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Abstract

1. Current modelling approaches to predict spatially explicit biodiversity responses to climate change
mainly focus on the direct effects of climate on species. Integration of spatiotemporal land-cover sce-
narios is still limited. Current approaches either regard land cover as constant boundary conditions, or
rely on general, typically globally defined land-use scenarios. This is problematic as it disregards the
complex synergistic effects of climate and land use on biodiversity at the regional scale, as biophysi-
cal, economic, and social issues important for regional land-use decisions are also affected by climate
change. To realistically predict climate impacts on biodiversity, it is therefore necessary to consider
both, the direct effect of climate change on biodiversity, and its indirect effect on biodiversity via
land-use change.

2. In this review and perspective paper, we outline how biodiversity models could be better integrated
with regional, climate-driven land-use models. We provide an overview of empirical and modelling
approaches to both land-use (LU) and biodiversity (BD) change, focusing on how integration has been
attempted. We then analyse how LU and BD model properties, such as scales, inputs, and outputs,
can be matched and identify potential integration challenges and opportunities.

3. We found LU integration in BD models has been frequently attempted. By contrast, integrating the
role of BD in models of LU decisions is largely lacking. As a result, bi-directional effects remain largely
understudied. Only few integrated LU-BD socio-ecological models have assessed climate change effects
on LU and no study has yet investigated the relative contribution of direct vs. indirect effects of climate
change on BD.

4. There is a large potential for model integration given the overlap on spatial scales, although chal-
lenges remain with respect to spatial scale, temporal dynamics, investigation of indirect effects, and
bi-directionality, including feeding back to climate models. Efforts to better understand human de-
cisions, eco-evolutionary dynamics, connection between terrestrial and aquatic systems, and format
standardization of modelling outputs and empirical data should improve future models. Integrating
biodiversity feedbacks into land-use and climate models requires modelling innovations, but should be
feasible.

Keywords: agent-based models, biodiversity response, environmental change, indirect effects, integrative
approaches, mechanistic models, socio-ecological systems, species richness

1 | INTRODUCTION

Biodiversity is under multiple threats, with land use being a key current stressor (Biihne et al., 2021; IPBES,
2019) and climate change effects likely to intensify in the future (Pereira et al., 2020). A challenge to
disentangling the effect of these two stressor groups is that while climate is a key determinant of biodiversity
patterns in general (Kreft et al., 2007), it is also a key driver of human land use (Yamaura et al., 2011).
Consequently, changes in climate can be expected to exert multifold effects on biodiversity (Arneth et al.,
2020; Leclere et al., 2020). These effects can follow direct and indirect pathways, with indirect pathways
happening via climate-driven changes in land use (Fig. 1).

Most biodiversity and ecosystem assessments focus on the direct effects of climate change. Indeed, following
the development of climate models and climate change projections at the global scale (e.g. Hijmans et
al., 2005; with more recent projections by Fick & Hijmans, 2017; Karger et al., 2020), there has been a
large production of biodiversity assessments under climate change. These assessments have mostly kept land
use/cover and other global change drivers constant (e.g. Anderson et al., 2013; Sarmento Cabral et al.,
2013; Titeux et al., 2016). Even when climate change is combined with land cover change, the latter is not



modelled as a consequence of the former (e.g. Travis, 2003) and land-atmosphere feedbacks have been ignored
(Wulfmeyer et al., 2018). Therefore, the indirect effects of climate change on biodiversity via its effects on
land-use change (Fig. 1) remain underexplored.

Considering that land use is arguably the strongest driver of biodiversity change to date (IPBES, 2019), un-
derstanding the potential effects of climate change on land use is of high importance (Titeux et al., 2017). In
this sense, global land-use models and integrated assessment models (TAMs — see Weyant 2017 for a review)
allow assessing the impacts of climate on land-use changes, as well as quantifying potential climate feedbacks
through greenhouse gas emissions. These models may consider economic rules of production and demand for
commodities that utilize land, like agriculture, pasture and forestry (Havlik et al., 2011; Lotze-Campen et
al., 2008). However, the typically coarse spatial resolutions and economic focus of these global models do not
account for the diversity of farmer behaviours, decision-making strategies, and governance structures at the
local to regional scale (Arneth et al., 2014; Rounsevell et al., 2014), and thus produce less precise rates of land
conversion at the regional scales (Bayer et al., 2020). In addition, profit maximization, as it is assumed in
many of the models, does not capture the complex socio-ecological systems that involve organized sustaina-
ble behaviour at the local and regional scales (Ostrom, 2009; see also Ceddia et al., 2015 for the specific
consideration of forest rights). The standard models also ignore time lags arising from knowledge diffusion
until informed decision-taking (Brown et al., 2018). Moreover, market-integrated landowners can consider
fluctuations in market prices, costs, and yields in their decisions on local land allocation, although there
can be other motivations, attitudes, and even contract obligations complicating land-use change processes
(Debonne et al., 2021; Malek et al., 2019). As persons who are generally averse to risks and uncertainties
(Pichon, 1997), landowners may decide to diversify their land-use types to buffer against risk and ambiguity
such as that arising from climate change (Eisele et al., 2021; Knoke et al., 2011). Importantly, these decisions
may depend on the regional context, be it traditional or cultural. Challenges for modelling land-use changes
and their impacts on biodiversity at the regional scale thus lie in plausible climate-integrated, socio-economic
models to simulate regional land allocation.

It is important to acknowledge that focusing on regional scales can be key to tackle the above-mentioned
challenges. Indeed, climate change is spatially heterogeneous (Bowler et al., 2020), and species, ecosystems,
political jurisdiction, and land users’ responses and decisions tend to be region-specific. Additionally, em-
pirical biodiversity assessments and conservation policies are mostly designed to address adaptation and
mitigation options at regional scales (see Glossary for definitions). Only the regional scale enables working
with fine-scale (spatial and thematic resolution) and land-use description (e.g. potentially integrating small
landscape elements), while offering the possibility to explore biodiversity responses from the local (populati-
ons, communities) to the regional scale (species pool, homogenization). Therefore, besides the direct effects
of climate and land use on regional biodiversity, integrating land-use change induced by climate change on
biodiversity assessments seems paramount to support forward-looking conservation policies.

In this perspective paper, we argue for an integration of indirect pathways of climate change effects on
regional biodiversity via connection between biodiversity and land-use models. To this end, we first review
empirical and modelling studies of the effects of climate and climate change on regional land use, followed by
studies of the effects of land use on regional biodiversity. The empirical overview provides insights on aspects
not yet modelled, whereas the modelling overview highlights possible routes of how land-use and biodiversity
models can be integrated by matching the resolution and input/output of the various modelling approaches.
Finally, we discuss potential challenges and opportunities of feeding biodiversity effects back into land-use
and climate models. This would effectively mean integrating all three modelling approaches at the regional
scale, with three key (bi-directional) links between climate change, land-use change and biodiversity change
models (Fig. 1). Our empirical and modelling overview as well as proposed integration links ultimately foster
the dialogue between the research communities focusing on land-use and biodiversity modelling to achieve
truly integrated assessments at regional scales.



1.1 | Glossary

Local scales/models : focused on single or small mosaics of populations, communities, stakeholders or habitats
(i.e. from a few meters to several kilometers). Local models include population viability analysis (PVA)
models, metapopulation models, reserve prioritization approaches (several small or single large debate), all
of which typically focus on particular habitats or habitat networks or on particular local populations or
communities.

Regional scales/models : anything from landscape to continental spatial extents, including pronounced and
multiple environmental gradients (i.e. tens to thousands km). Approaches that calculate local variables
but can be projected at any scale (e.g. dynamic vegetation models, species distribution models), including
regional grid extents, are treated as regional. Most biodiversity models already fall within this category and
typically focus on metapopulation dynamics across environmental gradients, on species ranges, on diversity
distributions or on distribution of ecosystem functions.

Global scales/models : anything at global spatial extents (e.g. global circulation models). Biodiversity models
at global scale often use coarse resolution and might focus on entire taxonomic groups or ecological guilds.
Similarly, global land-use models often distinguish a number of world regions.

Biodiversity measures : any component or aspect defining variability of ecological entities (individuals, po-
pulations, communities, ecosystems), which may happen over space, time or within/across entities (i.e.
intraspecific variability, population structure). Important ways to quantify aspects of biodiversity involve
abundances, species richness, composition and function metrics. At the regional scales, components such as
alpha (local), beta (internal turnover) and gamma (regional total) diversity are relevant for the different
aspects.

Biodiversity models : models defining dynamics of any biodiversity component or aspect. These models should
normally integrate information on spatial and temporal variation of environmental conditions and of model
agents, which drive the variability of ecological entities (i.e. biodiversity).

Phenomenological models : models in which a variable state is correlated to other variables, which can be
done by machine-learning, econometric, and statistical relationships.

Land use: economic and social functions of a land (Haines-Young, 2009). For simplicity, water use is excluded,
but land use can affect adjacent water bodies.

Management: diversity of practices applied to a land to reach the targeted purpose of the land, e.g. cutting,
fertilizing, removing deadwood. Management practices can be classified into input and output categories.

Mechanistic models : models in which the state of a variable is explicitly influenced by factors via causal
relationships, often dynamic ones. Rule-, equation-, and agent-based models as well as cellular automata are
typical examples with such relationships.

Integrative models : models that integrate models from different fields of research, such as land use, biodi-
versity and/or climate.

Hybrid models : models that combine different modelling methods, such as agent-based and correlative
components.

Land-use type : large category of land use such as agriculture, forestry, or urban settlements and infrastruc-
tures, characterized by certain types of input and output types and intensity of use.

Land cover: physical surface characteristics of land (Haines-Young, 2009).
Model input : any data read in from files during initialization and during model iterations.

Model output : data generated by the model and saved to file.



2 | LAND USE AT REGIONAL SCALE

2.1 | Climate change effects on land use

Regional land use, such as agriculture, forestry, and hunting practices, strongly depends on climate conditions.
This is because different plants and animals, including both target product and potential pests, have different
environmental preferences for optimal productivity. Consequently, environmental change strongly influences
productivity and the stakeholder’s decision on land use, both of which in turn affect regional economies. For
instance, field experiments show that maize yields decline more (39%) under water stress than wheat yields
(21%) (Daryanto et al., 2016). In addition, multiple lines of evidence suggest that the four major crops wheat,
maize, rice, and soybean all respond negatively to temperature increases (Zhao et al., 2017), while irrigation
represents an effective adaptation option if irrigation costs remain covered by the profit (Agnolucci et al.,
2020). Globally, inter-annual climate variability accounts for around one third of the observed yield variability
(Ray et al., 2015), whereas historical climate change (1974-2008) reduced consumable calories of the ten most
important crops by 1% (Ray et al., 2019). The effects seem more drastic when looking on productivity, with
indications that anthropogenic climate change has reduced global agricultural productivity by around 21%
since 1961, with more severe consequences for warmer regions such as Africa and Latin America (Ortiz-Bobea
et al. 2021). For Europe, climate trends since 1989 have slightly increased continent-wide maize and sugar
beet yields, but significantly reduced, albeit with large spatial variability, wheat and barley yields (Moore &
Lobell, 2015). Such climate-driven changes in crop yields directly affect regional land-use patterns. According
to Zaveri et al. (2020), repeated dry anomalies have been responsible for around 9% of the rate of cropland
expansion in developing countries over the last two decades. Furthermore, land-use patterns are likely to be
affected by extreme weather events, with the little current evidence indicating that farmers temporarily and
dynamically shift land use after weather shocks - e.g. away from cash and permanent crops one year after a
drought, and away from horticulture and permanent crop after a flood (He & Chen, 2022; Olesen & Bindi,
2002; Ramsey et al., 2021; Salazar-Espinoza et al., 2015).

Climate change will continue over the next decades, thereby affecting agricultural productivity and triggering
additional shifts in land-use patterns and crop choice (Alexander et al., 2018; Pugh et al., 2016). Strong shifts
are likely to be caused by changes in precipitation patterns (Malek et al., 2018). Whereas irrigation may
partially mitigate land-use changes, land-use change also depends on soil conditions as well as national or
regional policies, agricultural prices, subsidies, consumer behaviour, and the structure of agricultural and
silvicultural actors (the so-called Shared Socio-economic Pathways - SSPs, O’Neil et al., 2014). Unlike climate,
economic or agricultural systems are very adaptive and strongly driven by human expectations and decisions.
As a consequence, changes in these systems are even more difficult to project into the future than in natural
systems due to the large uncertainties involved (Troost & Berger, 2015). For example, Ramsey et al. (2021)
found that land-use responses to changing weather patterns vary across time and space. Indeed, it is crucial
to determine the temporal scale at which these systems are satisfactorily predictable (‘forecasting horizon‘).
Considering all these aspects, it seems mandatory that adequate modelling approaches should decide on
what type of model is required for which problem and on which scale (Levin, 1992). Processes involving
water supply at the regional (watershed) scale, impacts of yield change at the policy relevant scales, and
adaptation measures at farm holding level are all necessary at the regional scale. Thus, responses of regional
land use to climate change are complex and are driven not only by the natural conditions, but also by the
socio-economic context.

2.2 | Modelling regional land-use change

Regional land-use models reflect the local or regional contexts more accurately than the global approaches.
Current models include a continuum from mechanistic to phenomenological approaches (Table 1; see also the
Summary for definitions). Phenomenological models statistically relate a set of explanatory socio-economic or
biophysical variables to transitions in local land use (e.g. Verburg & Overmars, 2009). In these approaches, the
quantity of change is given by transition matrices of two historical land-use maps and the allocation of changes



vary depending on the model. In other approaches, global economic or integrated assessment models are used
to determine the region-level demands. Some of these models have applied neural networks approaches to
produce a probability map of land-use changes (Dai et al., 2005; Qiang & Lam, 2015). Mechanistic models
emulate processes in which drivers of change (e.g. sequence of land uses) interact, sometimes based on rules
(Stéphenne & Lambin, 2001; Rouget et al., 2003), sometimes based on cellular automata (Liu et al., 2017;
Clarke, 2008; Diogo et al., 2015). Agent-based models appear to be best suited to mechanistically integrate
the individual farmer behaviour, policies, and biophysical tags (Murray-Rust et al., 2014a,b). Such models
can be modified to include regional trade-offs among a large variety of socioeconomic input variables, to
identify the main drivers of land-use change. However, they usually do not consider the impacts of climate
change because their future projections are at short- to medium-term (i.e. few years or decades — Table 1),
much shorter than the projection horizon of the climate models. Moreover, climate change projections are
more global-based in nature with substantially less accuracy at regional scales, which is why such projections
may have little relevance to individual land-users (e.g. farmers) and their decision making process (Morton et
al., 2015, 2017). Nevertheless, there are few regional land-use change models that have projected long-term
land-use trajectories integrating climate change (e.g. Mendoza-Ponce et al., 2018, 2019).

While most land-use models focus on biophysical and socioeconomic drivers, some models have integrated
incipient connections to biodiversity. For example, vegetation recovery rates or dynamics can influence the
use of fuelwood (Stéphenne & Lambin, 2001; Kiruki et al., 2019) or management strategies (Verburg &
Overmars, 2009; Murray-Rust et al., 2014b). Other models integrated information on ecosystem threats,
such as alien species, to model transformed rates and areas (Rouget et al., 2003). These connections of
biodiversity elements to land use mostly focus on plant or vegetation patterns, but a few examples also
consider animal diversity as a driver (Soares-Filho et al., 2013; Dai et al., 2015). To summarize, while there
are a few approaches that consider some aspect of biodiversity as a factor influencing regional land-use
change, most models do not.

3 | LAND-USE EFFECTS ON REGIONAL BIODIVERSITY

3.1 | Land use effects on biodiversity

Land use has been the main driver of biodiversity decline over the past 50 years (IPBES, 2019; Pereira et
al., 2012). Whereas physical actions on land as direct drivers of ecosystem change (e.g. agriculture, forestry,
or urbanization) operate at the local level (Lambin & Meyfroidt, 2010), impacts of land use also operate at
larger spatial scales (Haines-Young, 2009). These impacts include also aquatic ecosystems, such as rivers,
with sediment and nutrient discharges affecting entire catchment areas (Alin et al., 2002; Bussi et al., 2016).
In addition, the complexity of land-use-biodiversity relationships arises from the multidimensionality of both
land use (e.g. type, management, intensity Erb et al., 2013; Kuemmerle et al., 2013) and biodiversity
(e.g. taxonomic, functional, and phylogenetic diversity Devictor et al., 2010), with various multidirectional
impacts overlapping, reinforcing, or mitigating each other (Haines-Young, 2009). Ecologists developed two
main types of approaches to deal with this complexity.

The “management-oriented” approaches link the management dimensions of land use to biodiversity at local
scale (Paillet et al., 2010), sometimes integrating the landscape-scale effects of land use (Miiller et al., 2007).
The studies using such approaches usually focus on a single land-use type (e.g. agriculture or forestry), and
rely on detailed evaluation of the management practices and their intensity (Herzog et al., 2006; Jeliazkov
et al., 2016). These approaches have addressed multiple biodiversity dimensions. For example, taxonomic
diversity can show strongly decreasing or flat responses to management intensity (Allan et al., 2015; Simons &
Weisser, 2017; Tsiafouli et al., 2015). These observed patterns result from the loss of ecological opportunities
(i.e. resource depletion, habitat degradation, micro-habitat loss) linked to the changes in abiotic and biotic
conditions and in the disturbance regime.

The “type-oriented” approaches look for general impacts of land use on biodiversity, usually focusing on spatial



intensification and limiting their description of land use to one (e.g. Clavero & Brotons, 2010) or several
(e.g. Herrera et al., 2016; Mimet et al., 2014; Uhler et al., 2021) land-use types. These approaches often
consider the landscape effects of land use on biodiversity through the description of landscape composition,
configuration, and connectivity (e.g. Clavero & Brotons, 2010; Fahrig et al., 2011). They show how landscape-
level land use influences the functional composition and structure of species communities. For example, the
homogenization of the landscape through intensive land use is related to lower beta-diversity (Gossner et
al., 2016; Jeliazkov et al., 2016), whereas land-use intensification simplifies food webs (Jeliazkov et al., 2016;
Mendoza & Aratjo, 2019; Pellissier et al., 2017; Tsiafouli et al., 2015). Through changes in pressures and
connectivity, land-use intensification can also induce phenotypic adaptation, e.g. via changes in phenology
(Barbaro & Halder, 2009; Mimet et al., 2009) and trait evolution (e.g. dispersal ability Martin et al., 2017).
Moreover, the type-oriented approach is particularly prevalent in studying aquatic ecosystems, as aquatic
biodiversity can change due to agricultural and urban land-use changes (Allan, 2004; Polasky et al., 2011).
Finally, few studies assess simultaneously the roles of both land-use type and intensity, showing that land-
use type mainly drives the functional and taxonomic composition, while land-use intensity rather drives the
functional redundancy of species (Birkhofer et al., 2017; Laliberté et al., 2010).

3.2 | Modelling regional biodiversity change

Several approaches have been proposed to model biodiversity at regional scales, varying from phenomenologi-
cal (e.g. macroecological analyses, species distributions models) to mechanistic or process-based models (see
Dormann et al., 2012; Zurell et al., 2016 for comparisons in the field of niche models). Whereas both types
of models can assess potential effects of land-use and climate change, the mechanistic models can further
account for transient, non-equilibrium, and novel conditions by explicitly simulating eco-evolutionary proces-
ses (Cabral et al., 2017; Dormann et al., 2012). For instance, ecophysiological models integrate processes on
the basis of metabolic theories describing life-history of species, such as energy uptake, growth, respiration,
and thermoregulation (e.g. Cabral et al., 2019; Kearney, 2012; Leidinger et al., 2021), and of ecosystem-level
processes, such as carbon assimilation and metabolic costs (the so-called general ecosystem models GEMs
for both autotrophic and heterotrophic biodiversity e.g. Harfoot et al., 2014; and the dynamic vegetation
models DVMs e.g. Sakschewski et al., 2015). The ecosystem-level GEMs and DVMs that are agent-based
and trait-based can account for functional diversity by defining functional types (e.g. SEIB-DGVM Sato et
al., 2007; JeDi Pavlick et al., 2013; LPJml-FIT — Sakschewski et al., 2015) and have been applied to regional
extents (e.g. Lautenbach et al., 2017; Sato & Ise, 2012; Thonicke et al., 2020) despite being also largely used
in global studies. These ecosystem-level ecophysiological models often lack cross-region, spatial processes
(e.g. disturbances, dispersal). To this end, models further based on metapopulation and metacommunity
theories can also integrate demographic processes, such as reproduction, mortality, density-dependence, and
dispersal, as well as biotic interaction processes, such as resource competition and trophic interactions (Cabral
& Kreft, 2012; Hagen et al., 2021; Harfoot et al., 2014; Urban et al., 2016). Some models focus entirely on
region-wide spatial processes, such as connectivity, which can be based for example on graph (e.g. Foltéte
et al., 2012) or circuit (e.g. McRae et al., 2008) theories and focus on particular species or group of species.
These mechanistic models thus predict abundances, demographic rates, and connectivity, all of which have
a higher information value than just presence probabilities (Ehrlén & Morris, 2015).

Mechanistic models jointly addressing climate change and land-use effects on biodiversity have been proposed
almost two decades ago (Travis, 2003), but their application to real-world systems has so been limited, partly
due to low species-specific data availability and computational runtimes which are unfeasible for automatic
optimization (Cabral et al. 2017, Dormann et al. 2012). Still, several models can already use real-world
environmental data as input (e.g. Hagen et al., 2021; Higgins et al., 2020; Malchow et al., 2021; McIntyre
& Lavorel, 2007; Sarmento Cabral et al., 2013), which should promote their application for addressing land-
use effects. Indeed, biodiversity models including land use vary from hypothetical virtual experiments to
real-world applications across regional scales (Table 2). These models address e.g. temporal dynamics and
coexistence of functional groups under land-use management in complex landscapes (Boulangeat et al., 2014;
Lautenbach et al., 2017; Quétier et al., 2007), or the geographical range of focal species (e.g. Bocedi et al.,



2014, 2021; Faleiro et al., 2013; Sales et al., 2020; Zamora-Gutierrez et al., 2021). The partial effect of
land use on biodiversity (i.e disentangling its effect from other disturbances such as climate change) has
been considered in few studies. For instance, Travis (2003) showed the proportion of habitat loss influences
the threshold of response to climate change. Sarmento Cabral et al. (2013) compared simulations with
and without habitat loss, revealing that land use negatively influences local abundances while not strongly
affecting range size of shrubs. Synes et al. (2019) went further and compared uni- and bidirectional effects
of crop yields on pollinator populations, demonstrating that the inclusion of bidirectional feedbacks revealed
much stronger loss in crop yields. Considering high resolution can also improve performance of biodiversity
predictions (Marshall et al., 2021). To summarize, there are a few approaches integrating both climate
change and land-use effects on biodiversity, but the incorporation of land use in biodiversity dynamics under
climate change has not always modified results (Dullinger et al., 2020), possibly due to the fact that climate
change-driven changes in land use are not considered.

4 | THE ROADMAP TO INTEGRATE CLIMATE CHANGE WITH
SOCIO-ECOLOGICAL SYSTEMS

4.1 | Integrating climate-driven biodiversity change into land-use models

Differently from biodiversity models, which often integrate land use (Table 2 and previous section), land use
models rarely consider biodiversity (Table 1). Hence, the integration of land-use models with biodiversity
models is largely missing, although land users may not solely prioritize profits and may as well weigh
biodiversity and ecosystem opportunity costs (foregoing an attractive alternative). In fact, it is unlikely that
land users would only respond to prices and costs to maximize land rent a key motivation for developing
agent-based land-use models (Berger & Troost, 2014). While it is clear that landowners indeed respond
to economic opportunities and risks, assuming pure profit-maximizing behaviour will not suffice to analyze
land-use and associated human-driven biodiversity changes (Berger, 2001; Castro et al., 2018; Lambin et
al., 2001). For example, subsistence farmers need to sustain their families and might thus not be profit
maximizers, but risk minimizers, going for guaranteed results. They might even have ecological objectives
(Knoke et al., 2014), but have to sustain their families. In contrast, industrial-style farmers are mostly profit
maximizers, which explains the expansion of oil palms (Fisher et al., 2011), soy, or rubber (Warren-Thomas
et al., 2018). The land-use change models currently focus on the relationships among farmers decisions and
biophysical elements (Table 1). This reflects the fact that individual decisions, cultural practices, and regional
policies on subsidies underlie the land-use change processes. In this regard, biodiversity is often not included
in the land-use change models because it is not yet considered a key driver of the decision of farmers or even
of human population size, dietary preferences, economy, climate change, and technology. However, regional
models should start integrating biodiversity change beyond simply considering vegetation cover. The ability
of biodiversity models to predict abundances, demographic rates, and connectivity may be important for
land-use decisions. Indeed, biodiversity can lead to ecosystem modifications at the local level, like influencing
the selective extraction of valuable species (Cazzolla Gatti et al., 2015; Poudyal et al., 2019) or modifying
crop yields (Synes et al., 2019). Moreover, biodiversity loss may affect consumer behaviour if correctly
communicated (Schaffner et al., 2015), which has been, for example, used for palm oil-free products and
many dedicated product certifications. Biodiversity economic value may be also evoked and could become
a driver in economic land allocation models (e.g. Bateman et al., 2013), while the resulting relationships
between comprehensive economic ecosystem value and biodiversity are variable (Paul et al., 2020). All these
aspects indicate multiple ways to integrate biodiversity into land-use models, from influencing the decisions
of subsistence farmers to improving yields, product demand, and biodiversity-influenced regional policies.
Some ways have been already tackled, although not in land-use models addressing climate change effects
(and thus not featured in Table 1).

Regional or global land-use change models commonly integrate biodiversity in two ways: 1) as a restriction for



anthropogenic land-use expansion through limitation rules inside protected areas or intact forests (Alexander
et al., 2018; Schmitz et al., 2014) or 2) a post hoc overlap analysis of model outputs over biodiversity-rich
areas (Kobayashi et al., 2019; Powers & Jetz, 2019). As an alternative, land allocation approaches building
on multiple criteria methods allow for integration of biodiversity as an own objective function, for example
to represent the preferences of conservationists (e.g. Knoke, Gosling, et al., 2020; Knoke, Paul, et al., 2020).
Moreover, mathematical models have been developed to assess forest enrichment with coarse woody debris
to elevate biodiversity at minimum costs in forest enterprises (Hértl & Knoke, 2019). Further integration
of biodiversity could be achieved through modelling the expansion of common plant species (e.g. via range
models Sarmento Cabral et al., 2013; Bocedi et al., 2014, 2021) that would directly impact the land cover.
Another flexible and theoretically consistent framework to model land allocation decisions might be the use
of household models (Singh et al., 1986), which account for departures from traditional profit-maximization.
The household is assumed to maximize utility, which is a function of many aspects beyond profit and
weather such as, e.g., cultural practices, subsistence, biodiversity, leisure, or environmental protection. This
framework allows for integration of biodiversity aspects into land-use modelling from a behavioural point
of view, which could have positive feedbacks to biodiversity. Indeed, focusing landscape management based
both on legislation and traditional agriculture can have positive effects on biodiversity, especially on specialist
species (Santos et al., 2016).

Some challenges to integrate biodiversity model output as land-use model input lies on the differences and
incompatibilities of spatial and temporal scales. This demands particular attention across land-use models,
which often apply and report different resolution formats and units (compare geographical resolutions across
models in Table 1). Besides, a key epistemological issue is that many mechanistic biodiversity models run
in hypothetical landscapes and ecological systems (e.g. Travis, 2003). Moreover, in many hypothetical and
real-world biodiversity models, the spatial resolution is a grid cell and temporal resolution is a generation.
To make the output of such biodiversity models useful for land-use models, the species parameters and
landscape scales must be adequately calibrated. For example, explicitly calibrating a grid cell to 1 km?
to match a given land-use model should be accompanied by adequate dispersal ability, carrying capacity,
and local population dynamics of the target species, community, or functional group. Furthermore, to fully
integrate the two modelling approaches, it is necessary to relate individual land users’ actions and decisions,
which may take place at local scales (e.g. the field level for farmers), to biodiversity outcomes (i.e. extirpation
of local populations) that may vary in scale from local to regional.

4.2 | Integrating climate-driven land-use change into biodiversity models

We found four main approaches for the inclusion of land use in biodiversity modelling:

1. In the first approach, authors perform an overlay of the outputs of both land-use and biodiversity
models to identify land-use change within important biodiversity areas or to identify suitable areas for
biodiversity (e.g. Faleiro et al. 2013, Martinuzzi et al. 2014, Sales et al. 2020). Thus, in this approach
only the modelling results are analysed together.

2. In the second approach, authors apply land-use field data or land-use model outputs from previously
developed models as input for a biodiversity model (e.g. Struebig et al. 2015). This input may include
time-series of land-use changes.

3. A third approach uses a land-use model where each land-use type is associated with biodiversity values
calibrated on literature data (e.g. Santos et al. 2016, Koch et al 2019). In this approach, land use
itself can be interpreted as specific calibration for biodiversity models.

4. Finally, we found simulations of land use and biodiversity in the same study through model coupling
(e.g. Bastos et al. 2018, Marshall et al. 2020, Redhead et al. 2020). This latter type of approach
constitutes the most integrative one, in which both models are simultaneously simulated. However,
this integration remains largely uni-directional, with bi-directional feedbacks between land use and
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biodiversity rarely attempted (but see Synes et al., 2019). In fact, uni-directionally coupled models
may miss important dynamics, as bi-directional models revealed greater influence of land-use change
(Synes et al., 2019).

Most of the identified studies only account for LU effects on habitat availability or suitability (e.g. Travis
2003). This has also been highlighted in recent reviews (Santos et al. 2021; Davidson et al. 2021). Land-use
effects on demography have been considered by Quetier et al. (2007) through variation of fecundity rates,
dispersal ability, and mortality (via disturbances) in plant functional groups, while Sarmento Cabral et al.
(2013) considered the loss of habitat to reduce local carrying capacity of studied species. Effects of land use on
dispersal have been explored by Bocedi et al. (2014) when looking at how anthropogenic disturbance effects
vary depending on individuals’ settlement rules during dispersal. The inclusion of climate change effects was
mainly done through assessment of direct effects on biodiversity (see Struebig et al., 2014; Zamora-Gutierrez
et al. 2018). There was only one example of simultaneous inclusion of direct and indirect effects of climate
change on biodiversity via climate-driven land-use change (Dullinger et al. 2020 - a study with type 4
approach). Nevertheless, there is still a large disconcert of modelling studies in integrating climate, climate
change, and climate-change induced land-use change (Table 2, Fig. 2a), with explicit comparisons as well as
relative quantification of direct vs. indirect effects of climate change has yet to be investigated.

How can the relative role of direct and indirect effects of climate change on biodiversity be quantified? For
a start, we suggest increasing focus on model coupling , as this has been successfully done both with
correlative (Dullinger et al. 2020) and process-based (Synes et al. 2019) biodiversity models. Agent-based
models seem a straightforward way for this integration as the framework is used by both the land-use and
biodiversity communities (Tables 1-2; Fig. 2a). We consider the following factors to be key to successful
model integration:

Spatial resolution : A key direction for improving model integration is the harmonization of spatial scales
(units and file formats), but this is not a limiting factor since land-use and biodiversity models considerably
overlap in terms of spatial extents and resolutions (Fig. 2b-c). Most land-use models do generate outputs
that could be used as input by biodiversity models to some extent (compare output variable in Table 1 with
input variables in Table 2). Despite the improvement in relation to the coarse resolution used in global
models, regional land-use models still vary considerably in the spatial resolution (Table 1), from polygon-
based models (particularly useful when farmers are the agents) to raster-based. Considering that polygons
and raster can be quickly converted back and forth, biodiversity models would require a raster conversion
plugin to readily use different output and input formats of land-use models. This can be easily done, but
most current biodiversity models do not have such plugins and thus any format synchronization needs to be
done before simulation.

Temporal resolution : Moreover, temporal resolution and extent seem to require further attention. Most land-
use change studies focus on relatively short temporal extents (e.g. 20 years), with few time steps. Whereas
this reflects inherent uncertainty of the behaviour of human agents and of socioeconomic dynamics, it also
limits its utility to biodiversity models, which often require yearly (and sometimes even coarser) resolution
for longer time period (compare temporal extents in Table 1-2). For generational-based biodiversity models
(e.g. Sarmento Cabral et al., 2013), matching temporal resolution of biodiversity and land-use models require
considering particular years or dates as references. The best direction here is that both models converge to
generation- and agent-agnostic time steps, such as year.

Indirect effects of climate change : Disentangling direct and indirect effects of climate change on biodiver-
sity revealed to be a largely understudied subject. Though we have not found studies to have tackled it
through mechanistic approaches, this seems achievable as mechanistic land-use models that consider climate
input have been already coupled with mechanistic biodiversity models (see Synes et al. 2019 combining
RangeShifter, Bocedi et al., 2014, with CRAFTY, Murray-Rust et al., 2014a). Furthermore, an avenue to
explore such indirect effects at regional level is becoming more feasible as mechanistic land-use models that
incorporate climate scenarios are being applied to larger extents (Brown et al. 2021).
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Bi-directional feedbacks : The simultaneous simulation of land use and biodiversity with process-based models
should allow for the inclusion of bi-directional feedback between models (Fig. 3). This would account for
emergent interactions between both systems, something that has been recently called for (Urban et al.,
2021). Therefore, the current knowledge of land-use effects is in fact mostly based on the unidirectional effect
from land use on biodiversity. In fact, all integrated approaches were primarily those mostly focusing on
biodiversity. The land-use-focused paper that came closest to an integrated approach coupled an ecosystem
model to simulate crop yield and natural vegetation, although number of species per se was not explicitly
modelled (Murray-Rust et al. 2014a).

4.3 | The full integration: challenges to integrate socio-ecological change into
climate models

The influence of land use and land-use change on climate is already well known (e.g. Deng et al., 2013),
but the integration of biodiversity and per extension also of socio-ecological models into climate models
deserves further attention (see Fig. 3). The effects of land-use change on regional and global climate have
been assessed focusing on biogeochemical and biogeophysical feedbacks (Pongratz et al., 2010, 2018). Land-
use change impacts climate by affecting extreme temperatures (Findell et al., 2017; Wang et al., 2015),
precipitation (Woldemichael et al., 2012), evapotranspiration (Krause et al., 2017; Nébrega et al., 2017),
or surface runoffs (Guzha et al., 2018; Krause et al., 2017). For example, afforestation can take up carbon
from the atmosphere, while also cool down regional temperature by absorbing radiation and increasing
transpiration (Betts, 2011). This effect of vegetation on climate has been studied and exploited across scales,
from decreasing urban heat islands to feedbacks between the terrestrial biosphere and the climate. Whereas
vegetation models typically do not really account for biodiversity (see Section 3.2), by simulating forest
growth and carbon assimilation among other ecosystem-level processes, these models consider important
ecosystem functions such as net primary production. Considering that biodiversity has positive relationships
with ecosystem function, the so-called biodiversity-ecosystem function (BEF) relationships (see van der
Plas, 2019 for a review), we can already assume that maintaining high biodiversity can be central to carbon
sequestration and thus also to climate mitigation. In this regard, landscape-level forest models (see Petter
et al., 2020 for a comparison), functional-structural forest models (e.g. Petter et al., 2021), or trait-based
models in general (see Zakharova et al., 2019 for a review and many of the models in Table 2) better capture
biodiversity, as different trait combinations can represent different species. These models have not yet been
coupled with land-use and climate models, but we suggest integrating ecosystems’ productivity with changes
in tree diversity and composition as one promising way to fully integrate biodiversity, land-use, and climate
models. A concept showing how to achieve this has recently been proposed (Bendix et al., 2021). That is,
biodiversity modelling would link not only to climatic conditions but also to deforestation, afforestation, and
agriculture management. This would also represent an improvement over integrated assessment models, which
are typically applied to evaluate proposed climate mitigation but still lack explicit biodiversity integration
despite attempts of using TAMs for assessing biodiversity loss (e.g. Veerkamp et al., 2020). Ultimately, with
fully integrated models including bi-directional effects (Fig. 3), we could explore scenarios considering not
only climate mitigation, but also e.g. biodiversity, ecosystem functions, and sustainable development.

4.4 | Directions to modelling developments

Current models can already tackle a series of both land-use and biodiversity processes. However, the full
spectrum of climate change effects on land use and land-use effects on biodiversity has not been fully modelled,
as revealed by our empirical review. Here, we identify avenues for development in modelling independent of
integration across research fields.

For land-use models, there is a need to identify the regional drivers of land-use change to implement well-
tailored concepts to simulate human-related changes in the composition of landscapes, ecosystems, and,
as argued in previous sections, biodiversity. For climate drivers, further evidence is needed to understand
how land users respond to weather extremes in various contexts. For socioeconomic drivers, this means
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going beyond simulating agricultural or livestock expansion to integrate production of specific commodities
and to address possible responses of decision-makers to biodiversity changes, as they will consider their
livelihood demands (Affholder et al., 2013) and/or economic opportunities and risks (Lambin et al., 2001).
Via biodiversity-economic value functional relationships (Paul et al., 2020), biodiversity could be integrated
in such models as a factor of production. In addition, biodiversity indices could be used to represent the
preferences of conservationists (Knoke, Gosling, et al., 2020). For example, changes in the productivity of
some land-use types could lead to reallocation of land, which could help understand the relationship among
national or regional policies, subnational, or international demand of products and prices. This understanding
will help land-use models to go beyond the analysis of historical trends to improve projections, including
scenarios that integrate farmers’ decisions linked to a globalized world and biodiversity elements as inputs.
In addition, common strategies to deal with increasing uncertainty, such as overproduction (Fuss et al.,
2015), land-use diversification (Rosa et al., 2019), or the diversion of the available labour to obtain off-farm
income (Shannon & Motha, 2015) will influence land-use change processes and associated biodiversity. For
instance, off-farm income may reduce crop diversification at the farm level (Ochoa et al., 2019). Accounting
for changes in the objectives of farmers or land-use planners is also influential for simulating land allocation
(Castro et al., 2018). This may be particularly important if we want to improve land-use practices by
considering biodiversity information or other novel decision-criteria such as environmental costs when losing
biodiversity, something commonly disregarded in real-world decision-making.

Another characteristic of current land-use models is their limited ability to project far into the future, giving
their high demand for data in the fitting process and the above-mentioned socio-economic uncertainties. In
this sense, the deficit of integrating uncertainty into land-use models is evident, particularly when historical
data are not reliable for quantifying uncertainties. We will then need robust modelling approaches providing
acceptable solutions over large uncertainty spaces, which would possibly include future conditions (Gorissen
et al., 2015). Extreme events, such as severe floods or droughts, may represent “black swans” (Taleb, 2007)
for landowners. “Black swans” are historically seen as often highly improbable, but of utmost economic
consequences when occurring.

For biodiversity models, the inclusion of evolutionary dynamics at ecological time frames remains understu-
died (but see Leidinger et al., 2021), even though human activities can trigger evolutionary response. Another
direction is to integrate climate-driven behaviour of human agents on the biodiversity. For example, Cabral
et al. (2011) assessed the effects of harvesting wild flowers by reducing the number of produced offspring.
However, it is unclear how human behaviour may change in the future. Will humans stop harvesting in
the wild due to conservation policies, to pressures for decreasing carbon footprint via embargoing overseas
flower export, or both? In fact, direct resource exploitation often targets demographic or growth processes in
biodiversity assessments, e.g. in fisheries (Melbourne-Thomas, Johnson, Alifio, et al., 2011; Salihoglu et al.,
2017), forestry (Albert et al., 2008; Bottalico et al., 2016), sport hunting (Mattsson et al., 2012), or grassland
management (Johst et al., 2006; Rolinski et al., 2018; Schroder et al., 2008). In forest management, for in-
stance, forest owners will adapt forest structure and management to enhance the resistance (by establishing
mixed forests) and resilience (by enhancing the structural diversity). Planting mixed forests will positively
influence species richness (Knoke et al., 2008) and managing forests to increase structural diversity will also
increase biodiversity (Schall et al., 2018). However, the biodiversity impact of climate mitigation policies
must also be investigated, as typically suggested bioenergy crop expansion can actually be detrimental for
biodiversity (Hof et al., 2018).

Another important research direction is to improve harmonization of complex relevant data (often done for
occurrence or occupancy, but rarely for demographic rates, dispersal ability traits, and genetic diversity).
Data harmonization and standard formats should be also strived across biodiversity models. This means to
implement models that consider input and generate output matching current trends in empirical biodiversity
assessments to follow the Essential Biodiversity Variables (EBVs) framework (Pereira et al., 2013; Urban et
al., 2021). This should promote a better integration across models and data-model integration. Most common
model outputs such as species occurrence and abundance (Table 2) are already part of the EBV class ‘species
populations’. Although this already allows to connect environmental change metrics, standardized biodiver-
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sity metrics, and model-data, EBVs are rarely mentioned in biodiversity models. Community composition,
another EBV class, is often addressed only through taxonomic diversity (i.e. species richness). However,
other community facets typically quantified in empirical assessments such as functional and phylogenetic
diversity are far less common (Table 2), although they can be, to some extent, easily derived from merging
species occurrence metrics with phylogenetic and trait data from online databases (e.g. PanTHERIA Jones
et al., 2009; and PHYLACINE Faurby et al., 2018). The EBV classes such as genetic composition, species
traits, and ecosystem functioning are yet rarely reported in biodiversity models. Although modelling of
such components may be challenging as it requires additional input data and simulating microevolutionary,
niche-based, and metabolic-based processes, recent advances are making the simulation of such EBV classes
easier (Leidinger et al., 2021; Zurell et al., 2021).

A few model development trends are common for both land-use and biodiversity models. For example, a
hurdle to overcome is linking of terrestrial and aquatic systems (but see Harfoot et al., 2014 for biodiversity
models). This is due to fundamental differences in ecological processes and biodiversity and ecosystem
functions (Daam et al., 2019). In particular, sediment

and nutrient inputs can be main drivers of aquatic biodiversity (Ferndndez et al., 2021), which has led to a
bias in the selection of land-use types considered in previous studies, with agricultural land being the focus
of most analyses. In addition, socio-economic influences on aquatic ecosystems were often ignored or only
considered as disturbing factors, with the interactions between aquatic ecosystems and socio-economic effects
still largely unassessed by either empirical or modelling studies. Another general necessary development
is improving resolution at regional scales. Whereas land-use models can already generate high resolution
regional data (Fig. 2b), output from high resolution regional climate models are not yet commonly used in
either biodiversity or land-use modelling, including for stakeholder decision-making (Gutowski et al., 2020).
This stresses the necessity to synchronize model developments between the biodiversity, land-use, and climate
change fields.

5 | CONCLUSIONS

While biodiversity models have become quite sophisticated in predicting biodiversity change due to clima-
te change, efforts must be taken to integrate this development considering climate-driven land-use change.
Because land use itself is strongly influenced by climate change, integrating both climate-driven biodiversity
and land-use models can tackle the complete appraisal of both direct and indirect effects of climate change
on biodiversity. However, disentangling these effects has yet to be addressed by dedicated simulation expe-
rimental designs. First attempts to integrate biodiversity and land-use models show that the integration is
attainable, although model integration has happened only in studies focused on biodiversity change. In this
sense, integrating biodiversity feedbacks into land-use and climate models requires further modelling inno-
vations, but should be feasible. Still, major shortcomings include a better concerted effort in standardizing
outputs and resolution, as well as methods to simultaneously optimize multiple outputs (e.g. species num-
ber, stakeholder profits, carbon balance, and temperature) in fully integrated, climate-land-use-biodiversity
models.
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SUPPLEMENTARY MATERIAL

Supplementary Material S1 - Details on literature search and model
classification

Table 1: Examples of regional land-use model implementations, with their respective model ty-
pe, scales, input variables, climate change impact, outputs, ecosystem/biodiversity parameters
and key findings . For details on literature search, inclusion criteria and classification, see Supplementary
Material S1. Note that scales often depend on the input, with provided scales reflecting the study system
of the particular study or suggested by authors. Abbreviations: PHENQO: phenomenological; MECHA: me-
chanistic; GE: geographical extent, GR: geographical resolution, TE: temporal extent, BP: biophysical, SE:
socioeconomic, CC: climate change, LU: land use, BD: biodiversity, NA: not applicable.

Model Type Study Input What is CcC BD-
Region variables modified effects related
and by CC? on LU parame-
Scales ter

CLUE-S PHENO GE: Sibuyan BP: altitude, Nothing NA None

(Verburg et island, slope,

al., 2002) Klang- aspect,

Langat geology,
watershed erosion,
(456, 4,300 distance to
km?); GR: stream and
150m; TE: coast; SE:
1997-2017, population
1989-1999 density,
distances to
roads,
towns, and
ports
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Output
variables

Cover type
(e.g. forest,
grassland,
urban,
coconut and
palm oil
plantations,
rice fields)



Dyna-CLUE
(Verburg &
Overmars,

2009)

SALU
(Stéphenne
& Lambin,
2001)

FLUS (Liu
et al., 2017)

DINAMICA-
EGO
(Soares-
Filho et al.,
2013)

SLEUTH
(Clarke,
2008)

PHENO

MECHA

MECHA

PHENO

MECHA

GE: Europe
(27
countries);
GR: 1 km?;
TE:
2000-2030

GE: Burkina
Faso
(274,200
km?); GR:
2.5 x 3.75°;
TE:
1960-1997

GE: China
(9.56 Mi
km?); GR: 1
km?; TE:
2010-2050

GE:
Brazilian
amazon
(619,946
km?); GR: 1
km?; TE:
2003-2050

GE: Mainly
focused on
US cities;
GR:
variable;
TE: variable

BP: water
deficit,
potential
evapotran-
spiration,
tempera-
ture, water
logging
occurrence;
SE: regional
demand of
agricultural
products
BP: precipi-
tation;
Socioeco-
nomic:
human
population,
livestock,
cereals
imports
BP: soil,
elevation,
tempera-
ture,
precipita-
tion; SE:
population,
GDP and
technologi-
cal
innovations
BP: soil,
vegetation,
slope,
elevation,
distance to
rivers; SE:
distance to
deforested

areas, roads,

towns,
protected
areas
Biophysical:
slope,
hillshade;

SE: distance

to roads
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Land
allocation
and natural
succession of
abandoned
lands

Yearly
changes in
land-use
allocation

Land
allocation

Probability
of land use

Nothing

Dry or cold
climates
lower
succession
speed

Rainfall
determines
the
productivity.
If it
decreases, it
is compen-
sated by LU
expansion.
Annual
precipitation
and
temperature

None

NA

Natural
vegetation
succession

Vegetation
recovery
rates for
producing
fuelwood

Ecological
regions

Distribution
of mammals

None

Abandonment
areas linked
to regrowth
of natural
vegetation,
agricultural
intensification

Areas of LU
expansion
and intensi-
fication,
pastures,
fallow and
fuelwood
extraction

Extent and
location of
cultivated
areas,
forests,
grassland
and urban
covers.

Deforestation
area linked
to reduced
mammals
distribution
and carbon
emissions

Urban
expansion
and other
LU related
to cities



Aporia
(Murray-
Rust et al.,
2014b)

Agent-based MECHA

Rural Land
Use New
Zealand
(Morgan &
Daigneault,
2015)

CPV
Analysis
Model (Dai
et al., 2005)

Qiang &
Lam (2015)

MECHA

PHENO

Hybrid

GE: Aurau
Valley,
Switzerland
(99 km?)
and Lanan
Catchment
(132 km?);
GR: variable
(farm);
TE:2000-
2020

GE:
Hurunui and
Waiau
Catchments
in New
Zealand;
GR: variable
(farm); TE:
2010-2060

GE: Pearl
river delta
(10,851
km?); GR: -;
TE:
1985-2000

GE: Lower
Mississippi
Basin
(48,000
km?); GR:
30m; TE:
1996-2006

BP: soil,
slope,
nitrogen;
SE: farmers’
decisions
(e.g. biofuel
harvest,
food
production,
traditional
practices,
diversity of
rotation)
BP: soil,
available
water; SE:
market
prizes,
productivity
current
enterprise,
social
network for
imitation
and
endorsement
BP: climate,
soil water,
vegetation,
relief; SE:
population,
technology,
policy,
profits

Model
presentation

Output
yields

Productivity
of the farm

Dairy and
forest
enterprises
will increase

Main
drivers:
rapid
economic
growth,
population,
infrastruc-
ture; low CC
effects

BP: Nothing NA
elevation,

soil, distance

to water;

SE: distance

to roads,

human

settlements,

and

pipelines

Potential
change of
land-use
system
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Directly via
vegetation
modelling;
indirectly
via
biophysical
and policy
tags

None

Vegetation,
species
diversity

None

Land
management
practices,
ecosystem
service
indicators,
market data
with prices

LU, farm
net revenue,
greenhouse
gas
emissions

Dominance

of land use,
patches,
fragmentation

LU maps



Diogo et al. MECHA

(2015)

Hietel et al.  PHENO
(2004)

Rouget et Hybrid
al. (2003)

GE:
Netherlands
(41,543
km?); GR:
100m; TE:
2007-2012

GE: Erda,
Eibelshausen
(11 km?2, 9
km?); GR:
1:5,000; TE:
1945-1998

GE: Cape
Region
(129,462
km?); GR:
14 TE: 20 yr

BP: climate, Biophysical
soil, suitability
elevation,

hydrology;

SE:

population

growth, diet

preferences,

access to

financing,

technology

(rotating

scheme),

political

factors, land

tenure,

fertilizer use

BP: Available
elevation, water
slope, capacity
aspect,
available
water, soil
texture; SE:
land
management
BP: habitat,
alien species,
geology,
distance to
coastline,
altitude,
slope,
roughness,
bioclimatic
variables;
SE: urban
area,
distance to
roads

Nothing
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Changes in
crop yields
and
productivity

Change from
arable land
to grassland
with lower
water
capacity

None

None

Broad
habitat
units, alien
species
threat

LU maps
pixelwise

Suitability
maps

Land-cover
maps with
percentage
of
transformed
area



CRAFTY- MECHA GE: EU SE: five Natural Differences Ecosystem Transitions
EU together capitals capital in land services, between
(Brown et with (natural, systems including eight

al., 2019) Norway, human, mainly landscape land-use

Switzer- social, driven by diversity types
land and manufac- SE and
the UK tured, and scenarios, recreation
but financial), but also value
excluding timber by CC
Croatia; demand,
GR: 10%; meat,
TE: crops,
2016-2086 carbon

sequestra-

tion,

landscape

diversity,

recreation

Table 2. Examples of biodiversity models which include land use effects, with their re-

spective type, scales, studied taxa, input variables, climate change impact, outputs, ecosys-

tem /biodiversity parameters and key findings . Studies that simultaneously apply LU and BD models

are defined as integrative in the LU approach column. Approaches that combine both phenomenological and

mechanistic components are termed hybrid. For details on literature search, inclusion criteria, and classifi-

cation, see Supplementary Material S1. Abbreviations: PHENO: phenomenological, MECHA: mechanistic,

gen: generations, yr: year, HS: hypothetical system, RWS: real-world system, GE: geographical extent, GR:

geographical resolution, TE: temporal extent; TR: temporal resolution, NP: National Park, BP: biophysical,

SE: socioeconomic, BD: biodiversity, LU: land use, SG: study group, CC: climate change, LUC: land-use

change, SSP: socioeconomic pathway, NAv: not available.

Model LU Type Study Input Output What Key CC C(
ap- of the re- vari- vari- is find- dr
proach BD gion, ables ables modi- ings LT

model scales fied (LU
and by effects
group LU? on
BD)

Travis No MECHA, GE: 2000 BP: Occupied Habitat Thresholds  Yes Nc

(2003) explicit HP grid cells;  habitat grid cells,  loss to species
model, GR: grid type; SE: spatial survival,
includes cell; TE: habitat or  occupancy with
random 100s gen; not combined
habitat TR: gen; CC and
loss SG: LU

virtual showing
species the lowest
thresholds
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LoLiPop No Hybrid,
(Sarmento  explicit RWS
Cabral et model,
al., 2013)  reads in

habitat

loss data
RangeShifter No MECHA,
(Bocedi et explicit RWS
al., 2014) model,

reads in

habitat

loss data
FATE-HD No Hybrid,
(Boulangeat explicit RWS
et al., model,
2014) reads-in

pasture

and field

data
Kallimanis No MECHA,
et al. explicit HP
(2005) model,

includes a

distur-

bance

submodel
LandSHIFT Integrative: MECHA,
Koch et MECHA RWS
al. (2019)

GE: Cape
Region
(11,000
km?); GR:
'x 1%
TE: 10s
gen; TR:
gen; SG:
plants

GE and
GR:
variable;
TE 100s
yr; TR:
yr; SG:
virtual
species
GE:
Ecrins NP
(2,700
km?); GR:
100 m;
GE: 925
km?; TE:
100s yr;
SG: plants

GE:
65,536
grid cells:
GR: grid
cell; TE:
1000s gen;
TR: gen;
SG:
virtual
species
GE:
Africa
(30.3 Mi
km?); GR:
5x 5’ TE:
2000-2030;
TR: yr;
SG:
vertebrates

BP:
climate,
soil,
suitability;
SE:
habitat
loss

BP:
suitability;
SE:
habitat
loss

BP: topo-
climatic,
climatic,
soil
variables;
SE:
grazing
and
mowing
intensity
BP:
habitat;
SE:
disturbance

BP: forest
and
vegetation
abundance
per LU
type; SE:
LU
suitability,
human
population
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Spatial
abundance
distribu-
tion, range
size, range
filling

Spatial
abundance
distribu-
tion,

range size

Spatial
abundance
distribu-
tion,
population
structure

Spatial
distribu-
tion of
occupied
grid cells

BD
Intactness
Index
(BII)

Carrying
capacity

Habitat
suitability,
movement
cost

Habitat
area,
dispersal,
distur-
bance
(affects
abun-
dances,
seed bank,
fecundity)
Grid cell
occupancy

Population
density,
livestock
density,
Crop pro-
duction,
calories
availabil-
ity,

BII

Lower Yes
abun-

dances,

ranges less
affected;
highlands

act as

refugia

under CC

due to

lower LU

LU affects  Yes
abun-

dances

and con-
nectivity
between
populations

LU effects  Yes
can at

least

partly be
simulated
through
disturbance

Extinction No
risk higher

for low
dispersal

rates, LU
pattern

affects
population
survival

Land No
sparing

more

effective

for

conserving
biodiver-

sity (and

food
production)



Dullinger
et al.
(2020)

Zamora-
Gutierrez
et al.
(2021)

Bastos
et al.
(2018)

Integrative:
MECHA

No
explicit
model,

reads in
LU data

Integrative:
MECHA

PHENO,
RWS

PHENO,
RWS

MECHA,
RWS

GE: Part
of
Austrian
Alps
(1,426
km?); GR:
0.01 km?;
TE:
current-
2050; TR:
yr; SG:
plants
GE:
Mexico (2
Mi km?);
GR: 5 x5
“ TE:
current-
2050; TR:
yr; SG:
bats

GE:
North-
east
Portu-

gal (6.6
km?);

GR: 1
km?;
TE:
current-
2050;
TR: yr;
SG:
raptors

BP: tem-
perature
variables,
precipita-
tion, solar
radiation,
bedrock;
SE: SSP,
land cover
type, LU
class

BP: tem-
perature
and pre-
cipitation
variables;
SE: LU
type, SSP

BP:
disper-
sal
corri-
dors,
tem-
pera-
ture,
land-
scape
struc-
ture,
fire,
mois-
ture,
NPP;
SE:
land
cover

36

Habitat Habitat

suitability, suitability

range size,

species

richness

and LU

distribu-

tion, LU

intensifi-

cation and

homogeneity

Habitat Habitat

suitability  suitability

Minimum  Landscape

local compo-

biomass sition,

index local
surface
temperature

LU and Yes
CC both

affect

species

habitat
suitability,

LU

stronger

Vulnerability Yes
of bats to

CC and

LUC very

high

Disruptive  No
effect

of LUC
in the
spatio-
temporal
distri-
bution
of top
preda-
tors’
biomass

Nc



Bonnot et
al. (2013)

Faleiro et
al. (2013)

Struebig
et al.
(2015)

No Hybrid,
explicit RWS
model,

applies

human

impacts

scenarios

Hybrid,
RWS

Integrative:
PHENO

No PHENO,
explicit RWS
model,

reads in

land-cover

data

GE:
Central
Hard-
woods
Bird Con-
servation
(0.3 Mi
km?); GR:
30x30 m;
TE: 100
yr; TR:
yr;SG:
birds

GE:
Cerrado
biome (2
Mi km?);
GR: 0.1%
TE:
2002-2050;
TR: yr;
SG:
non-flying
mamimals
GE:
Borneo
(743,330
km?); GR:
1 km?2;
TE:
1950-2080;
TR: 30 yr;
SG: orang-
utans

BP: grid
cell and
landscape
attributes,
habitat
suitability,
relative
productiv-
ity; SE:
restora-
tion,
communi-
cation
tower
strategies
BP:
climate;
SE: envi-
ronmental
and infras-
tructure
variables,
past LU

BP:
climate,
rugged-
ness,
distance
to water
and to
karst
forest; SE:
land-cover
class,
human
popula-
tion,
deforesta-
tion

rate
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Spatial
abundance
distribution

Potential
species
distribu-
tion,
spatial
conserva-
tion

plan

Habitat
suitability

Carrying
capacity,
reproduc-
tive rate,
survival
rate

Spatial
conserva-
tion

Habitat No
conserva-
tion must
be
strategic;
source-
sink
dynamics
and
dispersal
influence
population
survival

LUC Yes
altered
spatial

prioritization location of

Habitat
suitability

conserva-
tion
priority
sites

Most Yes
suitable
habitat
expected
to decline
due to
CC, even
if LUC
towards
more
protection



Santos et
al. (2016)

Redhead
et al.
(2020)

LAMOS-
FATE
(Quétier
et al.,
2007)

Integrative: PHENO,
MECHA HS

PHENO,
RWS

Integrative:
MECHA

No MECHA,
explicit RWS
model,

applies

LUC

scenarios

and stake-

holder

assessments

GE:
Northwest
Iberia
(100
km?2); GR:
1 ha; TE:
1960-2040;
TR: 40 yr;
SG: birds
GE:

Great
Britain
(209,331
km?2);
GR: 1
km?2;

TE

and

TR: 1

yr; SG:
benefi-
cial
insects

GE:
Romanche
River
headwater
(7,000
grid cells);
GR: grid
cell (ca.
42x42 m);
TE and
TR: Nav;
SG: plant
functional

types

BP: patch
attributes;
SE: soil
use, man-
agement
strategy,
human
population
trend
BP:

cli-

mate,
suit-
ability
factors;
SE:

land
cover,
pro-
tected
area,
prior-

ity,

crop-
ping
intensity
BP: pro-
ductivity;
SE: LU,
fertiliza-
tion,
manage-
ment
scenario
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Cover
type, bird
diversity
(richness,
specialist
richness,
total

abundance)

Probability
of
occur-
rence;
poten-
tial

rich-
ness,
poten-
tial
func-
tional
diversity

Abundance
of plant
functional
types,
ecosystem
services to
people

Cover
type

Habitat
suitability

Dispersal,
fecundity,
distur-
bance
regime
(mowing,
fertiliza-
tion,
grazing)

LU inten- No
sification
homoge-
nizes
landscape,
with
negative
impacts on
biodiversity.
Arable No
land

expan-

sion

lowers
species
rich-

ness,

even

under

less in-
tensive

cropping

Subalpine  No
grasslands

is sensitive

to

land-use

change

Nc



Sales et al.
(2020)

Martinuzzi
et al.
(2014)

Marshall
et al.
(2021)

No
explicit
model,
applies
LUC

scenarios

Integrative:
PHENO

Integrative:
MECHA

Hybrid,
RWS

PHENO,
RWS

PHENO,
RWS

GE:
Tropical
South
America
(17.8 Mi
km?); GR:
10’; TE:
2030-2090;
TR: yr;
SG:
terrestrial
vertebrates
GE:

Con-
tiguous
USA
(30,700
km?);

GR: 1

ha;
TE:

2001-
2051;

TR: 5

yr; SG:
fresh-
water
vertebrates

GE:
Belgium

(9 Mi
km?); GR:
1 km?;

TE:
2010-2035;
TR: yr;
SG:
bumblebees

BP:
climate,
vegetation
and
habitat
types; SE:
land-use
and
land-cover

types

BP:
water-
shed
area,
water
quality,
natural
cover;
SE:

past

LU
change,
eco-
nomic
re-
turns,
conver-
sion
costs
BP: None;
SE:
land-use
class, crop
type
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Potential
species
distribu-
tion,
potential
alpha and
beta
richness

species

Land Water
use quality
type

rarity-

weighted

species

rich-

ness,

threat

to

fresh-

water

diversity

Habitat
suitability

Habitat

Potential

distribution

suitability

Climate Yes
and
land-use
change act
synergisti-
cally, with
high
turnover
rates for
ecotonal
fauna

Urban No
expan-
sion as
major
threat

in
species-
rich
regions
or

severe
water
quality
problems

Using No
more LU
predictors
improved
perfor-
mance.
Arable
and urban
land were
mostly
negative.

Nc



RangeShifter-Integrative:

CRAFTY
(Synes et
al., 2019)

Graphab
(Foltéte et
al., 2012)

Lautenbach
et al.
(2017)

MECHA

No
explicit
model,
reads in
land cover
layers

No

explicit
model,
applies af-
forestation
scenarios

MECHA,
HS

MECHA,
RWS

MECHA,
RWS

GE: 10000
grid cells;
GR: grid
cell (ca.
500 x 500
m); TE:
50 yr; TR:
yr; SG:
pollinators

GE:
section of
Franche-
Comté
(252 Mi
pixels);
GR: 10 x
10 m; TE
and TR: -;
SG: tree
frog

GE:
Mulde
Basin
(5,744
km?); GR:
1 km?;
TE: 500
yr; TR: 1
yr; SG:
plants

BP: pro-
ductivity;
SE: land
use,
demand

BP:
habitat
characteri-
sation;

SE: land
cover/LU
resistances

BP: biocli-
matic
variables,
soil
texture;
SE:
protected
area, land
use, land
cover

Spatial
abundance
distribu-
tion,
land-use
type, crop
yield

Species
distribu-
tion,
landscape
connectiv-
ity
metrics

Species
richness,
richness of
functional
groups,
carbon
storage

Carrying
capacity

Resistance
values;
habitat
availabil-
ity;
carrying
capacity

Habitat
suitability

Crop- No
pollinator
system
showed
greater
changes in
bi-
directionally
coupled
models

LU inten- No
sification

can reduce
connectiv-
ity, with
negative
effects on
species
abundance
and
distribution
Non-linear No
relation-
ships of
species
richness

with
afforested
area and
land use
configuration.
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Figure 1. Biodiversity change (BDC), land-use change (LUC), and climate change (CC) all
interact. In addition to the bidirectional interactions (solid arrows), there are additive and multiplicative
effects of LUC and CC on BDC (dashed arrows). Studies on biodiversity response to climate change have
largely focused on the direct link of CC to BDC. Biodiversity assessments considering indirect effects of CC
on BDC via CC-driven LUC are largely lacking. References: 1) IPBES (2019); 2) Biihne et al. (2021); 3)
Seddon et al. (2020); 4) Dale et al. (2011); 5) Chausson et al. (2020); 6) Oliver & Morecroft (2014).
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Figure 2. Properties of land-use and biodiversity models . a) Ordination of retrieved models from
Tables 1-2 in regard to field of research (land use or biodiversity), spatial scale (resolution and extent),
study system (hypothetical or real world), method (phenomenological or mechanistic/Agent-based), as well
as whether they use climate, climate change (CC) and CC-induced land-use (LU) change. Expect for spatial
scales axes (see panels b and c), all these characteristics were classified with yes/no. Ordination axes are
colored blue, whereas studies are given in grey or green font. Green colored studies highlight integrative
approaches, i.e. simulating both land use and biodiversity. Studies fill the ordination space very well, with
ordination arrows pointing to different directions (variation explained by the first two ordination axes <
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35%, with five dimensions necessary to reach a stress < 0.05 and stress with 11 dimensions = 0.003). This
indicates a high diversity of proposed models and that relevant modelling and experimental aspects (e.g.
integrating climate, climate change and climate-change-induced land-use change) are not yet often combined.
b-c) Spatial scale properties of land-use (b) and biodiversity ¢) models. Note that the scales in b-c) are in
orders of magnitude of km, with several models overlap scale properties and could thus be readily integrated.
We added jitter in a) and vertical spacing in b) to improve visualization. The principal component analysis
was performed with ‘smacof’ and ‘vegan’ R packages, using Bray-Curtis dissimilarity matrices.
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Figure 3. Examples of how climate, biodiversity and land-use models have been integrated.
Climate models often provide the basic drivers for both land-use and biodiversity models (black arrow;
see Tables 1-2 for climate variables used as input). The blue arrow shows an additional one way coupling
(unidirectional) between the output of a land-use model which is used as input for the biodiversity model (e.g.
Dullinger et al., 2020) and the red arrow shows an additional integration of the biodiversity model output
as additional input for the land-use model. The red and blue arrows together act as a loose bi-directional
coupling, therefore creating a feedback loop between the models (e.g. Synes et al., 2019). The yellow dotted
arrow displays a possible integration from the biodiversity models, back to the climate model, creating a fully
integrated system. To our knowledge, there are yet no regional studies which integrate such a feedback. Note
that climate models already integrate land-use model output (not illustrated, but see Pongratz et al., 2018),
thus the yellow arrow can be achievable if climate models use the output of both land-use and biodiversity
outputs from bi-directionally integrated models.

Supplementary Material S1 - Details on literature search and model
classification

This ST accompanies the paper
The road to integrate climate change effects on land-use change in regional biodiversity models

Juliano Sarmento Cabral, Alma Mendoza-Ponce, André Pinto da Silva, Johannes Oberpriller, Anne Mimet,
Julia Kieslinger, Thomas Berger, Jana Blechschmidt, Maximilian Bronner, Alice Classen, Stefan Fallert,
Florian Hartig, Christian Hof, Markus Hoffmann, Thomas Knoke, Andreas Krause, Anne Lewerentz, Perdita
Pohle, Uta Raeder, Anja Rammig, Sarah Redlich!?, Sven Rubanschi, Christian Stetter, Wolfgang Weisser,
Daniel Vedder, Peter H. Verburg, Damaris Zurell
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1| Details on literature search for Table 1
1.1/Literature search and inclusion criteria

We first searched the literature for land-use models using web of science with the search string “land (use
OR cover) AND model” and classified them by reading the title and abstract as regional (i.e. maximal
spatial extent on a continental extent). Furthermore, we also included models that did not come up in
the search, but that we knew existed beforehand. This research was conducted over the scope of one week
(02.03.2021-11.03.2021).

1.2/ Model classification

After thoroughly reading the papers, the model type was classified in phenomenological (e,g, empirical data
was used to find statistical correlations) or mechanistic. Mechanistic ones included mathematical descriptions
of processes between input and output, but also cellular automata (state of cell at a given time step depends
on the state of the cell itself and neighboring cells at the previous time step), agent-based (individuals or
collective entities and their decisions connect input and output) and combinations of the previous types. We
further compiled the scales (spatial extent and resolution, temporal extent and resolution), input (variables
read-in during initialization or simulation), output (reported metrics), whether the study included climate
change effects directly on land use, whether the study included biodiversity variables. For input variables, we
distinguished between biophysical (e.g. soil, climate) and socioeconomic (e.g. price, land cover type) variables.
Further, we noted whether the study included climate change, what variable is modified by climate change,
and whether there are climate change effects on land-use change.

2| Details on literature search for Table 2
2.1/Literature search and inclusion criteria

The following is a list of keywords that we entered to web of knowledge’s search engine (webofknowledge.com).
Results were not filtered by time, though we did pay extra attention to newer papers, since the field of
ecological modelling is still relatively young, and more papers come out each year. We tried multiple different
key word combinations, most of which lead to hugely over 1000 results. For these papers, we sorted by newest,
and skimmed through the first pages. In the end, our final key words consisted of “(mechanistic OR, agent™*
OR process*) AND model* AND (land AND (*use OR *cover)) AND biodiv* AND region* AND change”
which led to a total of 374 papers (final search string listed below). Their abstracts were read to determine
if they fitted the scope of this paper, and if so, the paper was read thoroughly and included in this table if
fitting. Other papers included in this table were either from other key word combinations as briefly explained
above, or were other modelling papers that we knew of independent of this literature research.

This research was conducted over the scope of one week (01.02.2021-08.02.2021). Below we provide a list of
search strings and the respective number of hits (Table S1).

Table S1. Key word list (search strings) and their respective results (number of hits).

Search string Hits
model* AND (landscape* OR use OR *cover) 5059
AND climate AND biodiv

model* AND (land*use OR land*cover) AND 86
biodiv*

model* AND (landscape AND use OR *cover) 7021
AND biodiv

model* AND (land* AND (use OR *cover)) AND 8187
biodiv
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Search string Hits

(mechanistic OR agent-based OR 287
population-based OR process-based OR

individual-based) AND model* AND (land* AND

(use OR *cover)) AND biodiv

(mechanistic OR agent®™ OR population* OR 4052
process* OR individual*) AND model* AND

(land* AND (use OR *cover)) AND biodiv

(mechanistic OR agent* OR population* OR 1248
process™ OR individual®*) AND model* AND

(land* AND (use OR *cover)) AND biodiv AND

climate

model* AND (land* AND (use OR *cover)) AND 2596
biodiv AND climate

(mechanistic OR agent®* OR process*) AND 2019
model* AND (land* AND (use OR *cover)) AND

biodiv

(mechanistic OR agent* OR process*) AND 1549
model* AND (land AND (use OR *cover)) AND

biodiv

(mechanistic OR agent®™ OR process® OR 623
individual*) AND model* AND (land AND (use

OR *cover)) AND biodiv AND (human OR
anthropogenic)

(mechanistic OR agent®* OR process® OR 262
individual*) AND model* AND (land AND (use

OR *cover)) AND biodiv AND (human impact)

model* AND (land AND (use OR *cover)) AND 781
biodiv and search within results for human impact

model* AND (land AND (use OR *cover)) AND 7
biodiv AND “human impact”

model* AND (land* AND (use OR *cover)) AND 552
biodiv AND region* (mechanistic OR agent* OR
process*) model* AND (land AND (use OR

*cover)) AND biodiv AND region*

model* AND (land* AND (use OR *cover)) AND 374
biodiv AND region* (mechanistic OR agent* OR
process*) model* AND (land AND (use OR

*cover)) AND biodiv AND region* AND change

2.2] Model classification

Models were classified by land-use approach (if explicitly simulating a land-use model, classified as integra-
tive), type of biodiversity model component (mechanistic, experimental-statistic, or hybrid when combining
both; real vs. virtual system), scales (spatial extent and resolution, temporal extent and resolution), study
biological group (e.g. taxon or ecological guild), input (variables read-in during initialization or simula-
tion, either empirical or generated by land-use model), output (reported land-use and biodiversity metric),
whether the study included climate change effects directly on biodiversity or via climate-induced land-use
change. For input variables, we distinguished between biophysical (e.g. soil, climate) and socioeconomic
(e.g. price, land cover type) variables. Further, we noted what variable is modified by land use, whether
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there is climate change effects whether there is a comparison of land-use change with and without climate
change effects, and what land-use effects there are on biodiversity.
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