this paper can be briefly described as follows.
In Subsection 1.1, we recall the basic definitions and results from the theory of
Lebesgue spaces with variable exponents Lp(x). The main aim of Section 2 is
to introduce and analyze various classes of multi-dimensional Besicovitch almost
periodic type functions. We start this section by introducing the class e−(B, φ,F)−
Bp(·)(Λ × X : Y ), where Λ is a general non-empty subset of Rn, p ∈ P(Λ), φ :
[0,∞) → [0,∞) is Lebesgue measurable and F : (0,∞) → (0,∞); see Definition
2.1, which is crucial for our further work. The class PAP0,p(Λ,B,F, φ) of weighted
ergodic components, introduced recently in [41, Definition 6.4.13], makes a proper
subclass of the class e−(B, φ,F)−Bp(·)(Λ×X : Y ) since its definition is obtained by
plugging the trivial sequence (Pk ≡ 0) of trigonometric polynomials in Definition 2.1
(we omit the term “B” from the notation for the functions of the form F : Λ→ Y ).
Before proceeding any further, we would like to note that there is a large class
of PDEs of first order (second order) whose solutions are not Besicovitch almost
periodic in Rn and which belong to the class PAP0,p(Λ,B,F, φ), where ∅ 6= Λ ( Rn.
For instance, we have the following:

Example 1.1. (i) Let a and c be two non-zero real numbers; then the classical
C1-solution of the equation aux+ cu = 0 is given by u(x, y) = g(y)e−(c/a)x,
(x, y) ∈ R2. Keeping in mind the notion introduced after Definition 2.3, it
can be simply shown that any non-trivial solution of this equation cannot
be Besicovitch almost periodic in R2 as well as that the solution always
belongs to the class PAP0,1([0,∞) × R,F, x) provided that the function
g(·) is Besicovitch bounded and limt→+∞ F(t) = 0 (see also Example 2.2
and Example 2.6 below).

(ii) The solutions of second-order PDEs on rectangular domains, obtained by
the well known method of separation of variables, can belong to the space
PAP0,p(Λ,B,F, φ). Consider, for the illustration purposes, the heat equa-
tion ut(x, t) = uxx(x, t) on the domain Λ = [0, 2π]× [0,∞), equipped with
the initial conditions u(x, 0) = f(x) ∈ L1[0, 2π] and u(0, t) = u(2π, t) = 0.
A unique solution of this problem is given by

u(x, t) =

∞∑
k=1

bk sin(kx/2)e−
k2

4 t, (x, t) ∈ Λ,
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where f(x) =
∑
k=1 bk sin(kx/2), x ∈ [0, 2π]. Since there exists a finite real

constant M > 0 such that |bk| ≤ M for all k ∈ N, a simple computation
shows that u(x, t) ∈ PAP0,1(Λ, t−ζ , x) for any real number ζ > 0.

We provide some structural characterizations of class e−(B, φ,F)−Bp(·)(Λ×X :
Y ) in Proposition 2.4 and Theorem 2.5 and Proposition 2.7 (a special attention is
paid to the case in which φ(x) ≡ xα for some α > 0). A composition principle for
multi-dimensional Besicovitch almost periodic functions is clarified in Theorem 2.10.
In Subsection 2.1, we investigate the notion of multi-dimensional Besicovitch nor-
mality. The class of Besicovitch−(R,B, φ,F)−Bp(·)-normal functions is introduced
in Definition 2.11 and characterized after that in Proposition 2.12, Proposition 2.13
and Proposition 2.14.

In Section 3, we consider the multi-dimensional analogues of the important re-
search results established by R. Doss in [24]-[25]. We pay special attention to the
analysis of conditions (A), (A)∞, and (AS); see Theorem 3.1, Proposition 3.3 and
Proposition 3.5 for some results obtained in this direction. Subsection 3.1 is fo-
cused on the analysis of condition (B); the main results obtained in this part are
Proposition 3.6 and Proposition 3.7. We feel it is our duty to emphasize that the
above-mentioned results of R. Doss are primarily intended for the analysis of one-
dimensional Besicovitch almost periodic type functions as well as that we have faced
ourselves with many serious problems concerning the multi-dimensional extensions
of these results.

Some applications to the abstract Volterra integro-differential equations are fur-
nished in Section 4; it is worth noting that we establish here some new results about
the convolution invariance of Besicovitch-p-almost periodicity under the actions of
infinite convolution products, and a new result concerning the usually considered
convolution invariance of Besicovitch-p-almost periodicity. We provide some new
applications in the one-dimensional setting, a new application in the analysis of the
existence and uniqueness of Besicovitch-p-almost periodic solutions of the abstract
semilinear fractional Cauchy inclusions and the abstract nonautonomous differential
equations of first order, some new applications to the inhomogeneous heat equa-
tion in Rn and evolution systems generated by the bounded perturbations of the
Dirichlet Laplacian.

The final section of paper is reserved for conclusions and final comments about
the considered notion. We explain here that the notion of Besicovitch-(p, c)-almost
periodicity, where c ∈ C \ {0}, cannot be so simply introduced and analyzed. Con-
cerning some open problems proposed, we would like to notice that we introduce the
notion of admissibility with respect to the class CΛ of Besicovitch almost periodic
type functions in Definition 2.16, and propose after that an open problem con-
cerning the extensions of Besicovitch almost periodic type functions to the whole
Euclidean space Rn; a similar question has recently been posed for the class of
(equi-)Weyl almost periodic type functions in [41]. In addition to the above, we
provide numerous illustrative examples and remarks about the multi-dimensional
Besicovitch almost periodic type functions under our consideration.

We use the standard notation throughout the paper. We assume that (X, ‖ · ‖),
(Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) are complex Banach spaces, n ∈ N, ∅ 6= Λ ⊆ Rn, B is a
non-empty collection of non-empty subsets of X, and R is a non-empty collection
of sequences in Rn. We assume that for each x ∈ X there exists B ∈ B such that
x ∈ B; (e1, e2, ..., en) denotes the standard basis of Rn. By L(X,Y ) we denote the
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Banach algebra of all bounded linear operators from X into Y ; L(X,X) ≡ L(X).
If A : D(A) ⊆ X 7→ X is a closed linear operator, then its range will be denoted
by R(A); I stands for the identity operator on Y. Set Nn := {1, ..., n} and ∆n :=
{(t, t, ..., t) ∈ Rn : t ∈ R}. By Cb(Rn : X) we denote the Banach space of all
bounded continuous functions F : Rn → X equipped with the sup-norm. By a
convex polyhedral in Rn, we mean any set Λ of the form

Λ =
{
α1v1 + · · ·+ αnvn : αi ≥ 0 for all i ∈ Nn

}
,

where (v1, v2, ..., vn) is a basis of Rn.
For the sequel, we need the following result which can be deduced in almost the

same way as in the proof of [24, Proposition 2]:

Lemma 1.2. Suppose that the function F : Rn → X is Bohr almost periodic. If
for every a1 6= 0, ..., an 6= 0 we have (a = (a1, ..., an)):

lim
k→+∞

1

k

k−1∑
j=0

F (t + (k − 1)a) = 0,

uniformly in t ∈ Rn, then F ≡ 0.

Although it could be of some importance, we will not discuss here the question
whether the statement of Lemma 1.2 can be extended to the almost automorphic
functions (the uniformly recurrent functions).

We also need the following notion. Suppose that ∅ 6= Λ′ ⊆ Rn, ∅ 6= Λ ⊆ Rn,
F : Λ×X → Y is a continuous function and Λ + Λ′ ⊆ Λ. Then we say that F (·; ·)
is Bohr (B,Λ′)-almost periodic (Bohr B-almost periodic, if Λ′ = Λ) if and only if
for every ε > 0 and B ∈ B there exists l > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, l) ∩ Λ′ with∥∥F (t + τ ;x)− F (t;x)

∥∥
Y
≤ ε, t ∈ Λ, x ∈ B.

Furthermore, we say that the function F (·; ·) is (B,Λ′)-uniformly recurrent (B-
uniformly recurrent, if Λ′ = Λ) if and only if, for every B ∈ B, there exists a
sequence (τn) in Λ′ such that limk→+∞ |τk| = +∞ and

lim
k→+∞

sup
t∈Λ,x∈B

∥∥F (t + τk;x)− F (t;x)
∥∥
Y

= 0.

If we consider the functions of the form F : Λ → Y, then we omit the term “B”
from the notation.

For further information concerning multi-dimensional almost periodic type func-
tions, multi-dimensional almost automorphic type functions and their applications,
we refer the reader to our newly published research monograph [41]. We have been
forced to quote this monograph multiple times henceforth since some recent re-
sults of ours concerning multi-dimensional almost periodic type functions and their
generalizations are still not accepted or published in the final form.

1.1. Lebesgue spaces with variable exponents Lp(x). Let ∅ 6= Ω ⊆ Rn be a
nonempty Lebesgue measurable subset and let M(Ω : X) denote the collection of
all measurable functions f : Ω → X; M(Ω) := M(Ω : R). Further on, by P(Ω) we
denote the vector space of all Lebesgue measurable functions p : Ω → [1,∞]. For
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any p ∈ P(Ω) and f ∈M(Ω : X), we set

ϕp(x)(t) :=


tp(x), t ≥ 0, 1 ≤ p(x) <∞,

0, 0 ≤ t ≤ 1, p(x) =∞,

∞, t > 1, p(x) =∞
and

ρ(f) :=

∫
Ω

ϕp(x)(‖f(x)‖) dx.

We define the Lebesgue space Lp(x)(Ω : X) with variable exponent by

Lp(x)(Ω : X) :=
{
f ∈M(Ω : X) : lim

λ→0+
ρ(λf) = 0

}
.

It is well known that

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) : there exists λ > 0 such that ρ(λf) <∞

}
;

see, e.g., [21, p. 73]. For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg
norm of u(·) by

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf
{
λ > 0 : ρ(u/λ) ≤ 1

}
.

Equipped with this norm, Lp(x)(Ω : X) becomes a Banach space (see e.g. [21,
Theorem 3.2.7] for the scalar-valued case), coinciding with the usual Lebesgue space
Lp(Ω : X) in the case that p(x) = p ≥ 1 is a constant function. Further on, for any
p ∈M(Ω), we define

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).

Set
D+(Ω) :=

{
p ∈M(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ <∞ for a.e. x ∈ Ω

}
.

If p ∈ D+(Ω), then we know

Lp(x)(Ω : X) =
{
f ∈M(Ω : X) ; for all λ > 0 we have ρ(λf) <∞

}
.

We will use the following lemma (cf. [21] for the scalar-valued case):

Lemma 1.3. (i) (The Hölder inequality) Let p, q, r ∈ P(Ω) such that

1

q(x)
=

1

p(x)
+

1

r(x)
, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω :
X) and

‖uv‖q(x) ≤ 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q ≤ p a.e.
on Ω. Then Lp(x)(Ω : X) is continuously embedded in Lq(x)(Ω : X), and
the constant of embedding is less than or equal to 2(1 +m(Ω)).

(iii) Let f ∈ Lp(x)(Ω : X), g ∈ M(Ω : X) and 0 ≤ ‖g‖ ≤ ‖f‖ a.e. on Ω. Then
g ∈ Lp(x)(Ω : X) and ‖g‖p(x) ≤ ‖f‖p(x).

For further information concerning the Lebesgue spaces with variable exponents
Lp(x), we refer the reader to the monograph [21] by L. Diening et al., and the list
of references quoted therein.
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2. Multi-dimensional Besicovitch almost periodic type functions

Suppose that Λ is a general non-empty subset of Rn as well as that p ∈ P(Λ),
the function φ : [0,∞) → [0,∞) is Lebesgue measurable and F : (0,∞) → (0,∞).
Set

Λ′′ :=
{
τ ∈ Rn : τ + Λ ⊆ Λ

}
.

Unless stated otherwise, we assume henceforth that ∅ 6= Ω ⊆ Rn is a compact set
with positive Lebesgue measure, as well as that Λ + lΩ ⊆ Λ for all l > 0, and
∅ 6= Λ′ ⊆ Λ′′, i.e., Λ + Λ′ ⊆ Λ. In this section, we investigate the multi-dimensional
Besicovitch almost periodic type functions, paying a special attention to the class
e − (B, φ,F) − Bp(·)(Λ ×X : Y ) and the class of Besicovitch−(R,B, φ,F) − Bp(·)-
normal functions.

Recall, a trigonometric polynomial P : Λ × X → Y is any linear combination
of functions like (t;x) 7→ ei〈λ,t〉c(x), where c : X → Y is a continuous function;
a continuous function F : Λ × X → Y is said to be strongly B-almost periodic if
and only if for every B ∈ B we can find a sequence (PBk (·; ·))k∈N of trigonometric
polynomials which converges to F (·; ·), uniformly on Λ×B. We omit the term “B”
from the notation if X = {0}.

We are ready to introduce the following notion:

Definition 2.1. Suppose that F : Λ×X → Y, φ : [0,∞)→ [0,∞) and F : (0,∞)→
(0,∞). Then we say that the function F (·; ·) belongs to the class e − (B, φ,F) −
Bp(·)(Λ×X : Y ) if and only if for each set B ∈ B there exists a sequence (Pk(·; ·))
of trigonometric polynomials such that

lim
k→+∞

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(∥∥F (t;x)− Pk(t;x)

∥∥
Y

)]
Lp(t)(Λt)

= 0.(2.1)

If φ(x) ≡ x, then we omit the term “φ” from the notation; if X = {0}, then we
omit the term “B” from the notation.

Immediately from definition, it follows that, for every F ∈ e− (B,F)−Bp(·)(Λ×
X : Y ) and λ ∈ Rn, we have ei〈λ,·〉F ∈ e−(B,F)−Bp(·)(Λ×X : Y ). The Weyl class
e−B−W p

Ω(Λ×X : Y ), introduced in [41, Definition 6.3.18] with p(·) ≡ p ∈ [1,∞)

and F(t) ≡ t−n/p, makes a subclass of the class e − (B,F) − Bp(·)(Λ × X : Y ),
provided some reasonable choices of compact set Ω; for example, we have that
e − B − W p

Ω(Λ × X : Y ) ⊆ e − (B,F) − Bp(·)(Λ × X : Y ) if Ω = [0, 1]n, and
Λ = [0,∞)n or Λ = Rn.

Moreover, we have the following:

(i) Equipped with the usual operations, the set e − (B, φ,F) − Bp(·)(Λ × X :
Y ) forms a vector space provided that the function φ(·) is monotonically
increasing and there exists a finite real constant c > 0 such that φ(x+ y) ≤
c[φ(x) + φ(y)] for all x, y ≥ 0.

(ii) For every τ ∈ Λ′′, x0 ∈ X and F ∈ e− (B,F)−Bp(·)(Λ×X : Y ), we have
F (·+τ ; ·+x0) ∈ e−(Bx0

,F)−Bp(·)(Λ×X : Y ) with Bx0
≡ {−x0 +B : B ∈

B}, provided that p(·) ≡ p ∈ [1,∞) and there exist two finite real constants
cτ > 0 and tτ > 0 such that F(t) ≤ cτF(t+ |τ |), t ≥ tτ .

(iii) Suppose that the function φ(·) is monotonically increasing, continuous at
the point zero, there exists a finite real constant c > 0 such that φ(x+y) ≤
c[φ(x) + φ(y)] for all x, y ≥ 0, and the mapping t 7→ F(t)[1]Lp(·)(Λt), t > 0

is bounded at plus infinity. Then F ∈ e− (B, φ,F)−Bp(·)(Λ×X : Y ) if and
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only if for each set B ∈ B there exists a sequence (Fk(·; ·)) of strongly B-
almost periodic functions such that (2.1) holds with the polynomial Pk(·; ·)
replaced therein with the function Fk(·; ·).

(iv) Let the assumptions of (iii) hold and let there exist a function ϕ : [0,∞)→
[0,∞) such that φ(xy) ≤ ϕ(x)φ(y) for all x, y ≥ 0. Suppose that h : Y → Z
is a Lipschitz continuous function and F ∈ e− (φ,F)−Bp(·)(Λ : Y ). Using
[41, Proposition 6.1.11] and the fact that any uniformly continuous Bohr
almost periodic function F : Λ→ Y, where Λ is a convex polyhedral in Rn, is
strongly almost periodic, we can prove that h◦F ∈ e−(φ,F)−Bp(·)(Λ : Z).

Concerning the notion introduced in Definition 2.1, it is clear that the use of
constant coefficients p(·) ≡ p ∈ [1,∞) is unquestionably the best. On the other
hand, in the introductory part of [41], we have emphasized that, from the theoretical
point of view, the use of constant coefficients is not adequately enough because
many structural results from the theory of generalized almost periodic functions
can be further extended using some results from the theory of Lebesgue spaces
with variable exponents Lp(x). Further on, it is clear that Definition 2.1 covers some
cases that can be freely called patological; for example, case in which p /∈ D+(Λ)
can be considered:

Example 2.2. Suppose that Λ = [0,∞), and F : Λ → R is given by F (t) := 1, if
there exists j ∈ N \ {1} such that t ∈ [j2 − 1, j2], and F (t) := 0, otherwise. Let
p(x) ≡ 1 + x2, φ(x) ≡ x and

lim sup
t→+∞

F(t) · inf

{
λ > 0 :

∑
2≤j≤

√
t

λ−j
4+2j2−2 ≤ 1

}
= 0.

Then a simple computation with the Luxemburg norm shows that (2.1) is satisfied
with the trivial sequence (Pk ≡ 0) of trigonometric polynomials, so that F ∈
PAP0,p(Λ,F, φ) ⊆ e− (φ,F)−Bp(·)(Λ : C).

Let ρ be a binary relation on Y. For the sequel, we need the following notion:

Definition 2.3. (see [46, Definition 1])

(i) Suppose that the function F : Λ × X → Y satisfies that φ(‖F (·;x)‖Y ) ∈
Lp(·)(Λt) for all t > 0 and x ∈ X. Then we say that the function F (·; ·) is
Besicovitch-(p, φ,F,B)-bounded if and only if, for every B ∈ B, there exists
a finite real number MB > 0 such that

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F (·;x)‖Y

)]
Lp(·)(Λt)

≤MB .

(ii) Suppose that the function F : Λ × X → Y satisfies that φ(‖F (· + τ ;x) −
y·;x‖Y ) ∈ Lp(·)(Λt) for all t > 0, x ∈ X, τ ∈ Λ′ and y·;x ∈ ρ(F (·;x)).
(a) We say that the function F : Λ×X → Y is Besicovitch-(p, φ,F,B,Λ′, ρ)-

continuous if and only if, for every B ∈ B as well as for every t > 0,
x ∈ B and · ∈ Λt, we have the existence of an element y·;x ∈ ρ(F (·;x))
such that

lim
τ→0,τ∈Λ′

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F (·+ τ ;x)− y·;x‖Y

)]
Lp(·)(Λt)

= 0.

(b) We say that the function F (·; ·) is Doss-(p, φ,F,B,Λ′, ρ)-almost peri-
odic if and only if, for every B ∈ B and ε > 0, there exists l > 0 such
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that for each t0 ∈ Λ′ there exists a point τ ∈ B(t0, l) ∩ Λ′ such that,
for every t > 0, x ∈ B and · ∈ Λt, we have the existence of an element
y·;x ∈ ρ(F (·;x)) such that

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F (·+ τ ;x)− y·;x‖Y

)]
Lp(·)(Λt)

< ε.

(c) We say that the function F (·; ·) is Doss-(p, φ,F,B,Λ′, ρ)-uniformly re-
current if and only if, for every B ∈ B, there exists a sequence (τk) ∈ Λ′

such that, for every t > 0, x ∈ B and · ∈ Λt, we have the existence of
an element y·;x ∈ ρ(F (·;x)) such that

lim
k→+∞

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(
‖F (·+ τk;x)− y·;x‖Y

)]
Lp(·)(Λt)

= 0.

As before, we omit the term “B” if X = {0}, the term “Λ′” if Λ′ = Λ, and the
term “ρ” if ρ = I. The usual notion of Besicovitch-p-almost periodicity (Doss-p-
almost periodicity) for the function F : Λ→ Y, where 1 ≤ p < +∞, is obtained by
plugging φ(x) ≡ x and F(t) ≡ t−n/p (φ(x) ≡ x, F(t) ≡ t−n/p and Λ′ = Λ, ρ = I).
Further on, we say that a function F : Λ → Y is Besicovitch almost periodic
(Doss almost periodic) if and only if F (·) is Besicovitch-1-almost periodic (Doss-1-
almost periodic). Let us recall that, in the usual setting, a Doss almost periodic
function f : R → C is not generally Besicovitch almost periodic; for example, A.
N. Dabboucy and H. W. Davies have constructed an example of such a function
which has the mean value equal to zero (cf. [19, pp. 352-354] for more details).

Now we will state and prove the following result:

Proposition 2.4. Suppose that B consists of bounded subsets of X, F : Λ×X → Y
and, for every fixed element x ∈ X, the function F (·;x) is Lebesgue measurable.

(i) Suppose that the function φ(·) is monotonically increasing. If there exists
a finite real constant t0 > 0 such that F(t) ≤ [‖1‖Lp(·)(Λt)]

−1, t ≥ t0, then

any function F ∈ e− (B, φ,F)−Bp(·)(Λ×X : Y ) is Besicovitch-(p, φ,F,B)-
bounded.

(ii) Suppose that φ(·) is monotonically increasing and continuous at the point
t = 0. Let p(·) ≡ p ∈ [1,∞), and let there exist finite real constants c > 0
and t0 > 0 such that, for every t ≥ t0, we have F(t + 1) ≥ cF(t) and
F(t) ≤ [m(Λt)]

−(1/p). Then any function F ∈ e− (B, φ,F)−Bp(Λ×X : Y )
is Besicovitch-(p, φ,F,B,Λ′, I)-continuous for any set Λ′ ⊆ Λ′′.

(iii) Suppose that p(·) ≡ p ∈ [1,∞), φ(·) has the same properties as in (ii), as
well as that for every real number a > 0 there exist finite real constants
ca > 0 and ta > 0 such that, for every t ≥ ta, we have F(t + a) ≥ caF(t)
and F(t) ≤ [m(Λt)]

−(1/p). Let F ∈ e− (B, φ,F)−Bp(Λ×X : Y ). Then the
following holds:
(a) The function F (·; ·) is Doss-(p, φ,F,B,Λ, I)-almost periodic, provided

that Λ + Λ ⊆ Λ and, for every points (t1, ..., tn) ∈ Λ and (τ1, ..., τn) ∈
Λ, the points (t1, t2 + τ2, ..., tn + τn), (t1, t2, t3 + τ3, ..., tn + τn), ...,
(t1, t2, ..., tn−1, tn + τn), also belong to Λ.

(b) The function F (·; ·) is Doss-(p, φ,F,B,Λ∩∆n, I)-almost periodic, pro-
vided that Λ ∩ ∆n 6= ∅, Λ + (Λ ∩ ∆n) ⊆ Λ and that, for every points
(t1, ..., tn) ∈ Λ and (τ, ..., τ) ∈ Λ∩∆n, the points (t1, t2 + τ, ..., tn + τ),
(t1, t2, t3+τ, ..., tn+τ), ..., (t1, t2, ..., tn−1, tn+τ), also belong to Λ∩∆n.
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Proof. In order to prove (i), fix a set B ∈ B. Then B is bounded and we have the
existence of a trigonometric polynomial Pk(·; ·) such that

sup
x∈B

[
φ
(
‖F (·;x)‖Y

)]
Lp(·)(Λt)

≤ sup
x∈B

[
φ
(
‖F (·;x)− Pk(·;x)‖Y

)]
Lp(·)(Λt)

+ sup
x∈B

[
φ
(
‖Pk(·;x)‖Y

)]
Lp(·)(Λt)

≤ (ε/2F(t)) + sup
x∈B

[
φ
(
‖Pk(·;x)‖Y

)]
Lp(·)(Λt)

.

Let Pk(·;x) =
∑l
j=0 e

i〈λl,·〉cl(x) for some integer l ∈ N, points λ1, ..., λl from Rn
and continuous functions c1(·), ..., cl(·) from X into Y. Then we have the existence
of a finite real constant cB > 0 such that (see also Lemma 1.3(ii)):

sup
x∈B

[
φ
(
‖Pk(·;x)‖Y

)]
Lp(·)(Λt)

≤ sup
x∈B

[
φ

(∥∥∥∥∥
l∑

j=0

ei〈λl,·〉cl(x)

∥∥∥∥∥
Y

)]
Lp(·)(Λt)

≤ sup
x∈B

[
φ

(
l∑

j=0

∥∥cl(x)
∥∥
Y

)]
Lp(·)(Λt)

≤
[
φ
(
cB
)]
Lp(·)(Λt)

≤ φ
(
cB
)
F(t)−1, t ≥ t0.

The proof of (ii) is quite similar and follows from the decomposition:

sup
x∈B

[
φ
(
‖F (·+ τ ;x)− F (·;x)‖Y

)]
Lp(·)(Λt)

≤ sup
x∈B

[
φ
(
‖F (·+ τ ;x)− Pk(·+ τ ;x)‖Y

)]
Lp(·)(Λt)

+ sup
x∈B

[
φ
(
‖Pk(·+ τ ;x)− Pk(·;x)‖Y

)]
Lp(·)(Λt)

+ sup
x∈B

[
φ
(
‖Pk(·;x)− F (·;x)‖Y

)]
Lp(·)(Λt)

;

let us only note that we need the continuity of φ(·) at the point t = 0 because, in the

final steps of computation, we get a term of form φ(cB
∑l
j=0 |ei〈λj ,τ〉 − 1|), which

tends to zero as τ → 0 + . The proof of part (a) in (iii) follows from a relatively
simple argumentation involving the decomposition used for proving (ii), the given
assumptions and the fact that the trigonometric polynomial Pk(·; ·) is Bohr B-
almost periodic due to [41, Proposition 6.1.25(iv)]; the proof of part (b) in (iii)
is quite similar because the prescribed assumptions imply that the trigonometric
polynomial Pk(·; ·) is Bohr (B,Λ ∩ ∆n)-almost periodic due to [41, Proposition
6.1.25(v)] (cf. also [41, Definition 6.1.9, Definition 6.1.14] for the notion). �

Suppose that B consists of bounded subsets of X, Λ is unbounded, F, G ∈ e−
(B, φ,F)−Bp(·)(Λ×X : Y ), for every fixed element x ∈ X, the function φ(·) is mono-
tonically increasing, φ(x+ y) ≤ φ(x) +φ(y) for all x, y ≥ 0, lim supt→+∞ F(t) = 0,
and there exists a finite real constant t0 > 0 such that F(t) ≤ [‖1‖Lp(·)(Λt)]

−1,

t ≥ t0. Due to Proposition 2.4(i), we have that the function F (·; ·) is Besicovitch-
(p, φ,F,B)-bounded. Let a set B ∈ B be fixed. Then

dB(F,G) := lim sup
t→+∞

F(t) sup
x∈B

[
φ
(∥∥F (·;x)−G(·;x)

∥∥
Y

)]
Lp(·)(Λt)
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defines a pseudometric on the set e − (B, φ,F) − Bp(·)(Λ ×X : Y ). Using the idea
from the original proof of J. Marcinkiewicz [53], we can prove the following theorem
(see also [50, pp. 249–252]):

Theorem 2.5. Let the requirements stated in the previous paragraph hold. Then,
for every set B ∈ B, the pseudometric space (e− (B, φ,F)− Bp(·)(Λ×X : Y ), dB)
is complete.

The classes with φ(x) ≡ xα, α > 0. Without any doubt, the most important case
in Definition 2.1 and Definition 2.3 is that one in which we have φ(x) ≡ xα for some
real number α > 0. If so, then all requirements necessary for applying Proposition
2.4 and the statements stated preceding it hold. The assumptions of Theorem 2.5
hold in case α ∈ (0, 1], when we can provide some proper generalizations of the usual
notion of Besicovitch-P -almost periodicity. For example, if 1 ≤ P < +∞, 1 ≤ p <
+∞, αp ∈ (0, 1) and the function F : R → Y is Besicovitch-P -almost periodic,
then the Hölder inequality implies that, for every trigonometric polynomial P (·),
we have:(

1

2t

∫ t

−t

∥∥F (t)− P (t)
∥∥αp
Y
dt

)1/p

≤

(
1

2t

∫ t

−t

∥∥F (t)− P (t)
∥∥P
Y
dt

)α/P
, t > 0,

so that F ∈ e− (xα, t−(1/p))−Bp(R : Y ). The converse statement does not hold in
general, as the following illustrative example shows:

Example 2.6. (cf. also Example 2.8 below) Let ζ > 1/2 and αζ ∈ (0, 1/2). Define

the function F : R→ R by F (t) := mζ if t ∈ [m2,m2 +
√
|m|) for some m ∈ Z, and

F (t) := 0, otherwise. Then it can be simply shown that the function F (·) is not
Besicovitch bounded and therefore not Besicovitch almost periodic. On the other
hand, we have F ∈ PAP0,p(R, t−1, xα) ⊆ e− (xα, t−1)−B1(R : C).

Let the numbers α > 0 and β > 0 be arbitrary. Using the functions φ(x) ≡ xα/p
and F(t) ≡ t−β/p in our approach, we can consider the generalized Besicovitch class
Bα,β(R : Y ) consisting of those Lebesgue measurable functions F : R → Y such
that, for every ε > 0, there exist a trigonometric polynomial P (·) and a real number
t0 > 0 such that ∫ t

−t

∥∥F (s)− P (s)
∥∥α
Y
ds ≤ εtβ , t ≥ t0;

a multi-dimensional generalization can be introduced analogously. Fairly complete
analysis of the generalized Besicovitch class Bα,β(R : Y ) and its multi-dimensional
analogues is without scope of this paper (let us only observe here that the space
Wα, considered by M. A. Picardello [58] in the usual one-dimensional setting with
0 < α ≤ 1, is nothing else but the space B1,α(R : C)).

We will provide the main details of the proof of the following proposition for the
sake of completeness:

Proposition 2.7. Suppose that p, q, r ∈ [1,∞), 1/r = 1/p+ 1/q, F1(t) ≡ t−n/p,
F2(t) ≡ t−n/q, F(t) ≡ t−n/r, φ(x) ≡ xα for some real number α > 0, and any set
B of collection B is bounded in X. If F1 ∈ e − (B, φ,F1) − Bp(Λ × X : C) and
F2 ∈ e − (B, φ,F2) − Bq(Λ × X : Y ), then the function F : Λ × X → Y, given by
F (t;x) := F1(t;x)F2(t;x), t ∈ Λ, x ∈ X, belongs to the class e− (B, φ,F)−Br(Λ×
X : Y ).
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Proof. Let ε > 0 and B ∈ B be given. Then there exist a finite real number t0 >
0, a scalar-valued trigonometric polynomial P1(·; ·) and a Y -valued trigonometric
polynomial P2(·; ·) such that, for every x ∈ B, we have[

φ
(∥∥F1(·;x)− P1(·;x)

∥∥
Y

)]
Lp(Λt)

≤ εtn/p, t ≥ t0,(2.2)

and [
φ
(∥∥F2(·;x)− P2(·;x)

∥∥
Y

)]
Lq(Λt)

≤ εtn/q, t ≥ t0.(2.3)

Clearly, P1(·; ·)P2(·; ·) is a Y -valued trigonometric polynomial. Applying Propo-
sition 2.4(i), we get that the function P1(·; ·) is Besicovitch-(p, φ,F1,B)-bounded
and the function F2(·; ·) is Besicovitch-(q, φ,F2,B)-bounded. Keeping in mind that
1/r = 1/p+ 1/q, the final conclusion simply follows using this fact, (2.2)-(2.3), the
existence of a finite real number cα > 0 such that

φ
(∥∥F1(·;x)F2(·;x)− P1(·;x)P2(·;x)

∥∥
Y

)
≤ cα

[
φ
(∣∣F1(·;x)− P1(·;x)

∣∣) · φ(∥∥F2(·;x)
∥∥
Y

)
+ φ

(∣∣P1(·;x)
∣∣) · φ(∥∥F2(·;x)− P2(·;x)

∥∥
Y

)]
,

and the Hölder inequality. �

We continue by providing the following illustrative application of Proposition
2.7:

Example 2.8. Suppose that 1 ≤ p1, ..., pn, p < +∞ and 1/p = 1/p1 + 1/p2 + ...+

1/pn. Define the function Fj : R→ R by Fj(t) := m1/2pj if t ∈ [m2,m2 +
√
|m|) for

somem ∈ Z, and Fj(t) := 0, otherwise (1 ≤ j ≤ n). Then we know that the function
Fj(·) is Besicovitch-pj-almost periodic but not Besicovitch-q-almost periodic if q >
pj ; see [7, p. 42] and [3, Example 6.24]. Define F (t) := F1(t1) · F2(t2) · ... · Fn(tn),
t ∈ Rn. Applying Proposition 2.7 and a simple argumentation, it follows that the
function F (·) is Besicovitch-p-almost periodic but not Besicovitch-q-almost periodic
if q > p.

Sometimes we need the value of coefficient p = +∞ in Proposition 2.7 and
sometimes the usual choice F(t) ≡ t−n/p is wrong if the region Λ is bounded in
direction of some real axes:

Example 2.9. Suppose that 1 ≤ p < +∞, the function f : [0, 2π]→ R is absolutely
continuous and the function g : [0,∞)→ Y is Besicovitch-p-almost periodic. Since
the Fourier series of function f(·) converges uniformly to this function, arguing as in
the proof of Proposition 2.7 we may conclude that the function F (x, y) := f(x)g(y),
(x, y) ∈ Λ ≡ [0, 2π]× [0,∞)→ Y belongs to the class e− (x, t−1/p)−Bp(Λ : Y ).

Further on, the composition principles for one-dimensional Besicovitch-p-almost
periodic functions have been analyzed for the first time by M. Ayachi and J. Blot
in [5, Lemma 4.1]. In the following theorem, we consider the Besicovitch-p-almost
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periodicity of the multi-dimensional Nemytskii operator W : Rn × X → Z, given
by

W (t;x) := G(t;F (t;x)), t ∈ Rn, x ∈ X,(2.4)

where F : Rn ×X → Y and G : Rn × Y → Z. We follow the ideas from [5] in (i):

Theorem 2.10. Suppose that 1 ≤ p, q < +∞, α > 0, p = αq, F(t) ≡ t−n/p,
φ(x) ≡ xζ for some real number ζ > 0, F ∈ e− (B, φ,F)−Bp(Rn ×X : Y ), and B
is the collection consisting of all bounded subsets of X.

(i) Suppose that G : Rn × Y → Z is Bohr B-almost periodic and there exists a
finite real constant a > 0 such that∥∥∥G(t; y)−G(t; y′)

∥∥∥
Z
≤ a

∥∥y − y′∥∥α
Y
, t ∈ Rn, y, y′ ∈ Y.(2.5)

Then the function W (·; ·), given by (2.4), belongs to the class e−(B, φ, t−n/q)−
Bq(Rn ×X : Z).

(ii) Define

B′ :=

{ ⋃
t∈Rn

F (t;B) ; B ∈ B

}
.

By e − (B′, φ, t−n/q) − Bqa,α(Rn × Y : Z) we denote the class of all func-
tions G1(·; ·) such that for each set B′ ≡ ∪t∈RnF (t;B) ∈ B′ there exists
a sequence of Bohr B-almost periodic functions (Gk1(·; ·)) such that (2.5)
holds with the function G(·; ·) replaced therein by the function Gk1(·; ·) for
all k ∈ N, the equation (2.1) holds with the function F (·; ·) replaced therein
by the function G(·; ·), the polynomial Pk(·; ·) replaced therein by the func-
tion Gk1(·; ·), the set B replaced therein with the set B′, and the exponent
p(·) replaced therein by the constant exponent q. If G ∈ e− (B′, φ, t−n/q)−
Bqa,α(Rn × Y : Z), then W ∈ e− (B, φ, t−n/q)−Bq(Rn ×X : Z).

Proof. Let ε > 0 and B ∈ B be given. Then there exist a trigonometric polynomial
P (·; ·) and a finite real number t0 > 0 such that

sup
x∈B

∫
[−t,t]n

∥∥F (t;x)− P (t;x)
∥∥ζp
Y
dt < εtn, t ≥ t0.

We will first prove (i). Since we have assumed that (2.5) holds and B is the collection
consisting of all bounded subsets of X, the argumentation contained in the proof of
[41, Theorem 6.1.47, Corollary 6.1.48] shows that the function W1 : Rn ×X → Z,
given by W1(t;x) := G(t;P (t;x)), t ∈ Rn, x ∈ X, is Bohr B-almost periodic.
Then the final conclusion simply follows by observing that p = αq, using the next
estimate which holds for any t > 0 and x ∈ B; see (2.5):∫

[−t,t]n

∥∥W (t;x)−W1(t;x)
∥∥ζq
Z
dt ≤ aζq

∫
[−t,t]n

∥∥F (t;x)− P (t;x)
∥∥ζp
Y
dt.

In order to prove (ii), it suffices to apply (i) and use the decomposition

φ
(∥∥G(t;F (t;x))−Gk(t;P (t;x))

∥∥
Z

)
≤ 2ζ

[
φ
(∥∥G(t;F (t;x))−Gk(t;F (t;x))

∥∥
Z

)
+ φ

(∥∥Gk(t;F (t;x))−Gk(t;P (t;x))
∥∥
Z

)]
,
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where Gk(·; ·) properly approximates G(·; ·) in the space e−(B′, φ, t−n/q)−Bq(Rn×
Y : Z). �

2.1. Multi-dimensional Besicovitch normal type functions. The notion of a
Besicovitch p-normal function f : R→ C was introduced by R. Doss in [23] and later
reconsidered by the same author in [25]; cf. also [41, Subsection 8.3.2, Definition
8.3.18], where we have recently analyzed the concept Weyl p-almost automorphy (of
type 2) without limit functions. In this subsection, we will consider the following
notion:

Definition 2.11. Suppose that R is any collection of sequences in Λ′′, F : Λ×X →
Y, φ : [0,∞)→ [0,∞) and F : (0,∞)→ (0,∞). Then we say that the function F (·; ·)
is Besicovitch−(R,B, φ,F)−Bp(·)-normal if and only if for every set B ∈ B and for
every sequence (bk)k∈N in R there exists a subsequence (bkm)m∈N of (bk)k∈N such
that, for every ε > 0, there exists an integer m0 ∈ N such that, for every integers
m, m′ ≥ m0, we have

lim sup
t→+∞

F(t) sup
x∈B

[
φ
(∥∥F (t + bkm ;x)− F (t + bkm′ ;x)

∥∥
Y

)]
Lp(t)(Λt)

< ε.

The usual notion of Besicovitch-p-normality for the function F : Λ → Y, where
1 ≤ p < +∞, is obtained by plugging φ(x) ≡ x and F(t) ≡ t−n/p, with R being the
collection of all sequences in Λ′′.

In the sequel, we will occasionally use the following conditions:

(I) φ(·) is monotonically increasing, continuous at the point t = 0, and p(·) ≡
p ∈ [1,∞).

(II) There exists c ∈ (0, 1] such that φ(x+ y) ≤ c[φ(x) + φ(y)] for all x, y ≥ 0,
and there exists a function ϕ : [0,∞)→ [0,∞) such that φ(xy) ≤ φ(x)ϕ(y)
for all x, y ≥ 0 and D := supm∈N[mϕ(1/m)] < +∞.

(III) lim supt→+∞[F(t)m(Λt)
1/p] < +∞ and, for every real number a > 0, we

have lim supt→+∞[F(t)/F(t+ a)] ≤ 1.

It is clear that (II) holds provided that φ(x) ≡ xα for some real number α ≥ 1
as well as that (II) does not hold if φ(x) ≡ xα for some real number α ∈ (0, 1).

Repeating verbatim the argumentation contained in the proof of [41, Theorem
6.3.19], where we have analyzed the concept Weyl (R,B, p)-normality, the following
result can be deduced without any substantial difficulties:

Proposition 2.12. Suppose that F : Λ×X → Y , F ∈ e− (B, φ,F)−Bp(·)(Λ×X :
Y ), and conditions (I)-(III) hold. Then F (·; ·) is Besicovitch−(R,B, φ,F) − Bp(·)-
normal.

Even in the usual one-dimensional framework, we know that the converse state-
ment of Proposition 2.12 is not true in general (see, e.g., [3]) as well as that the
usual Besicovitch-p-normality does not imply Besicovitch-p-continuity (see, e.g.,
[25]). Further on, let k ∈ N and Fi : Λ×X → Yi (1 ≤ i ≤ k). Then we define the
function (F1, ..., Fk) : Λ×X → Y1 × ...× Yk by(

F1, ..., Fk
)
(t;x) :=

(
F1(t;x), ..., Fk(t;x)

)
, t ∈ Λ, x ∈ X.

The following result is trivial and its proof is therefore omitted:

Proposition 2.13. Suppose that k ∈ N, ∅ 6= Λ ⊆ Rn, and we have that, for any
sequence which belongs to R, any its subsequence also belongs to R. If the function
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Fi(·; ·) is Besicovitch−(R,B, φ,F) − Bp(·)-normal for 1 ≤ i ≤ k, then the function
(F1, ..., Fk)(·; ·) is also Besicovitch−(R,B, φ,F)−Bp(·)-normal.

The interested reader may try to formulate certain conditions ensuring that the
limit function of a sequence of uniformly convergent Besicovitch−(R,B, φ,F)−Bp(·)-
normal functions (the functions belonging to the class e−(B, φ,F)−Bp(·)(Λ×X : Y ))
is also Besicovitch−(R,B, φ,F)−Bp(·)-normal (belongs to the class e− (B, φ,F)−
Bp(·)(Λ×X : Y )); see [41] for many results of this type.

Several structural properties of functions belonging to the class e − (B, φ,F) −
Bp(·)(Λ×X : Y ) can be simply reformulated for the class of Besicovitch−(R,B, φ,F)−
Bp(·)-normal functions. For example, we have the following analogue of Proposition
2.7:

Proposition 2.14. Suppose that p, q, r ∈ [1,∞), 1/r = 1/p+ 1/q, F1(t) ≡ t−n/p,
F2(t) ≡ t−n/q, F(t) ≡ t−n/r, φ(x) ≡ xα for some real number α > 0 and, for any se-
quence which belongs to R, any its subsequence also belongs to R. If the function F1 :
Λ×X → C is Besicovitch−(R,B, φ,F1)−Bp-normal and Besicovitch-(p, φ,F1,B)-
bounded as well as the function F2 : Λ×X → Y is Besicovitch−(R,B, φ,F2)−Bq-
normal and Besicovitch-(q, φ,F2,B)-bounded, then the function F : Λ × X → Y,
given by F (t;x) := F1(t;x)F2(t;x), t ∈ Λ, x ∈ X, is Besicovitch−(R,B, φ,F1)−Br-
normal.

Proof. Let a set B ∈ B and a sequence (bk)k∈N in R be given. Keeping in mind the
proof of Proposition 2.7 and our assumption that for any sequence which belongs
to R any its subsequence also belongs to R, it suffices to show that there exist two
sufficiently large real numbers t0 > 0 and M > 0 such that

sup
x∈B,k∈N

[
φ
(
|F1(·+ bk;x)|

)]
Lp(Λt)

≤Mtn/p, t ≥ t0(2.6)

and

sup
x∈B,k∈N

[
φ
(
‖F2(·+ bk;x)‖Y

)]
Lq(Λt)

≤Mtn/q, t ≥ t0.(2.7)

Since the function F1 : Λ ×X → C is Besicovitch-(p, φ,F1,B)-bounded, it can be
simply proved that

sup
x∈B

[
φ
(
|F1(·+ bk;x)|

)]
Lp(Λt)

≤Mtn/p, t ≥ t0.

Moreover, we have the existence of a finite real number t0 > 0 and an integer k0 ∈ N
such that, for every integers k, k′ ≥ k0, we have

sup
x∈B

[
φ
(∣∣F1(·+ bk;x)− F1(·+ bk′ ;x)

∣∣)]
Lp(Λt)

< Mtn/p, t ≥ t0.

Further on, there exists a finite real constant cα > 0 such that, for every integers
k, k′ ≥ k0, we have:[

φ
(
|F1(·+ bk;x)|

)
− φ

(
|F1(·+ bk′ ;x)|

)]
Lp(Λt)

≤ cα
[
φ
(∣∣∣|F1(·+ bk;x)| − |F1(·+ bk′ ;x)|

∣∣∣)]
Lp(Λt)

≤ cα
[
φ
(∣∣F1(·+ bk;x)− F1(·+ bk′ ;x)

∣∣)]
Lp(Λt)

≤ cαMtn/p, t ≥ t0, x ∈ B.
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This simply implies (2.6) because

sup
x∈B

[
φ
(
|F1(·+ bk;x)|

)]
Lp(Λt)

≤ sup
x∈B

[
φ
(
|F1(·+ bk0 ;x)|

)]
Lp(Λt)

+ cαMtn/p, t ≥ t0, k ≥ k0.

The estimate (2.7) can be proved analogously, finishing the proof. �

Concerning the asumptions on Besicovitch boundedness used in the formulation
of Proposition 2.14, we would like to recall that A. Haraux and P. Souplet have
proved (see [34, Theorem 1.1]) that the function f : R→ R, given by

f(t) :=

∞∑
n=1

1

n
sin2

( t

2n

)
dt, t ∈ R,(2.8)

is uniformly continuous, uniformly recurrent (the sequence (αk ≡ 2kπ)k∈N) can be
chosen in definition of uniform recurrence) and Besicovitch unbounded; see [41] for
the notion. Let R denote the collection consisting of the seqeunce (αk)k∈N and all
its subsequences. Then the function f(·) is Besicovitch−(R, x, t−1/p)− Bp-normal
but not Besicovitch-(p, x, t1/p)-bounded for any finite exponent p ≥ 1. Furthermore,
we have the following:

Example 2.15. Suppose that p ∈ [1,∞), σ ∈ (0, 1), F (x) := |x|σ, x ∈ R, and
a > 1 − (1 − σ)p > 0. Then we know that the function F (·) is not Besicovitch-p-
bounded and that, for every t ∈ R and ω ∈ R, we have:

lim
l→+∞

l−a
∫ l

−l

∣∣∣∣∣x+ t+ ω
∣∣σ − ∣∣x+ t

∣∣σ∣∣∣p dx = 0;(2.9)

see [41, Theorem 8.3.8] and its proof. Let R denote the collection of all sequences
in R and let F(t) ≡ t−a/p. Then the limit equality (2.9) simply implies that the
function F (·) is Besicovitch−(R, x,F)−Bp-normal. Hence, the usual Besicovitch-p-
normality of a function F (·) does not imply its Besicovitch-p-boundedness as well.

Now we would like to recall that any Doss-p-almost periodic function F : [0,∞)→
Y , where p ∈ [1,∞), can be extended to a Doss-p-almost periodic function F̃ :

R → Y defined by F̃ (t) := 0, t < 0 (cf. [46] for the notion used in this para-
graph). A similar type of extension can be achieved in a much more general
situation; for example, we know that, under certain reasonable conditions, any
Doss-(p, φ,F,B,Λ′, ρ)-almost periodic function F : Λ × X → Y can be extended

to a Doss-(p, φ,F,B,Λ′, ρ1)-almost periodic function F̃ : Rn ×X → Y, defined by

F̃ (t) := 0, t /∈ Λ, F̃ (t) := F (t), t ∈ Λ, with ρ1 := ρ ∪ {(0, 0)} (the corresponding
analysis from [46] contains small typographical errors that will be corrected in our
forthcoming monograph [42]).

We would like to emphasize that a similar analysis cannot be carried out for
Besicovitch almost periodic type functions. We close this section by introducing
the following notion and raising the following issue:

Definition 2.16. Let ∅ 6= Λ ⊆ Rn, and let CΛ = e − (B, φ,F) − Bp(·)(Λ : Y ) or
CΛ be the class consisting of all Besicovitch−(R,B, φ,F) − Bp(·)-normal functions.
Then we say that the set Λ is admissible with respect to the class CΛ if and only
if for any complex Banach space Y and for any function F : Λ→ Y there exists a
function F̃ ∈ CRn such that F̃ (t) = F (t) for all t ∈ Λ.
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Problem. It is still not known whether the set [0,∞) ⊆ R is admissible with respect
to the class of Besicovitch-p-almost periodic functions, i.e., whether a Besicovitch-p-
almost periodic function f : [0,∞)→ Y can be extended to a Besicovitch-p-almost

periodic function f̃ : R→ Y defined on the whole real line (1 ≤ p <∞). We would
like to ask here a more general question: Is it true that a convex polyhedral Λ in
Rn is admissible with respect to the class of multi-dimensional Besicovitch-p-almost
periodic functions (Besicovitch-p-normal functions)?

3. Besicovitch-Doss almost periodicity

In this section, we discuss and reexamine several structural results established
by R. Doss in [24]-[25]. We work in the multi-dimensional setting here, considering
especially the following conditions:

(A) For every B ∈ B and a ∈ Λ′′, there exists a function F
(a)
B : Λ × X →

Y such that F
(a)
B (·;x) is a-periodic for every fixed element x ∈ B, i.e.,

F
(a)
B (t + a;x) = F

(a)
B (t;x) for all t ∈ Λ, x ∈ B, ‖F (a)

B (t;x)‖Y ∈ Lp(t)(Λt)
for all t > 0, x ∈ B, and

lim
k→+∞

lim sup
t→+∞

F(t) sup
x∈B

[
φ

(∥∥∥∥∥1

k

k−1∑
j=0

F (t + ja;x)− F (a)
B (t;x)

∥∥∥∥∥
Y

)]
Lp(t)(Λt)

= 0.

(3.1)

(A)∞ For every B ∈ B and a ∈ Λ′′, there exists a function F
(a)
B : Λ×X → Y such

that F
(a)
B (·;x) is a-periodic for every fixed element x ∈ B, ‖F (a)

B (·;x)‖Y ∈
L∞(Rn) for all x ∈ B, and (3.1) holds.

(AS) For every B ∈ B and a = (a1, a2, ..., an) ∈ Λ′′ such that ajej ∈ Λ′′ for all

j ∈ Nn, there exists a function F
(a)
B : Λ × X → Y such that F

(a)
B (·;x) is

(aj)j∈Nn -periodic for every fixed element x ∈ B, i.e., F
(a)
B (t + ajej ;x) =

F
(a)
B (t;x) for all t ∈ Λ, x ∈ B, j ∈ Nn, ‖F (a)

B (t;x)‖Y ∈ Lp(t)(Λt) for all
t > 0, x ∈ B, and (3.1) holds.

It is clear that (AS) implies (A) as well as that both conditions are equivalent in
the one-dimensional setting; it is also clear that (A)∞ implies (A). Further on, for
every Lebesgue measurable set E ⊆ Rn and for every Lebesgue measurable function
F : Rn → C, we set

ν(E) := lim sup
t→+∞

1

tn/p

∫
|t|≤t

χE(t) dt and ME
[F ] := lim sup

t→+∞

1

tn/p

∫
|t|≤t

F (t)χE(t) dt.

If

lim
t→+∞

1

tn/p

∫
|t|≤t

F (t)χE(t) dt

exists in C, then we denote this quantity by ME [F ].
Suppose now that the function F (a) : Rn → C is (a1, a2, ..., an)-periodic. Then

we can find a sequence of infinitely differentiable functions (ϕk)k∈N with compact
support in S = [0, |a1|]× ...× [0, |an|] such that ϕk → F (a) as k → +∞, in Lp(S).
After that, we extend ϕk(·) to an (a1, a2, ..., an)-periodic function ϕ̃k(·) defined on
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the whole space Rn in the usual way. Then it is very simple to prove that

lim
k→+∞

lim sup
t→+∞

[
t−(n/p)

∥∥F (a) − ϕ̃k
∥∥
Lp((Rn)t)

]
= 0;(3.2)

cf. also [24, p. 483, l. 7-l. 9]. Keeping this observation in mind, the following
result can be deduced, in a plus-minus technical way, following the argumentation
contained in the proofs of [24, Proposition 1, Proposition 3, Corollary, Lemma 2]
(cf. also Lemma 1.2, which is needed for the proof of (ii)):

Theorem 3.1. (i) Suppose that p ∈ [1,∞), q ∈ (1,∞], 1/p + 1/q = 1, the
function F : Λ → Y satisfies that ‖F (·)‖Y ∈ Lp(Λt) for all t > 0, as
well as that ‖F (· + τ) − F (·)‖Y ∈ Lp(Λt) for all t > 0 and τ ∈ Λ′′. Sup-
pose, further, that the function F (·) is Besicovitch-(p, x,F1)-bounded and
Besicovitch-(p, x,F1,Λ

′′)-continuous as well as that condition (III) holds,
and the set Λ′′∩Qn is dense in Λ′′. If the function G : Λ→ C satisfies that
G(·) ∈ Lq(Λt) for all t > 0, and G(·) is Besicovitch-(q, x,F2)-bounded, then
for each sequence (Lm)m∈N there exists a subsequence (Tm)m∈N of (Lm)m∈N
such that the function

H(τ) := lim
m→+∞

F1

(
Tm
)
F2

(
Tm
) ∫

ΛTm

G(s)F (s + τ) ds, τ ∈ Λ′′

is well-defined and bounded. Furthermore, if the function F (·) is Doss-
(p, x,F1,Λ

′)-almost periodic (Doss-(p, x,F1,Λ
′)-uniformly recurrent) and

Λ′ + Λ′′ ⊆ Λ′′, then the function H(·) is Bohr Λ′-almost periodic (Λ′-
uniformly recurrent).

(ii) Suppose that p ∈ [1,∞), q ∈ (1,∞], 1/p + 1/q = 1, the assumptions in
(i) hold for the function F : Rn → C, with Λ = Λ′ = Λ′′ = Rn, F1(t) =
F2(t) = t−(n/p), t ∈ Rn, and F (·) is Doss-(p, x, t−(n/p))-almost periodic. If
condition (A)∞ or (AS) holds with X = {0}, φ(x) ≡ x and p(·) ≡ p, then,
for every real number ε > 0, there exists a finite real number δ > 0 such
that, for every Lebesgue measurable set E ⊆ Rn, the assumption ν(E) < δ

implies ME
[|F |pY ] < ε.

(iii) Let the assumptions of (ii) hold, and let for each N > 0 the function
FN : Rn → C be defined by FN (t) := F (t), if |F (t)| ≤ N, and FN (t) :=

Nei arg(F (t)), if |F (t)| > N. Then limN→+∞M
Rn

[F − FN ] = 0.
(iv) Suppose that the assumptions in (i) hold for the function F : Rn → C, with

p = 1, Λ = Λ′ = Λ′′ = Rn, F1(t) = F2(t) = t−n, t ∈ Rn, and F (·) is Doss-
(1, x, t−n)-almost periodic. If condition (A)∞ or (AS) holds with X = {0},
φ(x) ≡ x and p(·) ≡ 1, then for each a ∈ Rn we have that MRn [F ] exists
in C and MRn [F ] =MRn [F (a)].

Before proceeding further, let us note that it is not clear how we can extend the
statement (ii) to the vector-valued functions. It is also worth noting that a serious
difficulty in our analysis of the multi-dimensional case presents the fact that it is not
clear whether we can further generalize the above-mentioned statement by using
condition (A) in place of (A)∞ or (AS). Concerning conditions (A), (A)∞, (AS)
and the equation (3.2), we would like to present the following example:
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Example 3.2. (i) (see also [41, Example 7.2.2]) Suppose that F0 : {(x, y) ∈
R2 : 0 ≤ x + y ≤ 2} → [0,∞) be any continuous function such that the
following conditions hold:
(a) F0(x, y) = F0(x+ 1, y + 1) for every (x, y) ∈ R2 such that x+ y = 0;
(b) Let Pk = AkBkCkDk be the rectangle in R2 with vertices Ak =

(4k − (2/3), (2/3) − 4k), Bk = (4k − (1/3), (1/3) − 4k), Ck = (4k +
(2/3), (4/3)− 4k) and Dk = (4k + (1/3), (5/3)− 4k), for each integer
k ∈ Z. We have F0(x, y) ≥ 2|k| for all integers k ∈ Z and (x, y) ∈ Pk.

We extend the function F0(·; ·) to a continuous (1, 1)-periodic function F :
R2 → [0,∞) in the obvious way. Then the function F (·, ·) is not Besicovitch
almost periodic since it is not Besicovitch bounded; this follows from the
following simple estimates:∫
Λ8k
√

2

F (x, y) dx dy ≥ 16k

4k∑
l=0

√
2

3
2l ≥ 16k

√
2

3

(
24k+1 − 1

)
, k ∈ N.

Furthermore, there do not exist a finite real constant M > 0 and an essen-
tially bounded function G : R2 → C such that

lim sup
t→+∞

[
t−2

∫
|t|≤t
|F (t)−G(t)| dt

]
≤M ;

cf. also (3.2).

(ii) Set P (x, y) := ei[
√

2x+y] + ei[2x+y], x, y ∈ R, a1 := π(2 +
√

2), a2 :=

2π(1−
√

2) and a := (a1, a2). Then there is no continuous (aj)j∈N2
-periodic

function F (a1,a2)(x, y) such that (3.1) holds with φ(x) ≡ x, p(·) ≡ 1 and

F(t) ≡ t−2 (X = {0}). In actual fact, we have
√

2a1+a2 = 2π, 2a1+a2 = 2π
and the validity of (3.1) would imply

lim sup
t→+∞

[
t−2

∫
|(x,y)|≤t

∣∣∣ei[√2x+y] + ei[2x+y] − F (a1,a2)(x, y)
∣∣∣ dx dy] = 0.(3.3)

To see that (3.3) cannot be true, it suffices to observe that there exists a real

number ε0 := min(x,y)∈[0,a1]×[0,−a2] |ei[
√

2x+y] + ei[2x+y]−F (a1,a2)(x, y)| > 0
such that∫
(x,y)∈[0,t]2

∣∣∣ei[√2x+y] + ei[2x+y] − F (a1,a2)(x, y)
∣∣∣ dx dy ≥ t2

ba1cb|a2|c
ε0.

If F : Λ×X → Y , G : Λ×X → Y and B ∈ B, then we set

Mφ,F
B (F,G) := lim sup

t→+∞
F(t) sup

x∈B

[
φ
(∥∥F (t;x)−G(t;x)

∥∥
Y

)]
Lp(t)(Λt)

.

Then the quantity Mφ,F
B (F,G) always exists in [0,+∞]. The subsequent result

states that, under certain reasonable assumptions on the functions φ(·) and F(·),
any function F ∈ e− (B, φ,F)−Bp(·)(Λ×X : Y ) satisfies condition (A):

Proposition 3.3. Suppose that F : Λ×X → Y , F ∈ e−(B, φ,F)−Bp(·)(Λ×X : Y ),
(I)-(III) and the following conditions hold:

(IV) If B ∈ B, a ∈ Λ′′, and (Fk : Λ ×X → Y )k∈N is any sequence of functions
which satisfies that Fk(t+a;x) = Fk(t;x), t ∈ Λ, x ∈ B and for each ε > 0

there exists k0 ∈ N such that Mφ,F
B (Fk, Fk′) < ε for all integers k, k′ ≥ k0,



20 M. KOSTIĆ

then there exists a function F : Λ×X → Y such that F (t+a;x) = F (t;x),

t ∈ Λ, x ∈ B and limk→+∞Mφ,F
B (Fk, F ) = 0 (here we assume that for each

element x ∈ X the functions Fk(·;x) and F (·;x) are Lebesgue measurable
(k ∈ N)).

(V) The collection B consists of bounded subsets of X.

Then the function F (·; ·) satisfies condition (A).

Proof. We will slightly modify the original argumentation of R. Doss (see [24, pp.
477-478]). First of all, we will prove that condition (A) holds for any trigonometric
polynomial P (·;x) =

∑m
l=0 e

i〈λl,·〉cl(x), x ∈ X. Let B ∈ B and a ∈ Λ′′ be given;

then t + ja ∈ Λ for all j ∈ N. Define P
(a)
B (·;x) :=

∑
l∈La e

i〈λl,·〉cl(x), x ∈ X,

where La denotes the set of all integers l ∈ [0,m] such that ei〈λl,a〉 = 1. Clearly,

the function P
(a)
B (·;x) is a-periodic for every fixed element x ∈ B. Then a simple

computation shows that

F(t) sup
x∈B

[
φ

(∥∥∥∥∥1

k

k−1∑
j=0

P (t + ja;x)− P (a)
B (t;x)

∥∥∥∥∥
Y

)]
Lp(Λt)

= F(t) sup
x∈B

[
φ

(∥∥∥∥∥1

k

k−1∑
j=0

∑
l/∈La

ei〈λl,t〉ei〈λl,aj〉cl(x)

∥∥∥∥∥
Y

)]
Lp(Λt)

= F(t) sup
x∈B

[
φ

(∥∥∥∥∥1

k

∑
l/∈La

ei〈λl,t〉
ei〈λl,ak〉 − 1

ei〈λl,a〉 − 1
cl(x)

∥∥∥∥∥
Y

)]
Lp(Λt)

, t > 0.

Using the facts that the function φ(·) is monotonically increasing and the collection
B consists of bounded subsets of X, the above computation yields the existence of
a finite real constant cB > 0 such that

F(t) sup
x∈B

[
φ

(∥∥∥∥∥1

k

k−1∑
j=0

P (t + ja;x)− P (a)
B (t;x)

∥∥∥∥∥
Y

)]
Lp(t)(Λt)

≤ φ
(cB
k

)[
F(t)m(Λt)

1/p
]
, t > 0.

Then the required conclusion follows from the continuity of function φ(·) at zero
and the assumption lim supt→+∞[F(t)m(Λt)

1/p] < +∞. Before proceeding to the
general case, let us note that our assumptions on the function φ(·), the assumption
that, for every real number a > 0, we have lim supt→+∞[F(t)/F(t+ a)] ≤ 1, and a
relatively simple argumentation shows that:

(a) Define

Mφ,F
B,a(F,G) := lim sup

t→+∞
F(t) sup

x∈B

[
φ
(∥∥F (t + a;x)−G(t + a;x)

∥∥
Y

)]
Lp(Λt)

.

Then we have

Mφ,F
B,a(F,G) ≤Mφ,F

B (F,G).

(b) Mφ,F
B (dF, dG) ≤ ϕ(d)Mφ,F

B (F,G) for all real numbers d > 0.

(c) Mφ,F
B (F,G) ≤ c[Mφ,F

B (F,H) +Mφ,F
B (H,G)].

(d) Mφ,F
B (F +G,H +W ) ≤ c[Mφ,F

B (F,H) +Mφ,F
B (G,W )].



MULTI-DIMENSIONAL BESICOVITCH.... 21

Suppose now that there exists a sequence (Pk(·; ·)) of trigonometric polynomials

such that (2.1) holds, i.e., limk→+∞Mφ,F
B (F, Pk) = 0. Let ε > 0 be fixed. Using

(a) and (d), we get:

Mφ,F
B

(
F (·; ·) + F (·+ a; ·) + ...+ F (·+ (m− 1)a; ·)

m
,
Pk(·; ·) + Pk(·+ a; ·) + ...+ Pk(·+ (m− 1)a; ·)

m

)

≤
(
c+ ...+ c

m−1)
ϕ(1/m)Mφ,F

B (F, Pk) ≤ mϕ(1/m)Mφ,F
B (F, Pk) ≤ DMφ,F

B (F, Pk), k, m ∈ N.
(3.4)

On the other hand, using (c) we get the existence of an integer k0(ε) ≡ k0 such
that:

Mφ,F
B (Pk, Pk′) ≤ 2cε, k, k′ ≥ k0.

Keeping in mind (3.4) and this estimate, we get

Mφ,F
B

(
1

m

m−1∑
j=0

Pk(·+ ja; ·), 1

m

m−1∑
j=0

Pk′(·+ ja; ·)

)
≤ 2cDε, k, k′ ≥ k0, m ∈ N.

(3.5)

If k, k′ ≥ k0, then we find the functions P
(a)
k,B and P

(a)
k′,B from condition (A);

then we can use (c) and (3.5) to get the existence of a finite real constant d >

0 such that Mφ,F
B (P

(a)
k,B , P

(a)
k′,B) < dε for all integers k, k′ ≥ k0. Let F

(a)
B be

any function such that F
(a)
B (t + a;x) = F

(a)
B (t;x) for all t ∈ Λ, x ∈ B and

limk→+∞Mφ,F
B (P

(a)
k,B , F

(a)
B ) = 0; see (iv). Then the final conclusion follows using

(3.4) and condition (A) for Pk(·; ·). �

Remark 3.4. In connection with condition (IV), we would like to note that the
argumentation contained on [24, p. 478; l. 3-l. 6] is a bit incorrect because the
completeness of Lp-spaces has been mistakenly used. It is also far from being
immediately clear why the function f (a)(x) appearing here must be of period a.

If the assumptions (I)-(III) hold, then we have the validity of statements (a)-
(d) given in the proof of the afore-mentioned proposition. Keeping in mind this
observation, we can repeat verbatim the argumentation contained in the proof of
[24, Lemma 1] to deduce the following:

Proposition 3.5. Suppose that the function F : Λ×X → Y satisfies that
φ(‖F (·;x)‖Y ) ∈ Lp(·)(Λt) for all t > 0 and x ∈ X. If the assumptions (I)-(III)
hold and the function F (·; ·) satisfies condition (A), then F (·; ·) is Besicovitch-
(p, φ,F,B)-bounded.

In particular, Proposition 3.5 implies that a uniformly recurrent function f : R→
R need not satisfy condition (A); see (2.8) with φ(x) ≡ x, p = 1 and F(t) ≡ t−1.

In the multi-dimensional setting, it seems very plausible that a trigonometric
polynomial P (·) does not satisfy condition (AS) in general (see Example 3.2(ii)), so
that we can freely say that the results established in [24] are primarily intended for
the analysis of Besicovitch almost periodic functions of one real variable. We want
also to emphasize here that the proof of [24, Proposition 4] contains a small gap
since the author has not proved that, for any function f : R→ C of class (D) and for
any real number λ ∈ R, the function e−iλ·f(·) is Doss almost periodic, i.e., satisfies
condition [24, 2., p. 477] with p = 1 (this seems to be true, but not specifically
proved in the paper). Finally, we would like to mention that it is very likely that
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the statements of [24, Proposition 4-Proposition 6] admit extensions to the multi-
dimensional setting; hence, it seems very reasonable that a Doss-p-almost periodic
function F : Rn → C which is Besicovitch-p-continuous and satisfies condition (AS)
is Besicovitch-p-almost periodic (1 ≤ p < +∞). This is a very unsatisfactory result
in the multi-dimensional setting and we will skip all details with regards to this
question here.

3.1. On Condition (B). In this subsection, we will consider the following condi-
tion:

(B) Let Ω = [0, 1]n, lΩ ⊆ Λ and Λ+lΩ ⊆ Λ for all l > 0. If F1 : (0,∞)→ (0,∞),
F : (0,∞)→ (0,∞) and p ∈ P(Λ), then condition (B) means that, for every
λ ∈ Rn, we have:

lim
l→+∞

F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

]
eiλtF (t;x) dt

∥∥∥∥∥
Lp(y)(Λt:Y )

= 0.(3.6)

Let us note that, in the original analysis of R. Doss [25], we have p(·) ≡ 1, F1(l) ≡
1/l, F(t) ≡ 1/t, Λ = R and X = {0}. The situation in which the equation (3.6)
holds for all values of λ ∈ Rn \ {λ0} but not for the exactly one value λ = λ0 ∈ Rn
is possible; for example, in the one-dimensional setting, we know that the function
F : R → C, given by F (t) := e−iλ0t, t ≥ 0 and F (t) := −e−iλ0t, t < 0, satisfies
(3.6) for all values λ ∈ R \ {λ0} but not for λ0 ([25]).

Concerning condition (B), we will first clarify the following result for the multi-
variate trigonometric polynomials:

Proposition 3.6. Suppose that Ω = [0, 1]n, Λ = Rn and liml→+∞[ln−1F1(l)] = 0.
If the collection B consists solely of bounded subsets of X and conditions (I)-(III)
hold, then condition (B) holds for any trigonometric polynomial P (·; ·).

Proof. Let P (t;x) =
∑m
s=0 e

i〈λs,t〉cs(x) for some continuous functions cs(·). It suf-
fices to show that

lim
l→+∞

F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

]
P (t;x) dt

∥∥∥∥∥
Lp(Λt:Y )

= 0.

Let ks denote the number of all non-zero components of vector λs = (λ1
s, ..., λ

n
s ).

If ks = n, then the term ei〈λs,t〉cs(x) is meaningless after the integration over the
cubes y + lΩ and lΩ. Because of that, we may assume without loss of generality
that ks ≤ n− 1 for all s ∈ {0, 1, ...,m} as well as that λjs = 0 for all s ∈ {0, 1, ...,m}
and j ∈ {1, ..., k}, where k ≤ n− 1. Therefore, we need to prove that

lim
l→+∞

F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

]

×
m∑
s=0

n∑
j=k+1

ei[λ
k+1
s tk+1+...+λns tn]cs(x) dt1 dt2 ... dtn

∥∥∥∥∥
Lp(Λt:Y )

= 0,
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i.e., that

lim
l→+∞

F1(l)lk lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

]

×
m∑
s=0

n∑
j=k+1

ei[λ
k+1
s tk+1+...+λns tn]cs(x) dtk+1 dtk+2 ... dtn

∥∥∥∥∥
Lp(Λt:Y )

= 0.

It is clear that we have the existence of a finite real constant c > 0 such that, for
every y ∈ Λt and l > 0, we have:∥∥∥∥∥

[∫
y+lΩ

−
∫
lΩ

]
m∑
s=0

n∑
j=k+1

ei[λ
k+1
s tk+1+...+λns tn]cs(x) dtk+1 dtk+2 ... dtn

∥∥∥∥∥
Y

≤ c.

Since liml→+∞[ln−1F1(l)] = 0 and lim supt→+∞ F(t)[m(Λt)]
1/p < +∞, this simply

completes the proof. �

In the continuation of subsection, we will first consider the one-dimensional set-
ting, show that the necessity in [25, Theorem 1] can be extended to the vector-
valued Besicovitch-p-almost periodic functions, where 1 ≤ p < ∞, and emphasize
some difficulties in proving the sufficiency in this theorem in the case that p > 1 (in
the existing literature, we have found many open problems regarding Besicovitch-
p-almost periodic functions with the exponent p > 1). Keeping in mind the proof
of the above-mentioned theorem, which works in the vector-valued case, as well as
the statements of Proposition 2.4(ii) and Proposition 2.12, it suffices to show that
condition (B) holds for Besicovitch-p-almost periodic functions F : R → Y, with
1 < p < ∞, λ = 0, F1(l) ≡ 1/l and F1(t) ≡ 1/t1/p. Further on, keeping in mind
Proposition 3.7 below and its proof (condition (3.7) holds on account of the Hölder
inequality), it suffices to show that there exists a finite real constant c > 0 such
that, for every real number ε ∈ (0, 1), there exists a real number l0 > 0 such that
the assumptions l ≥ l0 and Mx,F(F, P ) < ε imply the existence of a sufficiently
large number tl > 0 such that, for every t ≥ tl, we have

l−1t−(1/p)

(∫ t

−t

[∫ y+l

y

∥∥F (s)− P (s)
∥∥
Y
ds

]p
dy

)1/p

< cε.

Let ε > 0 be given, let l0 = 1 and l ≥ 1. We will show that we can take c = 5 in
the above requirement. First of all, we have the existence of a finite real number
t0 > 0 such that ∫ t

−t

∥∥F (s)− P (s)
∥∥p
Y
ds ≤ εtp, t ≥ t0.

Then there exists a sufficiently large number t1l > 0 such that

l−1t−(1/p)

(∫ t0+l

−(t0+l)

[∫ y+l

y

∥∥F (s)− P (s)
∥∥
Y
ds

]p
dy

)1/p

< ε, t ≥ t1l .
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There exists a great similarity in the analysis of estimates for the intervals [−t,−(t0+
l)] and [t0 + l, t] and, because of that, we will only prove that there exists a suffi-
ciently large number t2l > t0 such that

l−1t−(1/p)

(∫ t

t0+l

[∫ y+l

y

∥∥F (s)− P (s)
∥∥
Y
ds

]p
dy

)1/p

< 2ε, t ≥ t2l .

This follows from the next computation (at the fourth line, we can use the inequality
appearing on l. 12, p. 134 of [25], which is a consequence of a simple computation
with double integrals):

l−1t−(1/p)

(∫ t

t0+l

[∫ y+l

y

∥∥F (s)− P (s)
∥∥
Y
ds

]p
dy

)1/p

≤ l−1t−(1/p)

(∫ t

t0+l

[
l1−

1
p

(∫ y+l

y

∥∥F (s)− P (s)
∥∥p
Y
ds

)1/p]p
dy

)1/p

= l−(1/p)t−(1/p)

(∫ t

t0+l

∫ y+l

y

∥∥F (s)− P (s)
∥∥p
Y
ds dy

)1/p

≤ l−(1/p)t−(1/p)

(
l

∫ t+l

−t

∥∥F (s)− P (s)
∥∥p
Y
ds

)1/p

≤ εt−(1/p)[2
(
t+ l

)
]1/p < 2ε, t ≥ t2l .

If p > 1, then it is very difficult to show that the validity of condition (B) with
F1(l) ≡ l−1 and F(t) ≡ t−(1/p) for a Besicovitch-p-continuous function F : R → Y
implies the validity of condition (A) for F (·), even in the scalar-valued case. In
actual fact, it is very simple to prove that (B) implies the validity of equation
obtained by replacing the term | · | in the equation [25, (4)] with the term | · |p. But,
if we replace the term (we will consider the scalar-valued case, only)∣∣∣∣∣c−1

∫ c

0

[
n−1

n−1∑
k=0

f(t+ x+ kc)− n−1
n−1∑
k=0

f(x+ kc)

]
Km(t) dt

∣∣∣∣∣
in the equation [25, (*), p. 136] with the term∣∣∣∣∣c−1

∫ c

0

[
n−1

n−1∑
k=0

f(t+ x+ kc)− n−1
n−1∑
k=0

f(x+ kc)

]
Km(t) dt

∣∣∣∣∣
p

,

which can be majorized by

≤ c−p
∫ c

0

∣∣∣∣∣n−1
n−1∑
k=0

f(t+ x+ kc)− n−1
n−1∑
k=0

f(x+ kc)

∣∣∣∣∣
p

dt ·

(∫ c

0

Kq
m(t) dt

)p/q
with the help of the Hölder inequality, then it is impossible to control the term
(
∫ c

0
Kq
m(t) dt)p/q as m → +∞. This can be done only in the case that p = 1

because the Fejér kernels

Km(t) = m−1 sin2(mπt/c)/ sin2(πt/c), t ∈ R (m ∈ N)

are uniformly integrable in a neighborhood of zero with respect to m ∈ N but not
uniformly q-integrable in a neighborhood of zero with respect to m ∈ N, if q > 1.
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Concerning the multi-dimensional setting, we will prove the following result:

Proposition 3.7. Let Ω = [0, 1]n, Λ = Rn or Λ = [0,∞)n, liml→+∞[ln−1F1(l)] =
0, and let

lim
l→+∞

F1(l) sup
x∈B

∫
lΩ

∥∥∥F (t;x)− P (t;x)
∥∥∥
Y
dt = 0, B ∈ B.(3.7)

If there exists a finite real constant c > 0 such that, for every real number ε ∈ (0, 1)
and for every set B ∈ B, there exists a real number l0 > 0 such that the assumptions

l ≥ l0 and Mx,F
B (F, P ) < ε imply the existence of a sufficiently large number tl > 0

such that, for every t ≥ tl, we have

F1(l)F(t) sup
x∈B

∥∥∥∥∥
∫
y+lΩ

(
F (t;x)− P (t;x)

)
dt

∥∥∥∥∥
Lp(Λt:Y )

< cε,(3.8)

the collection B consists solely of bounded subsets of X and conditions (I)-(III) hold,
then condition (B) holds for any function F ∈ e− (B,F)−Bp(Λ×X : Y ).

Proof. Let ε > 0 and B ∈ B be given; we will consider the value λ = 0 in (B),
only. It is clear that there exist a trigonometric polynomial P (·; ·) and a finite real
number t0 > 0 such that, for every real number t ≥ t0, we have

F(t) sup
x∈B

∥∥F (t;x)− P (t;x)
∥∥
Lp(Λt:Y )

< ε.

Then we have (l > 0):

F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

]
F (t;x) dt

∥∥∥∥∥
Lp(Λt:Y )

≤ F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

](
F (t;x)− P (t;x)

)
dt

∥∥∥∥∥
Lp(Λt:Y )

+ F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

]
P (t;x) dt

∥∥∥∥∥
Lp(Λt:Y )

≤ F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
∫
y+lΩ

(
F (t;x)− P (t;x)

)
dt

∥∥∥∥∥
Lp(Λt:Y )

+ F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
∫
lΩ

(
F (t;x)− P (t;x)

)
dt

∥∥∥∥∥
Lp(Λt:Y )

+ F1(l) lim sup
t→+∞

F(t) sup
x∈B

∥∥∥∥∥
[∫

y+lΩ

−
∫
lΩ

]
P (t;x) dt

∥∥∥∥∥
Lp(Λt:Y )

.

The third term in the last estimate can be majorized as in Proposition 3.6. For the
second term, we can use the assumptions (3.7) and lim supt→+∞ F(t)[m(Λt)]

1/p <
+∞. For the first term, we can use our assumption (3.8). �

It is not difficult to prove that, for every locally integrable function F : [0,∞)n →
Y, t > 0 and t0 ∈ (0, t), we have the estimate∫

Ω0

∫
y+lΩ

‖F (s)‖Y ds dy ≤
∫

(t+l)Ω

‖F (s)‖Y ds,
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where Ω0 := tΩ \ [0, t0]n. Using the Hölder inequality and repeating verbatim the
argumentation given in the one-dimensional setting, we can prove that the require-
ments of Proposition 3.7 hold with F1(l) ≡ l−n and F(t) ≡ t−(n/p).

Finally, it seems reasonable to ask whether the validity of condition (B) with
p(·) ≡ 1 implies, along with the corresponding Besicovitch continuity assumption,
the validity of condition (A) in the multi-dimensional setting. We will not consider
this question here as well as certain possibilities to extend the results established
by A. S. Kovanko [47]-[48] to the multi-dimensional setting.

4. Applications to the abstract Volterra integro-differential
equations

In this section, we will provide several applications of our results to the various
classes of abstract Volterra integro-differential equations and the partial differential
equations.

1. In this part, we will first prove a new result about the invariance of Besicovitch-
p-almost periodicity under the actions of infinite convolution product

t 7→ F (t) :=

∫ t

−∞
R(t− s)f(s) ds, t ∈ R;(4.1)

we will only note here, without going into full details, that this result can be
formulated in the multi-dimensional setting as well ([41]). We assume that the
operator family (R(t))t>0 ⊆ L(X,Y ) satisfies that there exist finite real constants
M > 0, β ∈ (0, 1] and γ > 1 such that

∥∥R(t)
∥∥
L(X,Y )

≤M tβ−1

1 + tγ
, t > 0,(4.2)

and f(·) is Besicovitch-p-almost periodic.
The following result is closely connected with the statements of [40, Theorem

2.11.4, Theorem 2.13.10, Theorem 2.13.12]:

Proposition 4.1. Suppose that the operator family (R(t))t>0 ⊆ L(X,Y ) satisfies
(4.2), as well as that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1, ap ≥ 1, αp(β −
1)/(αp − 1) > −1 if αp > 1, and β = 1 if αp = 1. If the function f : R → X is
Stepanov-(αp)-bounded, i.e.,

∥∥f∥∥
Sp

:= sup
t∈R

∫ t+1

t

∥∥f(s)
∥∥αp ds < +∞,

and f ∈ e−(xα, t−a)−Bp(R : X), then the function F (·), given by (4.1), is bounded,
continuous and belongs to the class e− (xα, t−a)−Bp(R : Y ).

Proof. Arguing as in the proof of [40, Proposition 2.6.11], we may conclude that
the function F (·) is well-defined, bounded and continuous. Let (Pk) be a sequence
of trigonometric polynomials such that

lim
k→+∞

lim sup
t→+∞

1

2tap

∫ t

−t

∥∥f(s)− Pk(s)
∥∥αp ds = 0.(4.3)
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Applying again [40, Proposition 2.6.11], we get that the function t 7→ Fk(t) ≡∫ t
−∞R(t− s)Pk(s) ds, t ∈ R is almost periodic and we only need to prove that

lim
k→+∞

lim sup
t→+∞

1

2tap

∫ t

−t

∥∥F (s)− Fk(s)
∥∥αp ds = 0.(4.4)

In the remainder of the proof, we will consider case αp > 1 since the consideration
is quite similar if αp = 1. Let ζ ∈ (1/(αp), (1/(αp)) + γ − β). Then it is clear
that the function s 7→ |s|β−1(1 + |s|)ζ/(1 + |s|γ), s ∈ R belongs to the space
Lαp/(αp−1)((−∞, 0)); further on, arguing as in the proof of [40, Theorem 2.11.4],
we have that the function s 7→ (1 + |s|)−ζ‖Pk(s+ z)− f(s+ z)‖, s ∈ R belongs to
the space Lαp((−∞, 0)) for all k ∈ N and z ∈ R. The estimate (4.4) follows from
the next computation (M1 > 0 and c > 0 are finite real constants):

1

2tap

∫ t

−t

∥∥F (s)− Fk(s)
∥∥αp ds

≤ 1

2tap

∫ t

−t

∣∣∣∣∣
∫ 0

−∞
‖R(−z)‖ ·

∥∥Pk(s+ z)− f(s+ z)
∥∥ dz∣∣∣∣∣

αp

ds

≤ M

2tap

∫ t

−t

∣∣∣∣∣
∫ 0

−∞

|z|β−1(1 + |z|)ζ

(1 + |z|γ)
· (1 + |z|)−ζ

∥∥Pk(s+ z)− f(s+ z)
∥∥ dz∣∣∣∣∣

αp

ds

≤ M1

2tap

∫ t

−t

∫ 0

−∞

1

(1 + |z|αζ)p
∥∥Pk(s+ z)− f(s+ z)

∥∥αp dz ds
=

M1

2tap

∫ t

−t

∫ t

z

1

(1 + |z − s|αζ)p
∥∥Pk(z)− f(z)

∥∥αp ds dz
+
M1

2tap

∫ t

−∞

∫ t

−t

1

(1 + |z − s|αζ)p
∥∥Pk(z)− f(z)

∥∥αp ds dz
≤ M1

tap

∫ t

−t

∥∥Pk(z)− f(z)
∥∥αp dz · ∫ +∞

−∞

ds

(1 + |s|ζ)αp

+
M1

2tap

∫ −3t

−∞

∫ t

−t

1

(1 + |z − s|αζ)p
∥∥Pk(z)− f(z)

∥∥αp ds dz
+
M1

2tap

∫ 3t

−3t

∫ t

−t

1

(1 + |z − s|αζ)p
∥∥Pk(z)− f(z)

∥∥αp ds dz
≤ M1

tap

∫ t

−t

∥∥Pk(z)− f(z)
∥∥αp dz · ∫ +∞

−∞

ds

(1 + |s|ζ)αp

+
M1

tap

∫ 3t

−3t

∥∥Pk(z)− f(z)
∥∥αp dz · ∫ +∞

−∞

ds

(1 + |s|ζ)αp

+
cM1t

2tap

∫ −3t

−∞

1

(1 + |z/2|αζ)p
∥∥Pk(z)− f(z)

∥∥αp dz,
involving the Hölder inequality, the Fubini theorem and an elementary change of
variables in the double integral; here we use (4.3) and the fact that

lim
t→+∞

∫ −3t

−∞

1

(1 + |z/2|αζ)p
∥∥Pk(z)− f(z)

∥∥αp dz = 0.

�
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In the following result, the inhomogeneity f(·) is not necessarily Stepanov-(αp)-
bounded:

Proposition 4.2. Suppose that the operator family (R(t))t>0 ⊆ L(X,Y ) satisfies
(4.2), as well as that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1, ap ≥ 1, αp(β − 1)/(αp−
1) > −1 if αp > 1, and β = 1 if αp = 1. If the function f : R → X belongs to the
class e−(xα, t−a)−Bp(R : X) and there exists a finite real constant M > 0 such that
‖f(t)‖ ≤M(1 + |t|)b, t ∈ R for some real constant b ∈ [0, γ − β), then the function
F (·), given by (4.1), is continuous, belongs to the class e− (xα, t−a)− Bp(R : Y ),
and there exists a finite real constant M ′ > 0 such that ‖F (t)‖Y ≤ M ′(1 + |t|)b,
t ∈ R.

Proof. The proof is very similar to the proof of Proposition 4.1 and we will only
outline the main details. Since b ∈ [0, γ − β), it can be simply shown that the
function F (·) is well-defined, measurable as well as that there exists a finite real
constant M ′ > 0 such that ‖F (t)‖Y ≤ M ′(1 + |t|)b, t ∈ R. In order to prove the
continuity of function F (·) at the fixed point t ∈ R, we take first any integer k ∈ N
such that ∫ +∞

k

sβ−1(1 + s)b

1 + sγ
ds ≤ ε

4M(1 + |t|b)3b
,(4.5)

where a real number ε > 0 is given in advance and the real constant M > 0 has the
same value as in (4.2). Since ‖R(·)‖L(X,Y ) ∈ Lαp/(αp−1)[0, k] and ‖f‖ ∈ Lαploc[0, k],
we can apply the Hölder inequality in order to see that the function Fk(·) :=∫ k

0
R(s)f(· − s) ds, · ∈ R is continuous. Take any δ ∈ (0, 1) such that∥∥∥∥∥

∫ k

0

R(s)
[
f(t− s)− f(t′ − s)

]
ds

∥∥∥∥∥
Y

<
ε

2
for |t− t′| ≤ δ.(4.6)

A very simple argumentation involving (4.5) shows that∥∥∥∥∥
∫ +∞

k

R(s)
[
f(t− s)− f(t′ − s)

]
ds

∥∥∥∥∥
Y

≤ ε/2,

which along with (4.6) completes the proof of continuity of function F (·) at the point
t. The belonging of function F (·) to the class e − (xα, t−1/p) − Bp(R : Y ) can be
proved as above, by taking any real number ζ ∈ ((1/(αp))+b, (1/(αp))+γ−β). �

Remark 4.3. Suppose that there exist finite real constants M > 0, c > 0 and
β ∈ (0, 1] such that ∥∥R(t)

∥∥
L(X,Y )

≤Me−cttβ−1, t > 0.

This estimate appears in the analysis of (degenerate) semigroups of operators sat-
isfying condition [40, (P)] and, in particular, in the analysis of semigroups of op-
erators generated by almost sectorial operators. In this case, we do not need the
assumption α < γ − β.

It is clear that Proposition 4.1 and Proposition 4.2 can be applied to a large class
of the abstract (degenerate) Volterra integro-differential equations without initial
conditions. For example, we can apply this result in the analysis of the existence
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and uniqueness of Besicovitch-p-almost periodic type solutions of the initial value
problems with constant coefficients

Dγ
t,+u(t, x) =

∑
|α|≤k aαf

(α)(t, x) + f(t, x), t ∈ R, x ∈ Rn

in the space Lp(Rn), where γ ∈ (0, 1), Dγ
t,+u(t) denotes the Weyl-Liouville fractional

derivative of order γ, 1 ≤ p < ∞ and some extra assumptions are satisfied. We
can also consider the existence and uniqueness of Besicovitch-p-almost periodic
type solutions of the fractional Poisson heat equation in Lp(Rn), and a class of the
abstract fractional differential equations with the higher-order elliptic operators in
the Hölder spaces ([40]).

2. In this part, we analyze the abstract nonautonomous differential equations of
first order. First of all, we will remind the readers of some basic definitions from the
theory of evolution equations, hyperbolic evolution systems and Green’s functions
(see [52] and the references cited in [40, Section 2.14]).

Definition 4.4. A family {U(t, s) : t ≥ s, t, s ∈ R} of bounded linear operators
on X is said to be an evolution system if and only if the following holds:

(i) U(s, s) = I, U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s and t, r, s ∈ R,
(ii) {(τ, s) ∈ R2 : τ > s} 3 (t, s) 7→ U(t, s)x is continuous for any fixed element

x ∈ X.

Here, I denotes the identity operator on X. We assume that the family A(·)
satisfies conditions [40, (H1)-(H2)]; then there exists an evolution system {U(t, s) :
t ≥ s, t, s ∈ R} generated by the family A(t). If Γ(·, ·) denotes the associated
Green’s function, then we know that there exists a finite real constant M > 0 such
that

‖Γ(t, s)‖ ≤Me−ω|t−s|, t, s ∈ R.(4.7)

The function

u(t) :=

∫ +∞

−∞
Γ(t, s)f(s) ds, t ∈ R(4.8)

is said to be a unique mild solution of the abstract Cauchy problem

u′(t) = A(t)u(t) + f(t), t ∈ R.

The proof of subsequent theorem can be deduced using the argumentation em-
ployed in the proof of [40, Theorem 3.7.1], where we have assumed that p = 1, the
argumentation contained in the proof of Proposition 4.1, the estimate (4.7), and
the following facts:

(i) If P (·) is a trigonometric polynomial, then the functions

t 7→
∫ t
−∞ Γ(t, s)P (s) ds, t ∈ R and t 7→

∫ +∞
t

Γ(t, s)P (s) ds, t ∈ R are almost

periodic; see, e.g., the proof of [22, Theorem 2.3].

(ii) We write
∫ +∞
−∞ Γ(t, s)f(s) ds =

∫ +∞
t

Γ(t, s)f(s) ds+
∫ t
−∞ Γ(t, s)f(s) ds, t ∈

R. The both addends can be considered similarly, while the second addend

is identically equal to
∫ 0

−∞ Γ(t, t+ s)f(t+ s) ds, t ∈ R.

Theorem 4.5. Suppose that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1 and ap ≥ 1.
If the function f : R → X is bounded and f ∈ e − (xα, t−a) − Bp(R : X), then
the function u(·), given by (4.8), is bounded, continuous and belongs to the class
e− (xα, t−a)−Bp(R : X).
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3. The use of Theorem 2.10 is almost mandatory in the analysis of the existence
and uniqueness of Besicovitch almost periodic type solutions for some classes of the
abstract semilinear Cauchy problems. The first part of this result has a serious un-
pleasant drawback because we must impose that the function G : Rn×Y → Z from
its formulation is Bohr B-almost periodic, which automatically leads to the exis-
tence and uniqueness of almost periodic solutions of the abstract semilinear Cauchy
problems under our consideration, in a certain sense. Here we will present the fol-
lowing illustrative application of Theorem 2.10(ii), with ζ = 1, and Proposition
4.1.

Suppose that the operator family (R(t))t>0 ⊆ L(X) satisfies (4.2), as well as
that 1 ≤ p, q < +∞, 1/p + 1/q = 1, q(β − 1) > −1 if p > 1, and β = 1 if p = 1.
If (R(t))t>0 is a solution operator family which governs solutions of the abstract
fractional Cauchy inclusion Dγ

t,+u(t) ∈ Au(t) + g(t), t ∈ R, where γ ∈ (0, 1), and a
closed multivalued linear operator A satisfies condition [40, (P)], then it is usually
said that a continuous function t 7→ u(t), t ∈ R is a mild solution of the abstract
semilinear fractional Cauchy inclusion

(SCP): Dγ
t,+u(t) ∈ Au(t) +G(t;u(t)), t ∈ R

if and only if

u(t) =

∫ t

−∞
R(t− s)G(s;u(s)) ds, t ∈ R.

Suppose that G ∈ e − (B, x, t−n/p) − Bpa,1(R × X : X), where B denotes the
family of all bounded subsets of X. Suppose, further, that there exists a finite
real constant a > 0 such that (2.5) holds with α = 1, a

∫∞
0
‖R(s)‖ ds < 1, and

supt∈R,x∈B ‖G(t;x)‖ < +∞ for every bounded subset B of X. It can be simply

proved that the vector space Cb(R : X)∩ e− (x, t−1/p)−Bp(R : X) equipped with
the sup-norm is a Banach space. Applying Proposition 4.1(ii) and Theorem 2.10,
we get that the mapping Φ : Cb(R : X) ∩ e − (x, t−1/p) − Bp(R : X) → Cb(R :

X) ∩ e − (x, t−1/p) − Bp(R : X), given by (Φu)(t) :=
∫ t
−∞R(t − s)G(s;u(s)) ds,

t ∈ R, is a well-defined contraction; therefore, there exists a unique mild solu-
tion u(·) of the abstract semilinear inclusion (SCP) which belongs to the space
Cb(R : X) ∩ e− (x, t−1/p)−Bp(R : X).

4. Our results about the invariance of Besicovitch-p-almost periodicity under
the actions of infinite convolution products can be also formulated for the usual
convolution

f 7→ F (x) ≡
∫
Rn
h(x− y)f(y) dy, x ∈ Rn,(4.9)

provided that the function h ∈ L1(Rn) has a certain growth order. Before stating
a general result in this direction, we will first consider the inhomogeneous heat
equation in Rn whose solutions are governed by the action of Gaussian semigroup

F 7→ (G(t)F )(x) ≡
(
4πt
)−n/2 ∫

Rn
e−|y|

2/4tF (x− y) dy, t > 0, x ∈ Rn.(4.10)

Without going into full details, we will only note that the formula (4.10) makes sense
even if the function F (·) is polynomially bounded; our basic assumption will be that
there exist two finite real numbers b ≥ 0 and c > 0 such that |F (x)| ≤ c(1 + |x|)b,
x ∈ Rn as well as that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1, 1/(αp) + 1/q =
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1 and F ∈ e − (xα, t−a) − Bp(Rn : C). Let us fix a real number t0 in (4.10).
Then the mapping x 7→ (G(t0)F )(x), x ∈ Rn is well-defined and has the same
growth as the inhomogeneity f(·). Now we will prove that belongs to the class
e− (xα, t−a)−Bp(Rn : C) as well. Let ε > 0, let

ct0 :=
(
4πt0

)−n/2∥∥∥e−|·|2/8t0∥∥∥αp
Lq(Rn)

,

and let ε0 > 0 be such that

ε0 · 2apct0
∫
Rn
e−|y|

2p/8t0
(
1 + |y|

)n
dy < ε.

We know that there exist a trigonometric polynomial P (·) and a finite real number
t1 > 0 such that ∫

[−t,t]n

∣∣F (x)− P (x)
∣∣αp dx < ε0t

ap, t ≥ t1.

Furthermore, we know that the function x 7→ (G(t0)P )(x), x ∈ Rn is Bohr almost
periodic (see [41, Subsection 6.1.7]) so that the final conclusion simply follows from
the next computation (see also the computation from the proof of Proposition 4.1):

1

tap

∫
[−t,t]n

∣∣(G(t0)F )(x)− (G(t0)P )(x)
∣∣αp dx

≤ ct0
tap

∫
[−t,t]n

∫
Rn
e−|y|

2αp/8t0
∣∣F (x− y)− P (x− y)

∣∣αp dy dx(4.11)

=
ct0
tap

∫
Rn
e−|y|

2αp/8t0

∫
[−t,t]n

∣∣F (x− y)− P (x− y)
∣∣αp dx dy

≤ ct0
tap

∫
Rn
e−|y|

2αp/8t0

∫
[−t+|y|,t+|y|]n

∣∣F (x)− P (x)
∣∣αp dx dy

≤ ct0
tap

∫
Rn
e−|y|

2αp/8t0ε02ap
(
tap + |y|ap

)
dy, t ≥ t1.

The estimate (4.11) is obtained by writing the term e−|y|
2/4t0 = e−|y|

2/8t0e−|y|
2/8t0

and applying the Hölder inequality after that. This can be also done in the general
case; arguing so, we can prove the following result:

Theorem 4.6. Suppose that b ≥ 0, α > 0, a > 0, 1 ≤ p < +∞, αp ≥ 1, 1/(αp) +
1/q = 1, f ∈ e− (xα, t−a)−Bp(Rn : Y ) and ‖f(x)‖Y ≤ c(1 + |x|)b, x ∈ Rn. If there
exist two functions h1 : Rn → C and h2 : Rn → C such that h = h1h2, h1 ∈ Lq(Rn)
and |h1(·)|α[1 + | · |]ζ ∈ Lp(Rn) with ζ = max(bα, a), then the function F (·), given
by (4.9), belongs to the class e − (xα, t−a) − Bp(Rn : Y ) and has the same growth
order as f(·).

We can simply apply Theorem 2.10 and Theorem 4.6 in the analysis of the
existence and uniqueness of bounded Besicovitch-p-almost periodic solutions for a
class of the semilinear Hammerstein integral equations of convolution type on Rn;
see [41, p. 362] for more details. It would be very tempting to incorporate Theorem
4.6 in the analysis of the existence and uniqueness of Besicovitch-p-almost periodic
solutions of the abstract ill-posed Cauchy problems whose solutions are governed
by integrated solution operator families or C-regularized solution operator families
(cf. [41, pp. 543–545] for more details).
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In the remaining applications, we will consider the usual case φ(x) ≡ x and the
class of Besicovitch-p-almost periodic functions.

5. Without going into full details, we would like to note that the argumentation
contained in our analysis of [41, Example 3, p. XXXV] enables one to consider
the existence and uniqueness of Besicovitch-p-almost periodic type solutions of the
wave equation in R2 whose solutions are given by the famous d’Alembert formula.
For example, if the functions f(·) and g[1](·) from this example are Besicovitch-p-
almost periodic in R, then the solution u(x, t) will be Besicovitch-p-almost periodic
in R2. A similar conclusion can be clarified for the solutions of the wave equation
given by the Kirchhoff (Poisson) formula; see [41] for more details.

6. In this issue, we continue our analysis of the evolution systems considered in
the final application of [41, Section 6.3, pp. 426–428]. Suppose that Y := Lr(Rn)
for some r ∈ [1,∞) and A(t) := ∆+a(t)I, t ≥ 0, where ∆ is the Dirichlet Laplacian
on Lr(Rn), and a ∈ L∞([0,∞)). Then the evolution system (U(t, s))t≥s≥0 ⊆ L(Y )
generated by the family (A(t))t≥0 exists; this evolution system is given by U(t, t) :=
I for all t ≥ 0, and

[U(t, s)F ](u) :=

∫
Rn
K(t, s,u,v)F (v) dv, F ∈ Lr(Rn), t > s ≥ 0,

where

K(t, s,u,v) :=
(
4π(t− s)

)−n2 e∫ ts a(τ) dτ exp

(
−|x− y|

2

4(t− s)

)
, t > s, u, v ∈ Rn.

We know that, for every τ ∈ Rn, we have

K(t, s,u + τ,v + τ) = K(t, s,u,v), t > s ≥ 0, u, v ∈ Rn,

as well as that, under certain assumptions, a unique mild solution of the abstract
Cauchy problem (∂/∂t)u(t, x) = A(t)u(t, x), t > 0; u(0, x) = F (x) is given by
u(t, x) := [U(t, 0)F ](x), t ≥ 0, x ∈ Rn. Suppose now that F (·) ∈ Y is Besicovitch-
p-almost periodic for some finite exponent p ≥ 1. If ε > 0 is given in advance, then
we can find a finite real number t0 > 0 and a trigonometric polynomial P (·) such
that

∫
[−t,t]n

∣∣F (u)− P (u)
∣∣p du < εtn, t ≥ t0.
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The function uP (t, x) := [U(t, 0)P ](x), t ≥ 0, x ∈ Rn is well-defined, continuous
and satisfies that, if τ ∈ Rn is an ε-almost period of P (·), then

|uP (t,u + τ)− uP (t,u)| =

∣∣∣∣∣
∫
Rn

[
K(t, 0,u + τ,v)−K(t, 0,u,v)

]
P (v) dv

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn
K(t, 0,u + τ,v + τ)P (v + τ) dv −

∫
Rn
K(t, 0,u,v)P (v) dv

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn
K(t, 0,u,v)

[
P (v + τ) dv − P (v)

]
dv

∣∣∣∣∣
≤ ct

∫
Rn
e−
|u−v|2

4t |P (v + τ)− P (v)| dv

≤ ctε
∫
Rn
e−
|u−v|2

4t dv = ctε

∫
Rn
e−
|v|2
4t dv, t > 0, u ∈ Rn;

hence, the function uP (t, ·) is almost periodic for every fixed real number t > 0.
Writing∫
Rn
K(t, 0,u,v)

[
F (v)−P (v)

]
dv =

∫
Rn
K(t, 0,u,v−u)

[
F (v−u)−P (v−u)

]
dv,

and the term e−|v|
2/4t as e−|v|

2/8t ·e−|v|2/8t in the corresponding computation after
that, we may conclude as before that the function u(t, ·) is Besicovitch-p-almost
periodic for every fixed real number t > 0.

7. In this part, we will present certain applications of Proposition 2.7 in the
analysis of the existence and uniqueness of Besicovitch almost periodic solutions
for certain classes of PDEs; see, e.g., [59] and references cited therein. We will
revisit here the classical theories of quasi-linear partial differential equations of first
order and the linear partial differential equations of second order with constant
coefficients, considering solutions defined on certain proper subsets Λ of Rn, where
n ≥ 2.

7.1. It is well known that the general solution of equation ux+uy = u is given by
u(x, y) = g(y − x)ex, (x, y) ∈ R2, where g : R → R is a continuously differentiable
function. Suppose that Λ := (−∞, 0] × R and the function g(·) is Besicovitch-q-
almost periodic for some finite exponent q > 1. Then there exists a sequence (Pk)
of trigonometric polynomials such that

lim
k→+∞

lim sup
t→+∞

t−1

∫ t

−t

∣∣Pk(s)− g(s)
∣∣q ds = 0.

Since Qk(x, y) := Pk(x− y), (x, y) ∈ R2 is a sequence of trigonometric polynomials
of two variables, the above simply implies along with an elementary argumentation
that

lim
k→+∞

lim sup
t→+∞

t−2

∫ t

−t

∫ t

−t

∣∣Qk(x, y)− g(x− y)
∣∣q dx dy = 0,

so that the function G(x, y) := g(x−y), (x, y) ∈ R2 is Besicovitch-q-almost periodic.
Since the function (x, y) 7→ ex, (x, y) ∈ Λ is Besicovitch-p-almost periodic for any
finite exponent p ≥ 1, an application of Proposition 2.7 yields that the solution
u(x, y) is Besicovitch-r-almost periodic on Λ, for any exponent r ∈ [1, q).
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7.2. Consider the linear partial differential equation of second order with con-
stant coefficients:

Auxx + 2Buxy + Cuyy + 2Dux + 2Euy + Fu = 0,(4.12)

where A, B, C, D,E, F are real constants such that B > 0, C > 0, B2 ≥ AC,
E2 ≥ CF, B2 > E2 − CF, and(

BE − CD
)2

=
(
B2 −AC

)(
E2 − CF

)
.

As proposed by J. D. Kečkić in [37] (see also [38]), the general solution u(x, y) of
the equation (4.12) is given by

u(x, y) = e

(
−BC+

√
E2−CF
C

)
y
f

(
x+

(
−E
C

+
1

C

√
B2 −AC

)
y

)

+ e

(
−BC−

√
E2−CF
C

)
y
g

(
x+

(
−E
C
− 1

C

√
B2 −AC

)
y

)
,

where f : R → R and g : R → R are arbitrary two times continuously differ-
entiable functions. Suppose that Λ = R × [0,+∞) and the functions f(·) and
g(·) are Besicovitch-q-almost periodic for some finite exponent q > 1. Arguing as
above, an application of Proposition 2.7 yields that the solution u(x, y) of (4.12) is
Besicovitch-r-almost periodic on Λ, for any exponent r ∈ [1, q).

We close this section with the observation that it is not clear how one can prove
that the solutions considered above are Besicovitch-q-almost periodic.

5. Conclusions and final remarks

In this paper, we have considered various classes of multi-dimensional Besicovitch
almost periodic type functions. The main structural properties of multi-dimensional
Besicovitch almost periodic type functions are established. Many structural results
known in the one-dimensional setting are reconsidered and extended to the functions
of the form F : Λ × X → Y, where ∅ 6= Λ ⊆ Rn, X and Y are complex Banach
spaces. We have also furnished many illustrative examples, useful remarks and
applications to the abstract Volterra integro-differential equations.

Concerning certain drawbacks of this work, we would like to note that we have
not considered here the differentiation and integration of multi-dimensional Besicov-
itch almost periodic type functions as well as the dual spaces of multi-dimensional
Besicovitch almost periodic type functions. Besides many other topics, in this paper
we have not reconsidered the notions of Mp-almost periodicity and Mp-regularity
in the multi-dimensional setting as well (see [3] and [7] for more details about the
subject). The class of metrical multi-dimensional Besicovitch almost periodic func-
tions will be considered somewhere else following the general approach obeyed in
[45].

The class of multi-dimensional ρ-almost periodic type functions, extending the
class of multi-dimensional c-almost periodic type functions when ρ = cI, have re-
cently been investigated by M. Fečkan et al. [27]; see also [43]-[44]. The class of
Besicovitch-(p, c)-almost periodic functions, where 1 ≤ p < ∞ and c 6= 1, has not
been analyzed in the existing literature so far, even in the one-dimensional setting.
At the end of paper, we will briefly explain that the method proposed in the proof of
[39, Proposition 2.8], a fundamental result about c-almost periodic functions saying
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that any c-almost periodic function f : R→ Y is almost periodic, cannot be essen-
tially employed in the analysis of corresponding classes of Besicovitch-(p, c)-almost
periodic type functions:

Example 5.1. Suppose that p ≥ 1, c ∈ C \ {0}, m ∈ N, cm = 1, and the function
f : R → C is Besicovitch-(p, c)-almost periodic, i.e., for every ε > 0 there exists a
satisfactorily uniform set A = {τi : i ∈ Z} ⊆ R such that

lim sup
t→+∞

(
1

2t

∫ t

−t

∣∣f(s+ τi)− cf(s)
∣∣p ds)1/p

< ε(5.1)

and, for every l > 0,

lim sup
t→+∞

(
1

2t

∫ t

−t

[
lim sup
k→+∞

1

2k + 1

k∑
i=−k

l−1

∫ x+l

x

∣∣f(s+ τi)− cf(s)
∣∣p ds] dx)1/p

< ε;

(5.2)

cf. [8] for the notion of a satisfactorily uniform set in R. Then the set mA is also
satisfactorily uniform and for each i ∈ Z we have:∫ t

−t

∣∣f(s+mτi)− f(s)
∣∣p ds

≤
∫ t

−t

(
m−1∑
j=0

|c|j
∣∣f(s+ (m− j)τi)− cf(s+ (m− j − 1)τi)

∣∣)p ds
≤ cm,p

m−1∑
j=0

∫ t+(m−j−1)τi

−t+(m−j−1)τi

∣∣f(s+ τi)− cf(s)
∣∣p ds

≤ 2mcm,pε
p
(
t+
∣∣t+ τi

∣∣+ ...+ |t+ (m− 1)τi|
)

≤ 2mcm,pε
p
(
mt+

m2

2
|τi|
)
≤ Const. · 2tεp, t ≥ t0(ε, i),

for some finite real constants cm,p > 0 and t0(ε, i) > 0. Therefore, (5.1) holds with
the number c replaced by the number 1 therein, which can be simply transferred
to the multi-dimensional setting. But, it is not clear how we can deduce the cor-
responding conclusion for the equation (5.2); arguing as above, we can only prove
that there exists a finite real constant cm,p > 0 such that:∫ t

−t

[
lim sup
k→+∞

1

2k + 1

k∑
i=−k

l−1

∫ x+l

x

∣∣f(s+ τi)− f(s)
∣∣p ds] dx

≤ cm,p

{∫ t

−t

[
lim sup
k→+∞

1

2k + 1

k∑
i=−k

l−1

∫ x+l

x

∣∣f(s+ τi)− cf(s)
∣∣p ds] dx

+

∫ t

−t

[
lim sup
k→+∞

1

2k + 1

k∑
i=−k

l−1

∫ x+τi+l

x+τi

∣∣f(s+ τi)− cf(s)
∣∣p ds] dx

+ ...+

∫ t

−t

[
lim sup
k→+∞

1

2k + 1

k∑
i=−k

l−1

∫ x+(m−1)τi+l

x+(m−1)τi

∣∣f(s+ τi)− cf(s)
∣∣p ds] dx},

which seems to be completely inapplicable for our purposes.
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To the best knowledge of the author, the class of Besicovitch-p-almost periodic
functions in Rn has not yet been considered in a Bohr like manner (n ≥ 2). For
further information concerning Besicovitch almost periodic functions in Rn and
satisfactorily uniform sets in Rn, we also refer the reader to the forthcoming research
monograph [42].
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[27] M. Fečkan, M. T. Khalladi, M. Kostić, A. Rahmani, Multi-dimensional ρ-almost periodic

type functions and applications, submitted. 2021. arXiv:2109.10223.
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