Inhibition of endoplasmic reticulum stress and mitochondrial oxidative stress limits the development of abdominal aortic aneurysm and cardiac hypertrophy

Miquel Navas-Madroñal¹, Lidia Puertas-Umbert¹, FRANCESC JIMENEZ-ALTAYO², Silvia Aguiló¹, Marta Consegal-Pérez¹, Josep Julve¹, Belen Perez², Modar Kassan³, Jose Martínez-González⁴, Cristina Rodríguez⁵, and María Galán⁶

¹Institut de Recerca del Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica (IIB) Sant Pau
²Universitat Autonoma de Barcelona
³University of Tennessee Health Science Center. Memphis, TN, USA.
⁴Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), IIB Sant Pau
⁵Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), IIB-Sant Pau, Barcelona, Spain.
⁶Institut de Recerca del Hospital de la Santa Creu i Sant Pau

March 24, 2022

Abstract

Background and purpose: Persistent endoplasmic reticulum (ER) stress and its deleterious crosstalk with mitochondria trigger oxidative stress, mitochondrial dysfunction and inflammation contributing to the pathophysiology of a myriad of cardiovascular diseases linked with hypertension such as abdominal aortic aneurysm (AAA) and cardiac hypertrophy. The purpose of this work was to determine whether inhibition of ER and mitochondrial stress is effective preventing aneurysm development and cardiac hypertrophy in angiotensin II (AngII)-infused apolipoprotein-E-deficient (ApoE-/-) mice. Experimental approach and results: The expression of ER stress markers (Hspa5, Atf4, Atf6, Chop and Ern1) was up-regulated in aneurysmal abdominal aortas from AngII-infused ApoE-/-mice. The treatment with ER stress inhibitors improved survival, decreased systolic blood pressure, limited the incidence and severity of AAA and reduced the AngII-induced increase of aortic diameter evaluated by ultrasonography. These beneficial effects were mimicked by the mitochondria-targeted tetrapeptide SS31. The disorganisation of elastin and collagen fibres, the increased expression of metalloproteinases and pro-inflammatory markers and the infiltration of immune cells induced by AngII in the abdominal aorta were effectively reduced by both, ER inhibitors and SS31. Additionally, treatment with SS31 prevented the alteration of mitochondrial dysfunction and reduced ER stress markers expression and plasmatic ROS levels. Mechanistically, CHOP deficiency in ApoE-/-mice reduced the blood pressure and the incidence of AAA. Interestingly, both pharmacological interventions and CHOP deficiency attenuated AngII-induced cardiac hypertrophic remodelling and improved systolic and diastolic function. Conclusions: Our data evidence that inhibition of ER and mitochondrial stress limits abdominal aortic aneurysm formation, increases survival and ameliorates hypertensive cardiac hypertrophy.

Hosted file

manuscript_NavasMadro\selectlanguage{ngerman}ñal et al_BJP.doc available at https: //authorea.com/users/467046/articles/561170-inhibition-of-endoplasmic-reticulum-stressand-mitochondrial-oxidative-stress-limits-the-development-of-abdominal-aortic-aneurysmand-cardiac-hypertrophy

Hosted file

Figure 1_NavasMadroñal et al_BJP.ppt available at https://authorea.com/users/467046/articles/ 561170-inhibition-of-endoplasmic-reticulum-stress-and-mitochondrial-oxidative-stresslimits-the-development-of-abdominal-aortic-aneurysm-and-cardiac-hypertrophy

Hosted file

Figure 2_NavasMadroñal et al_BJP.ppt available at https://authorea.com/users/467046/articles/ 561170-inhibition-of-endoplasmic-reticulum-stress-and-mitochondrial-oxidative-stresslimits-the-development-of-abdominal-aortic-aneurysm-and-cardiac-hypertrophy

Hosted file

Figure 3_NavasMadroñal_BJP.ppt available at https://authorea.com/users/467046/articles/ 561170-inhibition-of-endoplasmic-reticulum-stress-and-mitochondrial-oxidative-stresslimits-the-development-of-abdominal-aortic-aneurysm-and-cardiac-hypertrophy

Hosted file

Figure 4_NavasMadroñal_BJP.pptx available at https://authorea.com/users/467046/articles/ 561170-inhibition-of-endoplasmic-reticulum-stress-and-mitochondrial-oxidative-stresslimits-the-development-of-abdominal-aortic-aneurysm-and-cardiac-hypertrophy

Hosted file

Figure 5_NavasMadroñal_BJP.ppt available at https://authorea.com/users/467046/articles/ 561170-inhibition-of-endoplasmic-reticulum-stress-and-mitochondrial-oxidative-stresslimits-the-development-of-abdominal-aortic-aneurysm-and-cardiac-hypertrophy

Hosted file

Figure 6_NavasMadroñal_BJP.ppt available at https://authorea.com/users/467046/articles/ 561170-inhibition-of-endoplasmic-reticulum-stress-and-mitochondrial-oxidative-stresslimits-the-development-of-abdominal-aortic-aneurysm-and-cardiac-hypertrophy