Solving the Sample Size Problem for Resource Selection Analysis

Garrett Street ${ }^{1}$, Jonathan Potts ${ }^{2}$, Luca Börger ${ }^{3}$, James Beasley ${ }^{4}$, Stevew Demarais ${ }^{1}$, John Fryxell ${ }^{5}$, Philip McLoughlin ${ }^{6}$, Kevin Monteith ${ }^{7}$, Christina Prokopenko ${ }^{8}$, Milton Ribeiro ${ }^{9}$, Arthur Rodgers ${ }^{10}$, Bronson Strickland ${ }^{1}$, Floris van Beest ${ }^{11}$, David Bernasconi ${ }^{4}$, Larissa Beumer 11, Guha Dharmarajan ${ }^{4}$, Samantha Dwinnel ${ }^{7}$, David Keiter ${ }^{12}$, Alexine Keuroghlian ${ }^{13}$, Levi Newediuk ${ }^{8}$, Júlia Oshima ${ }^{14}$, Olin Rhodes ${ }^{4}$, Peter Schlichting ${ }^{15}$, Neils Schmidt ${ }^{11}$, and Eric Vander Wal ${ }^{8}$
${ }^{1}$ Mississippi State University
${ }^{2}$ University of Sheffield
${ }^{3}$ Swansea University
${ }^{4}$ University of Georgia
${ }^{5}$ University of Guelph
${ }^{6}$ University of Saskatchewan
${ }^{7}$ University of Wyoming
${ }^{8}$ Memorial University of Newfoundland
${ }^{9}$ Universidade Estadual Paulista
${ }^{10}$ Ontario Ministry of Natural Resources and Forestry
${ }^{11}$ Aarhus Universitet
${ }^{12}$ University of Nebraska-Lincoln
${ }^{13}$ IUCN
${ }^{14}$ Universidade Estadual Paulista Julio de Mesquita Filho Departamento de Ecologia
Campus de Rio Claro
${ }^{15}$ Arizona State University

March 30, 2022

Abstract

Resource selection analysis (RSA) is a cornerstone approach for understanding animal distributions, yet there exists no rigorous quantification of sample sizes required to obtain reliable results. We provide closed-form mathematical expressions for both the number of animals and relocations per animal required for parameterising RSA to a given degree of precision. Required sample sizes depend on just two quantities: habitat selection strength and an index of landscape complexity, which we define rigorously. We validate our solutions using $5,678,623 \mathrm{GPS}$ locations from 511 animals from 10 species (omnivores, carnivores, and herbivores from boreal, temperate, and tropical forests, montane woodlands, swamps, and tundra). Our results contradict conventional wisdom by showing that environmental effects on distributions can often be estimated with fewer animals and relocations than assumed, with far-reaching implications for ecologists, conservationists, and natural resource managers.

Hosted file

How Many Animals.pdf available at https://authorea.com/users/471366/articles/562865-solving-the-sample-size-problem-for-resource-selection-analysis

