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BACKGROUND: Despite the construction of the metagenome of the asthmatic lung, limitations persist in sampling the
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the distinct characteristics of the microbiome in asthmatics with those in healthy controls and proposed a diagnostic artificial

intelligence-based model of asthma. METHODS: We obtained the EBC from 58 healthy controls and 251 patients with asthma.

EVs were isolated from the EBC and analyzed. The extracted 16s rDNA was subjected to next generation sequencing. Taxo-

nomic profiling was conducted for all samples at the genus level. A combination of artificial neural network (ANN) and gradient

boosting (GBM) was applied to selective EBC biomarkers. RESULTS: The asthma group exhibited significantly higher alpha

diversity based on the results of the Chao1, Shannon, and Simpson indices. The bacterial composition of patients with asthma

different from that of the controls. At the genus level, Sphingomonas, Akkermansia, Methylophaga, Acidocella, and Marinobac-

ter were significantly more abundant in patients with asthma. The diagnostic model using GBM and ANN demonstrated good

performance with respective areas under the curve of 0.832 and 0.769. Firmicutes and Proteobacteria at the phylum level were

common important features between the GBM and ANN asthma models. CONCLUSION: We demonstrated a distinct pattern

in the microbiome of patients with asthma, indicating the potential role of microbiome-based diagnosis of asthma. To the best

of our knowledge, this was the first study to identify the microbiome in asthma using EBC-derived EVs.
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Abstract

BACKGROUND: Despite the construction of the metagenome of the asthmatic lung, limitations persist
in sampling the bronchial airway. This study analyzed extracellular vesicles (EVs) obtained from exhaled
breath condensate (EBC) to compare the distinct characteristics of the microbiome in asthmatics with those
in healthy controls and proposed a diagnostic artificial intelligence-based model of asthma.

METHODS: We obtained the EBC from 58 healthy controls and 251 patients with asthma. EVs were
isolated from the EBC and analyzed. The extracted 16s rDNA was subjected to next generation sequencing.
Taxonomic profiling was conducted for all samples at the genus level. A combination of artificial neural
network (ANN) and gradient boosting (GBM) was applied to selective EBC biomarkers.

RESULTS: The asthma group exhibited significantly higher alpha diversity based on the results of the Chao1,
Shannon, and Simpson indices. The bacterial composition of patients with asthma different from that of the
controls. At the genus level, Sphingomonas , Akkermansia ,Methylophaga , Acidocella , and Marinobacter
were significantly more abundant in patients with asthma. The diagnostic model using GBM and ANN
demonstrated good performance with respective areas under the curve of 0.832 and 0.769. Firmicutes and
Proteobacteria at the phylum level were common important features between the GBM and ANN asthma
models.

CONCLUSION: We demonstrated a distinct pattern in the microbiome of patients with asthma, indicating
the potential role of microbiome-based diagnosis of asthma. To the best of our knowledge, this was the first
study to identify the microbiome in asthma using EBC-derived EVs.

Keyword: asthma; microbiome; exhaled breath condensate; extracellular vesicles; metagenomics

Abbreviations used

EV - Extracellular vesicles

EBC - Exhaled breath condensate

AI - Artificial intelligence

OUT - Operational taxonomic unit

GBM - Gradients Boosting Machine

ANN - Artificial Neural Network

AUC – Area under the curve

COPD - Chronic obstructive pulmonary diseases

BAL - Bronchoalveolar lavage

Introduction

Asthma is a complex inflammatory disease resulting from the interaction between genetic susceptibility and
environmental exposures over the course of the individuals life 1. The bronchial microbiome of patients with
asthma differs from that of the healthy controls 2,3. Researchers have studied the relationships between the
respiratory microbiota and heterogeneity of asthma, and suggested that the microbiome may be a factor

2
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. determining asthma progression 4,5. The potential role of the airway microbiota has been the focus of
research on the pathogenesis of asthma.

Metagenomic analysis has been conducted using 16S rDNA sequencing from extracellular vesicles (EVs) to
identify microbiomes and provide culture-independent estimation of microbial diversity6. EVs, which are
nanoparticles secreted by bacteria, have an important biological function as intercellular signaling media-
tors via enclosed proteins, nucleic acids, and lipids, and as biomarkers for the diagnosis and prognosis of
diseases7,8. They also contain fragments of bacterial genomic DNA and induce the host immune response,
and may reflect the microbiota of the host9. Thus, EVs are valuable diagnostic tool for metagenomics.

There is no consensus regarding to the best sample procedure for the metagenomics analysis of respira-
tory disease. Studies of the lower airways can be challenging because of the limitations associated with
sampling the bronchial airway, which involves invasive bronchoscopy. Exhaled breath condensate (EBC)
contains aerosol and volatile compounds that can be analyzed to noninvasively understand the physiologic
and pathologic processes in the lung10.

This study performed metagenomic analysis using EBC-dereived EVs to determine and compare the char-
acteristics of the microbiome in patients with asthma with those in healthy controls, and to investigate
the microbiome differences between eosinophilic and non-eosinophilic asthma. Moreover, we suggested a
diagnostic tool for asthma using artificial intelligence (AI) modeling based on the results of the microbiota
composition in patients with asthma.

Methods

Study population

The EBC was obtained from 58 healthy controls and 251 patients with asthma at the Asan Medical Center
between September 2014 and December 2019. Healthy controls were screened for respiratory diseases and
recruited during regular wellness examinations conducted at Asan Medical Center if they did not have any
current or previous history of pulmonary disease, as determined by the medical examination. The eligibility
criteria for patients with asthma were as follows11,12: (1) patients aged >18 years; (2) symptoms such as
dyspnea, wheezing, or cough for more than 3 months; and (3) airway hyperresponsiveness as indicated by
a 20% reduction in forced expiratory volume in 1 s (FEV1) with methacholine 16 mg/mL (PC20) on a
provocation test, or airway reversibility with FEV1 >12% (and at least 200 mL) after inhalation of a short-
acting beta-agonist. Patients with severe lung damage, bronchiectasis, or a history of lung resection were
excluded. The participants’ EBC samples were collected using the RTubeTM (Respiratory Research, Austin,
USA). Informed consent was obtained from all participants, and the study protocol was approved by the
Institutional Review Board of Asan Medical Center (IRB No. 2006-0388).

Sample processing and 16S rDNA sequencing

The collected EBC samples were stored in R-tubes at -20°C until sample processing for metagenomic sequen-
cing. Due to the relatively low sample volume, 1x phosphate buffered saline solution (Welgene, Gyeongsan,
Korea) was added to all EBC samples to attain a total volume of 1 mL for each sample. Subsequently,
samples were centrifuged for 10 min (10,000 × g, 4 °C), the supernatant was collected, and passed through
a 0.22-μm filter to sterilize the solution by removing any cells or unnecessary particles. The filtrate solu-
tion was subjected to a temperature of 100°C for 40 min and centrifuged (13,000 rpm, 4°C) for 30 min to
extract DNA from the double membrane-enclosed EVs. The DNA within the subsequent supernatant was
extracted according to the instructions provided in the DNeasy PowerSoil kit (QIAGEN, Germany) and
quantified using the QIAxpert (QIAGEN, Germany) software. The V3-V4 hypervariable regions of the 16S
rDNA contained in each sample were amplified and the libraries were prepared and quantified as described
previously13. All resulting 16S rDNA amplicons were sequenced using the MiSeq (Illumina, USA).

Taxonomic profiling of EBC samples

The 16S-based microbiome taxonomic profile of the microbial EVs isolated from the participants’ EBC

3
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. samples was analyzed using MDx-Pro ver. 2 (MD Healthcare, Korea) as described previously 14. In summary,
after trimming and merging the paired-end reads, only sequence reads with lengths greater than 350 bp and
below 550 bp were used for further analysis. Operational taxonomic units (OTUs) were assigned using
VSEARCH de novo clustering at the genus level with a similarity threshold of 97%. The Silva 132 sequence
database was used for taxonomic assignment of the OTUs in all samples.

Asthma AI modeling and feature importance analysis

Microbiome next generation sequencing (NGS) data were converted to relative composition at the genus level
to standardize the input data. A total of 2,035 features were detected from all samples at the genus level.
Two general linearized models (GLM) were developed using the t- test and linear discriminant analysis effect
size (LEfSe) methods for feature selection. Two algorithms were incorporated for AI modeling, including a
gradients-boosting machine (GBM). To apply the GBM algorithm to the tabulated microbiome composition
data, machine learning modules in the Python scikit-learn package were applied. The second algorithm was
an artificial neural network (ANN), which utilizes regularized 5-layered neural networks and was conducted
with the Tensorflow ecosystem using Python15. The ensemble algorithm was based on the average values
obtained from each prediction model. The data were split into testing and training sets 10 times before
training to validate the performance of the models. After splitting the samples, the models were trained
based on the training set, followed by validation in the test set. Feature importance was assessed using the
testing model to determine the relatively important taxa. Permutation importance was applied using the
Scikit-learn package to trace the feature importance in the AI model 16.

Statistical Analysis

Alpha diversity was ascertained using the phyloseq R package to calculate the observed species richness and
Chao1 for estimated species richness, and Shannon and Simpson indices for species evenness and richness
with the rarefaction set at 1091. Beta diversity testing was performed using principal coordinates analysis
(PCoA) for multidimensional scaling of the EBC samples to determine dissimilarity between the healthy
control and asthma groups using the basic ‘stats’ R package. T-tests were performed to assess the statistical
difference between the control and asthma groups, where p <0.05 was considered statistically significant. R
version 3.6.3 was used for all analyses.

Results

Clinical characteristics of the participants

In the present study, EBC samples were obtained from a total of 309 participants, including 58 healthy
controls and 251 patients with asthma (Table 1 ). The average age of the participants in the healthy control
and asthma groups were 50.8 (SD 14.4) and 32.4 (SD 7.2) years, respectively. The sex ratio (women/men)
of in the healthy control group was 1.6, while that in the asthma group was 2.4, i.e., it was skewed more
toward women. The clinical characteristics of the 251 patients with asthma are detailed in Table S1 .

Alpha and beta diversity

Alpha diversity was assessed based on species richness in addition to species evenness and richness, to
determine the baseline differential characteristics of the EV microbiome in the control and asthma EBC
samples (Figure 1A ). The asthma group showed significantly higher alpha diversity (p <0.05) for all four
measurements. The observed OTUs and Chao1 estimates showed greater species richness in the asthma
EBC samples: Chao1 showed a more moderate increase compared to the observed OTU values. Similarly,
the Shannon and Simpson diversity indices both demonstrated higher alpha diversity measures in the asthma
group than those in the healthy control group, with the most dramatic increase seen in the Shannon diversity
index.

PCoA (based on Bray-Curtis distance of all control and asthmatic patient samples) yielded a primary
principal coordinate (PCo1) of 20.13%, while the secondary principal coordinate (PCo2) yielded a value of
8.1% (Figure 1B ). Generally, EBC samples belonging to the healthy control group were clustered below 0.0

4
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. along the PCo1 axis and were evenly distributed along the PCo2 axis. Although there were several asthma
patient samples in the same cluster of the control group, several asthmatic samples were tightly clustered
around the 0.3 value on the PCo1 axis and 0.0 on the PCo2 axis, with only a few control samples included in
the cluster. Diversity assessment for the eosinophilic and non-eosinophilic asthmatic patients’ EBC samples
yielded no significant differences in any of the four alpha diversity metrics or the PCoA plot for beta diversity
(p >0.05) (Figure S1 ).

Microbial EV composition at the genus level

Taxonomic profiling of the microbial EVs isolated from EBC samples was conducted as described above,
which revealed that Acinetobacter ,Pseudomonas , Staphylococcus , Bacteroides , andSphingomonas were the
most prominent genera in the EBC samples (Figure 2A ). Acinetobacter was the most common microbial
EV genus in the control (13.0%) and asthmatic (5.4%) EBC samples, followed by Staphylococcus (5.2%)
and Pseudomonas (5.0%) in the healthy control group and Sphingomonas (5.0%) andBacteroides (4.0%)
in the asthma group. Comparison of the average relative abundance of the 25 most common microbial EV
genera in the healthy control and asthma groups using a heat map demonstrated the differential abundance
within each sample and between the groups (Figure 2B ). Furthermore, t-test analysis of the average
relative abundance of microbial EV genera yielded multiple taxa that significantly differed between the
control and asthma groups (Figure 2C ). The five most common genera that were enriched in the control
group in descending order of proportion wereAcinetobacter , Staphylococcus , Bifidiobacterium ,Blautia ,
and Collinsella , while Sphingomonas ,Akkermansia , Methylophaga , Acidocella , andMarinobacter were
the most common five genera that were significantly depleted in the healthy control group (p <0.05). The
compositional variation between the microbial EV profiles of EBC samples obtained from patients with non-
eosinophilic and eosinophilic asthma was also assessed, and no discernable difference was observed at the
phylum and genus levels (Figures S2 and S3 ).

EBC-based asthma diagnostic model performance assessment

The 16S rDNA EV metagenomic profiles of the EBC samples were used as features for the various methods
for the development of diagnostic models for asthma. Ten iterations of each modeling method confirmed
that logistic methods using either t-test of LEfSe biomarker selection performed more poorly than any of the
ML methods based on the area under the curve (AUC) values (Figure 3A ). The incorporation of LEfSe
biomarkers as features for logistic models boosted the median AUC value of the t-test method from 0.749 to
0.760; however, t- test feature selection produced the higher average AUC value of the two methods (Table
2 ). While the ANN method demonstrated a higher average AUC value than that of either of the logistic
models, GBM’s average AUC value of 0.832 was the highest among the five methods, including the combined
GBM/ANN ensemble methodology, which yielded a slightly lower average AUC value of 0.826. The standard
deviation between the 10 iterations of each method was relatively low, ranging from 0.029 to 0.050. Receiver
operating characteristic (ROC) curve plots also depicted the AUC values of the 10 model iterations of each
asthma model method based on the range of specificity and sensitivity values (Figure 3B ).

Common important features between the GBM and ANN asthma models

Unlike the logistic models, each ML method used in this study, i.e., GBM and ANN, incorporated all
microbial EV genera as features. Therefore, feature importance evaluation was conducted after developing
the ML models to determine the genera with the greatest impact on both asthma diagnostic models. Twenty-
one of the 50 highest ranked features in both the GBM and ANN asthma models were shared between both
methods (Table 3 ). At the phylum level, Firmicutes accounted for the most significant features, with a
total of 9 genera belonging to the Firmicutes phylum, followed by Proteobacteria with 7 significant features.
At the genus level, Ruminococcaceae UCG-014 ,Lachnospiraceae UCG-008 , Pseudomonas ,Acinetobacter ,
Eubacterium hallii group , Blautia ,Bifidobacterium , Collinsella , Paracoccus , andHoldemanella were the
10 most important features in the GBM and ANN asthma models.

Discussion

5
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. This was the first study to identify bacterial compositional differences between patients with asthma and
healthy controls using EBC-derived EVs. Patients with asthma exhibited significantly different diversity
and richness indicators compared to the healthy controls. Five bacterial genera, including Sphingomonas ,
Akkermansia ,Methylophaga, Acidocella , and Marinobacter were significantly abundant in the EBC EVs
of patients with asthma, whereasAcinetobacter , Staphylococcus , Bifidobacterium ,Blautia , and Collinsella
were more abundant in the controls. No significant difference was observed between the EBC microbiota
in eosinophilic and non-eosinophlic asthma. We suggested a diagnostic tool for asthma using AI modeling
based on the distinctness of the bacterial community. Firmicutes and Proteobacteria were common important
features at the phylum level in the GBM and ANN asthma models.

This metagenomic analysis of EBC-derevied EVs enhances the understanding of the bacterial communities
residing in the airway. EVs are composed of a lipid bilayer that contains transmembrane proteins which affect
host cells and other bacteria, even those located far from the colonized area17,18. Moreover, they participate
in intercellular communication and have potential applications as biomarkers and therapeutic agents for
several allergic diseases19,20. Airway studies focusing on the microbiota and EVs in nasal lavage and lung
tissue samples reported that EVs have distinct characteristics associated with chronic rhinitis and chronic
obstructive pulmonary diseases (COPD) 18,21.

Although the advances in metagenomics have elucidated the lung microbiota, sampling the lower respiratory
tract is a challenge. Bronchoscopy enables investigation of the lower airway with greater precision, but is
invasive. The use of bronchial brushes and bronchoalveolar lavage (BAL) fluid is disputed due to potential
contamination from the oropharynx 22. The collection of induced sputum is noninvasive; however, it requires
preliminary inhalation of an aerosol and is often impractical. The EBC collection technique is a safe that can
be repeated easily, and the sample contains nonvolatile water-soluble compounds from the airway mucosa,
which are likely to reflect the composition of the airway lining fluid23,24. Therefore, we used EBC-derived
EVs to identify the bacterial composition of patients with asthma for the first time.

The relationship between asthma and lung bacterial community diversity is controversial. Previous studies in
patients with asthma have documented increased bacterial burden and diversity using induced sputum and
bronchial brushing compared with healthy controls2,25. Similarly, other studies reported an increase in the
bacterial diversity in BAL samples obtained from 23 patients with eosinophil-low asthma 26. This study also
showed greater bacterial diversity in patients with asthma based on Chao1, Shannon, and Simpson indices
compared with controls using EVs derived from EBC. Conversely, other studies failed to replicate these fin-
dings and occasionally presented opposite results. A study reported that there were no significant differences
in alpha diversity between patients with severe and non-severe asthmatics, and healthy controls27,28. This
discrepancy may be attributed to the differences in the populations from which samples were obtained and
in the sampling collection methods and sites.

In this study, EBC EV samples obtained from patients with asthma had a significantly higher proportion of
Sphingomonas ,Akkermansia and Methylophaga at the genus level compared to the controls. Sphingomonas
species have been associated with increased airway hyperresponsiveness to methacholine and eosinophil-high
asthma 2,26. Firmicutes and Proteobacteria were phyla that were demonstrated to be increased in the patients
with asthma in the GBM ad ANN asthma models. A previous study reported that relevant differences were
found in Firmicutes and Proteobacteria between induced sputum samples obtained from asthmatics and
healthy controls25, which is consistent with our results. Other studies using bronchial samples reported
that Proteobacteria were present in higher proportions in patients with asthma compared to the controls
2,3. Elevated levels of the Firmicutes phylum have been found in the lung tissue-derived EVs of patients
with COPD, which may be explained by differences in pH, oxygenation levels, and temperature of the
lung environment related to esophageal reflux18. Patients with chronic lung diseases such as asthma and
COPD share similar bacteria causing dysbiosis, such as Protebacteria and Firmicutes29. Although we can
speculate on the causal relationship between the microbiota and airway inflammation, we cannot confirm
its existence yet. Further studies are needed to investigate the specific causal relationship between the
microbiota and airway inflammation mediated via the molecular pathways. Additionally, based on the result

6
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. of the microbiome-based differences between patients with asthma and controls, we proposed a diagnostic
AI model of asthma with good performance. This might be a biomarker for risk assessment and treatment
of asthma through further studies.

As the scope of microbiome-focused research widens, numerous studies have reported distinct respiratory
microbiota according to the various asthma phenotypes and endotypes, such as obesity, severity, airway
hyperresponsiveness, asthma control, acute exacerbation, and response to steroids 30-34. In particular, the
eosinophilic inflammatory phenotype and underlying T2-high endotype corresponded to lung microbial com-
munities with comparatively lower bacterial loads and substantial diversity 35. Unfortunately, we did not
demonstrate the distinction in the airway microbiota according to blood eosinophil counts in this study. Our
results may be attributed to the relatively small number of EBC samples and variations in the participants,
which may be potentially attributable to populations, environment, and antibiotic use history.

Recent immunomodulatory treatments for asthma mainly focused on the mechanisms of type 2 inflammation,
such as biologics, i.e., antibodies against cytokine mediators (e.g., IL-5, IL-4, and IL-13)31. However, these
treatments are not effective for patients with a T2-low endotype, which may limit the indications of biologics
in them. The strong association between airway dysbiosis and pathogenesis of neutrophilic asthma has also
been reported36,37; thus, the manipulation of the airway and gut microbiomes may be a novel therapeutic
strategy for asthma, especially in patients with T2-low endotypes. Further investigation into the impact of
microbiota therapies may be a useful tool for controlling asthma using a personalized medicine approaches.

This study has several limitations. Firstly, the sample size of both groups was relatively small. Larger
studies are needed to confirm our finding. Second, baseline characteristics such as dietary patterns and
use of antibiotics were not evaluated in controls and asthmatics, which might have affected the bacterial
community as a confounding bias. Nevertheless, to the best our knowledge, this was the first study to analyze
the microbiota using EBC-derived EVs in patients with asthma and compare it with healthy controls.

In conclusion, we have demonstrated differences between the lung microbiome of patients with asthma and
controls by analyzing EVs derived from EBC. We also proposed an asthma diagnostic model using AI.
Our findings suggest that asthma may be associated with dysbioisis of the bacterial community, and the
microbiome obtained using EBC EVs may be a potential indicator for the diagnosis of asthma. Further
studies are needed to verify the distinct patterns of the microbiome according to asthma phenotypes and
endotypes, considering the heterogeneity of asthma.
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Table 1. Basic clinical characteristics of the study population

Group Institution No. Sex (F/M) Age [mean (SD)]

Controls Asan Medical Center 58 1.6 50.8 (SD: 14.4)
Asthmatics Asan Medical Center 251 2.4 32.4 (SD: 7.2)

SD: Standard Deviation.

Table 2. AUC performance of EBC asthma diagnostic models

AUC Logistic (T test) Logistic (LEfSe) GBM ANN Ensemble

Mean 0.7531 0.7440 0.8325 0.7686 0.8257
Median 0.7485 0.7569 0.8311 0.7719 0.8165
SD 0.0287 0.0423 0.0495 0.0293 0.0337
Maximum 0.7939 0.7968 0.9547 0.8077 0.9020
Minimum 0.7025 0.6791 0.7705 0.7032 0.7785

AUC, area under the curve; EBC, exhaled breath condensate; LefSe, linear discriminant analysis effect size;
GBM, gradient boosting machine; ANN, artificial neural network; SD, standard deviation

Table 3. Common important features between the top 50 ranked features in GBM and ANN asthma models

No. Phylum Class Order Family Genus

1 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae UCG-014
2 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae UCG-008
3 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
4 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter
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. No. Phylum Class Order Family Genus

5 Firmicutes Clostridia Clostridiales Lachnospiraceae [Eubacterium] hallii group
6 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
7 Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
8 Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella
9 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Paracoccus
10 Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella
11 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Lawsonella
12 Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus
13 Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae Cutibacterium
14 Actinobacteria Actinobacteria Micrococcales Intrasporangiaceae Intrasporangium
15 Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Acidovorax
16 Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae UCG-003
17 Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea
18 Firmicutes Clostridia Clostridiales Clostridiaceae 1 Clostridium sensu stricto 15
19 Proteobacteria Gammaproteobacteria Oceanospirillales Alcanivoracaceae Alcanivorax
20 Proteobacteria Alphaproteobacteria Thalassobaculales Thalassobaculaceae Thalassobaculum
21 Proteobacteria Gammaproteobacteria Nitrosococcales Methylophagaceae Methylophaga

GBM: gradient boosting machine; ANN: artificial neural network.

Figure legends

Figure 1. Alpha and beta diversity of the EV-extracted microbiome obtained from EBC
samples

A) Alpha diversity within each sample of the control and asthma EBC samples was measured based on
the observed, Chao1, Shannon, and Simpson diversity indices and plotted using a boxplot for each clinical
group. B) Bray-Curtis distance between the samples was measured and visualized as a PCoA plot for the
dissimilarity between samples.

Figure 2. Genus-level microbial EV compositional differences between the clinical samples

A) The average genus-level composition of the microbial EVs in the control and asthma groups. B) Heat-map
depicting the differential relative abundance values of the genera in each sample in the control and asthma
group. C) Average relative abundance of genera in control and asthma samples with significant differences
(*P <0.05 and **P<0.01).

Figure 3. Asthma diagnostic model performance evaluation

A) Box plot of the AUC values of 10 iterations of each EBC asthma diagnostic model method: Logistic (T
test), Logistic (LEfSe), GBM, ANN, and ensemble. B) ROC curve plotting the AUC values of 10 iterations
of each method against the specificity and sensitivity values of each model.
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