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Abstract

Background and Purpose Preclinical identification and understanding of drug-induced cardiotoxicity is still a major challenge.
The ICH S7B Q&A promote human in silico drug trials for proarrhythmia risk assessment. However, additional evidence is
needed to support further regulatory impact and for their integration in the current preclinical assessment pipelines. This study
aims to provide a comparative evaluation of drug-induced electrophysiological effects on in silico and in vitro cardiac Purkinje
and to assess the accuracy of these models for clinical risk predictions. Experimental Approach The effects of 14 reference
compounds were quantified in a population of in silico human cardiac Purkinje models, and compared with results obtained in
in vitro rabbit Purkinje preparations. For each drug dose, five electrophysiological biomarkers were quantified at three pacing
frequencies, and results compared with clinical proarrhythmia reports. Key Results i) In silico, repolarisation abnormalities
in human Purkinje simulations predicted drug-induced arrhythmia for all risky compounds, showing higher predicted accuracy
than rabbit experiments; ii) Drug-induced electrophysiological changes observed in human-based simulations showed a high
degree of consistency with in vitro rabbit recordings at all pacing frequencies, and depolarisation velocity and action potential
duration were the most consistent biomarkers; iii) discrepancies observed for dofetilide, sotalol and terfenadine are mainly
caused by species differences between humans and rabbit. . Conclusion and Implications In this study we showed the high
degree of consistency and higher accuracy of in silico methods compared to in vitro animal models, demonstrating the high

regulatory impact of in silico trials for proarrhythmia prediction.
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What is already known
Human n silico trials with ventricular models can predict clinical proarrhythmic risk with high accuracy

Rabbit cardiac Purkinje fibres are an in wvitro preparation commonly used for preclinical cardiotoxicity
screening

What this study adds

Human Purkinje simulations reached higher accuracy than in wvitro rabbit experiments for clinical proar-
rhythmia prediction

Human-based simulations and rabbit-based experiments are highly consistent across different compounds,
biomarkers, and pacing frequencies

What is the clinical significance

In silico trials can accelerate the design and development of safer and more efficient medicines



Human-based modelling and simulation help the translation of preclinical proarrhythmia risk assessment to
clinical scenarios\sout

ABSTRACT
Background and Purpose

Preclinical identification and understanding of drug-induced cardiotoxicity is still a major challenge. The
ICH S7B Q&A promote human in silico drug trials for proarrhythmia risk assessment. However, additional
evidence is needed to support further regulatory impact and for their integration in the current preclinical
assessment pipelines. This study aims to provide a comparative evaluation of drug-induced electrophysiolog-
ical effects on in silico andin vitro cardiac Purkinje, and to assess the accuracy of these models for clinical
risk predictions.

Experimental Approach

The effects of 14 reference compounds were quantified in a population ofin silico human cardiac Purkinje
models and compared with results obtained in in wvitro rabbit Purkinje preparations. For each drug dose,
five electrophysiological biomarkers were quantified at three pacing frequencies, and results compared with
clinical proarrhythmia reports.

Key Results

1) In silico, repolarisation abnormalities in human Purkinje simulations predicted drug-induced arrhythmia
for all risky compounds, showing higher predicted accuracy than rabbit experiments; ii) Drug-induced elec-
trophysiological changes observed in human-based simulations showed a high degree of consistency with in
vitrorabbit recordings at all pacing frequencies, and depolarisation velocity and action potential duration
were the most consistent biomarkers; iii) discrepancies observed for dofetilide, sotalol and terfenadine are
mainly caused by species differences between humans and rabbit. .

Conclusion and Implications

In this study we showed the high degree of consistency and higher accuracy of in silico methods compared
to in wvitro animal models, demonstrating the high regulatory impact of in silicotrials for proarrhythmia
prediction.

KEYWORDS

Human cardiac Purkinje, cardiac electrophysiology, drug-induced arrhythmias, in silico trials, computer
modelling, drug safety testing, qualification.

ABBREVIATIONS

AP(s) Action potential(s)

APA Action potential amplitude

APD, AP duration at X% of repolarisation

BCL Basic cycle length

dV/dtpmax Maximum upstroke velocity

EAD(s) Early after-depolarisation(s)

EOP Membrane potential at the end of repolarisation
Gx Ix conductance

1C50 Drug concentration for 50% channel inhibition

Icar, L-type Ca2™ current



Icar T-type Ca?t current

It Funny current

Ik Inward rectifier KT current

Ik Rapid delayed rectifier KT current

Iks Slow delayed rectifier K* current

Ina Fast Nat current

Inak NaT-KT pump current

Inar Late Nat current

Incx Nat-Ca?texchanger current

L, Transient outward KT current

Iqus Sustained outward KT current

PC(s) Purkinje cells

SS Steady State

TOP Take-off potential (membrane potential before depolarisation)
Trovato2020 Human cardiac Purkinje AP model published by Trovato et al. 2020
Vi, Membrane potential

1. INTRODUCTION

Preclinical assessment of drug-induced arrhythmia or proarrhythmia is a key requirement for pharmaceuti-
cal industries and regulators. This is particularly relevant for compounds showing a positive hERG (human
Ether-a-go-go-Related Gene) signal, but also blocking other ionic channels (Gary Gintant, Sager, and Stock-
bridge 2016). The current ICH S7TB/E14 guidelines have prevented new pro-arrhythmic drugs from entering
the market, though, they have also led to premature termination of drug development (and potentially of
valuable therapeutics) based solely upon either the hERG assay or through-QT study results (Lester and
Olbertz 2016). hERG encodes the potassium channel related to the rapidly activating delayed rectifier
potassium current (Ik,), which - when blocked - leads to prolongation of the QT segment of the ECG, and
potentially to arrhythmia. Predicting proarrhythmia is challenging, due to the interplay of several ionic cur-
rents underlying the cellular electrical activity, i.e., the action potential (AP), and the complex drug-ionic
channels interactions.

In wvitro , in vivo , and ez-vivo animal models are widely used for preclinical proarrhythmia assessment, often
considering metrics based on drug-induced AP prolongation as a surrogate of QT prolongation. Among
these, cardiac Purkinje fibres obtained from dog or rabbit hearts, are one of the most established and ICH
S7B-recommendedin vitro models for preclinical cardiotoxicity screening (EMEA 2006, Roche et al., 2010).
However, species differences between animals and humans, limit the accuracy of animal models for clinical
risk prediction, in addition to other limitations such as the hefty cost for the pharmaceutical industry and
the ethical questions about the use of animal for research (Van Norman 2019).

In silico drug trials using human-based and biophysically-detailed models have proven to be a powerful
technology for proarrhythmic risk predictions with high accuracy (Passini et al. 2017, 2019; Lancaster and
Sobie 2016; Llopis-Lorente et al. 2020; Z. Li, Ridder, et al. 2019). Their use have been promoted by regulators
such as the United States food and drug administration (FDA), that also launched the Comprehensive in
vitro Proarrhythmia Assay (CiPA) initiative (Sager et al. 2014; Z. Li, Mirams, et al. 2019), and the
European Medicines Agency (Musuamba et al. 2021), which established a task force on innovation for
emerging therapies and technologies.



Integration of human-based in silico trials in drug safety assessment requires a deep knowledge on their
consistency with experimental and clinical recordings. We previously demonstrated how human in silico
trials using ventricular cardiomyocytes reach higher prediction accuracy than animal models (Passini et
al. 2017). However, a systematic and comprehensive evaluation of in silicodrug trials on cardiac Purkinje
electrophysiology for proarrhythmia risk prediction is still missing. Therefore, the goal of this study is to
compare drug-induced electrophysiological effects on a population of human-based in silico Purkinje models
(Trovato et al., 2020) with preclinical in vitro experiments in commonly used rabbit Purkinje preparations,
and to assess the accuracy of both models for predictions of clinical proarrhythmic risk, for a selection of
14 reference drugs. The population of models approach (Britton et al. 2013; Muszkiewicz et al. 2015;
Varshneya, Mei, and Sobie 2021) scales the investigation from one single average model up to hundreds of
models, to account for cell-to-cell electrophysiological variability and uncertainty. Therefore, with respect
to the in wvitro rabbit model, we hypothesised that human-based in silico drug trials improve predictions
of drug-induced effects and clinical proarrhythmia risks, since they represent human pathophysiology and
include a better representation of the variability in drug response.

2. MATERIALS AND METHODS

Figure 1 summarises the methodology used in the present study, later described in more details. Briefly,
a diverse set of 14 reference compounds (Table 1) was investigated both in vitro and in silico to assess
drug-induced changes in cardiac Purkinje electrophysiology and the drug safety profiles. First, automated
patch clamp was used to quantify the half-maximal inhibitory concentrations (IC50s) for four cardiac ion
channels, for each compound (Section 2.1.1). Then, experiments in rabbit Purkinje fibres (Section 2.1.2)
and simulations using human Purkinje models (Section 2.2) were conducted to investigate drug-induced
electrophysiological changes. Computational and experimental results were then compared to assess their
consistency and ability to predict drug-induced AP changes. Different metrics (Section 2.3) were quantified
from the in wvitro and in silicoassays, and their ability to predict clinical proarrhythmia was also evalu-
ated against the risk of Torsade de Pointes (TdP) arrhythmias reported on the CredibleMeds(r) repository
(Woosley and Romer 1999), included in Table 1.
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Figure 1. Combined experimental-computational pipeline used to perform this study. A: In vitro estimation
of IC50s through automated patch clamp. B: Cartoon of the biophysically detailed computational model used
to simulate human cardiac Purkinje electrophysiology (Trovato et al. 2020). C:Experimentally-calibrated
population of 530 models generated using the Virtual Assay software (Oxford University Innovation (©)
2018); blue traces: computational models; green traces: experimental AP recordings from human healthy
cardiac Purkinje cell (Nagy et al. 2015). D:Representative example of human in silico drug trials on the
population of models, including AP traces (with drug-induced repolarisation abnormalities highlighted in
pink) and biomarker boxplots. E: In silico results were compared against in vitro recordings from rabbit
Purkinje fibres, obtained with the protocol depicted for multiple frequencies and concentrations.F: Both in
vitro and in silico results were compared against the clinical TdP risk from the CredibleMeds@®) repository



((Woosley and Romer 1999)).
2.1 Experimental data
2.1.1 In vitro ion channel data

Four key human cardiac ion channels were selected: potassium channels hERG and hKv4.3 (modulating
Ik, and the fast transient K+ current, Ii,, respectively), L-type calcium channel hCav1.2 (modulating the
L-type Ca?*current, Ic,ar,), and sodium channel hNav1.5 (responsible for the fast Na™ current, Iy,). These
channels were previously identified as the minimum set of ion channels required for reliable in silico risk
predictions (Zhou et al. 2020). Experimental in vitro patch clamp testing of ion channel inhibitions for
the 14 reference compounds was internally performed on engineered immortalized cell lines. For in witro
hERG testing, HEK-293 cells were transfected stably with hERG ¢DNA and cultured in a 50:50 mix of
Dulbecco’s Modified Eagle’s Medium and Ham’s Nutrient Mixture F-12 (DMEM/F-12) supplemented with
10% foetal bovine serum (FBS). Each concentration was tested in a standard protocol for at least three
cells (n [?] 3) at room temperature (21deg). Starting from -80 mV, effects of sample compounds on the
onset and steady state inhibition of hERG current were followed in response to a repeated pulse pattern,
damping from steady +20 mV to -80 mV. Obtained raw data was corrected for external effects at saturation
concentration. Each compound was tested at eight appropriate concentrations in ascending order, and
concentration limits were defined based on compound solubility, cytotoxicity or compound physicochemical
properties. For the other ion channel targets (Cavl.2, Navl.5 and Kv4.3) the screening was performed
on the QPatch platform (Sophion, Ballerup, Denmark). HEK-293 cell lines expressing exogenous human
targets were cultured according to internal protocols, in DMEM/F12 media supplemented with 10% FBS.
Standard 48 well plates were used in all experiments, and a standard voltage protocol mimicking elements of
a ventricular action potential was applied at eight increasing concentrations to facilitate the determination
of maximal inhibitory concentrations (IC50), with replicates. If no half-maximal inhibitory concentration
was achieved in the specified concentration range, the result was interpreted as ‘no inhibition’. Missing or
inconclusive data in our studies were complemented from literature. All IC50 values used to perform in silico
trials are reported in Table 1.

2.1.2 In vitro drug assay on rabbit Purkinje fibres

The effects of the 14 reference compounds on cardiac Purkinje electrophysiology were evaluated through
microelectrode recordings from (N=6) isolated rabbit Purkinje fibres (male, New Zealand rabbits; 1.7 to 2.1
kg; 7-10 weeks of age).

The following biomarkers were quantified: take-off potential (TOP, in mV), AP amplitude (APA, in mV),
maximal upstroke velocity (dV/dtyax, in V/s), AP duration at 50% and 90% of repolarisation (APDgy and
APDgo in HlS).

Test compounds were dissolved into dimethyl sulfoxide (DMSO) to obtain a stock solution. This solution
was further diluted into 100% DMSO to obtain solutions at different concentrations (as listed in Table 1)
and added into the physiological solution.

The Purkinje fibres were first superfused with an oxygenated physiological solution containing (in mmol/L):
NaCl 120; KCI 4; MgCl12 1; NaH2PO4 1.8; NaHCO3 25; glucose 11; CaCl2 1.8; pH = 7.4, at 36+-1degC.
After a 30-minute control period, the test compound was evaluated at increasing concentrations that were
sequentially applied, every 30 minutes. For the control period and each tested concentration, the fibres were
stimulated at the basal rate of 1 pulse per second (1 Hz, normal pacing rate). In addition, stimulation rate
was decreased from 1 pulse per second (1 Hz) to 1 pulse every 4 or 5 seconds (0.25 Hz or 0.2 Hz, low pacing
rate) for 3 minutes, returned to 1 pulse per second for 1 minute and then increased to 3 pulses per second (3
Hz, high pacing rate) for 2 additional minutes (between the 19th and the 25th minute) and finally decreased
to 1 pulse per second (1 Hz) from the 25th to 30th minute as illustrated in Figure 1E.

The low stimulation rate favoured the occurrence of abnormal electrical events during the repolarization phase
of the action potential, such as early after depolarisations (EADs). After testing the highest concentration,



the physiological solution was superfused again to evaluate the reversibility of the drug effect (corresponding
to a washout period).

Table 1. List of reference compounds, IC50 values recorded for four ionic currents, tested concentrations in
rabbit preparations, and clinical proarrhythmic risk as reported by CredibleMeds ®) (Woosley and Romer
1999).

Drug IC50 (uM) IC50 (uM) IC50 (uM) IC50 (uM) Tested concentration (uM) in rabbit preparations
INa IcaL Lo Ik

Astemizole 2.8 0.59 22 0.017 0.01, 0.1,1, 3 ]
Bepridil 3.1 6 13 0.19 0.1,0.3,1, 3 J
Cisapride - 33 - 0.015 0.003, 0.03, 0.01, 0.03 :
Clarithromycin 163" 103" - 62.5"" 1, 2.4, 10, 30 :
Diltiazem 15 0.76" 84 16.6 0.1, 1, 3, 10, 30 ]
Disopyramide - 114 - 14.4%* 0.3, 1, 3, 10, 30, 100 1
Dofetilide 94 204 - 0.047 0.0003, 0.001, 0.003, 0.01 J
Nifedipine 23 0.051 31 92 0.03, 0.3, 1, 10 ]
Quinidine 35 2.9 15 1.26 0.1, 1, 3, 10 :
Ranolazine 101 156 - 24.5 0.3, 3, 10, 30 :
Risperidone 102 138 43 0.41 0.003, 0.03, 0.3 :
Sotalol - - - 86.4™" 0.3, 1, 3, 10, 30 :
Terfenadine 3.3 2.2 68 0.17 0.03, 0.32, 1.44, 5.34 J
Verapamil 29 0.2*% 58 0.6 0.1, 1, 3 I

IC50: drug concentration leading to 50% of current inhibition.Ina : fast Nat current;Icar: L-type Ca?t
current;I;o : transient outward K+ current; Ik, : rapid delayed rectifier K¥ current. TdP risk : Torsade the
Points risk: 1) Known risk; 2) Conditional risk; NC) Not classified, i.e., evidence was not enough to add it to
any risk category. Dashes indicate no effect or IC50 much higher than tested concentrations (corresponding
to a negligible block of the current). *: from (Kramer et al. 2013); **: from (Crumb et al. 2016); ***: from
(Passini et al. 2019).

2.2 Human in silico drug trials
2.2.1 Human cardiac Purkinje model

Human cardiac Purkinje electrophysiology was simulated using the Trovato2020 model (Trovato et al.
2020), publicly available on the model repository of the Computational Cardiovascular Science Team
(www.cs.ox.ac.uk/insilicocardiotox/model-repository). As shown in Figure 1B, the main ionic currents of
this model are: fast and late Na® current (I, and Inar, respectively), Icar, T-type Ca?t current (Icat),
Lo, sustained outward KT current (Is,s), rapid and slow delayed K*trectifiers (Ik, and Iks, respectively),
inward KT rectifiers (Ix1), funny current (I¢), Na™-Ca?* exchanger (Incx) and Na®™-K™pump (Inax). The
model was calibrated and evaluated against a wide set of AP recordings from human healthy Purkinje cells,
and it is also able to reproduce the most common arrhythmia precursors at the cellular level, i.e., early and
delayed afterdepolarisation (EADs and DADs, respectively).

2.2.2 Population of human cardiac Purkinje models

Starting from the Trovato2020 model, we developed a virtual population of human cardiac Purkinje cells,
to incorporate biological variability. The population was designed similarly to what previously done in
(Trovato et al. 2020), and using the well-established population of models methodology (Britton et al. 2013;
Muszkiewicz et al. 2015). All simulations were performed using the Virtual Assay software (v.3.2 (©) 2018
Oxford University Innovation Ltd. Oxford, UK), a user-friendly software to perform in silico drug trials in
population of models (Passini et al. 2020). An initial population of 1,000 models was constructed by sampling



the 12 main ionic current conductances mentioned above (Ina, InaL, Icar, IcaT, lto, Isus, Ikrs Iks, Lty 1K1, INOXs
Inak) in the range [50-200]% of their baseline values, using Latin hypercube sampling (McKay, Beckman,
and Conover 1979). First, models were paced individually for 1,000 beats to allow relaxation from the initial
conditions and to reach the steady state at normal pacing (1 Hz). For each model, nine AP biomarkers
were computed on the last simulated beat, including all the ones already described above (APDgy, APDj3,
dV /dtprax, TOP and APA), and also AP duration at 10%, 25%, and 75% of repolarisation (APDjg, APDas,
APD75) and the “end of potential” voltage (EOP). Only models exhibiting all AP biomarkers within the
experimental ranges measured in healthy human Purkinje cells (Trovato et al. 2020; Nagy et al. 2015) and
no repolarisation abnormalities (i.e., EADs or DADs) were retained in the final calibrated population, for a
total of 530 models. All models in the final population were also paced for further 150 beats at slow pacing
(0.2 or 0.25 Hz) and fast pacing (3 Hz), to obtain control AP biomarkers for all the frequencies used in the
in vitroexperiments.

2.2.3 Human in silico drug trials

Drug-induced inhibition of the different ion channels was simulated using a simple pore-block model, with the
experimental IC50 and drug concentrations reported in Table 1 for Ina, Icar, Ikr and Ii,, and Hill coefficients
equal to 1. Figure 2 shows a visual representation of the residual currents following drug administration, for
each compound and each concentration.

Starting from the steady state described above, the models were paced for further 150 beats at each frequency
including the drug effects. Extracellular concentrations were set as in the in vitro rabbit experiments, and the
same AP biomarkers were computed on the last simulated beat. Repolarisation abnormalities were detected
as positive derivatives of the membrane voltage over time, occurring after 150 second, as in (Trovato et al.
2020). AP biomarkers were not computed for models showing abnormalities.

All simulations were performed on a regular Desktop Computer (Intel (R) Core (TM) i5-4670S CPU @
3.10 GHz RAM: 8 GB, 64-bit Windows 10). The time required to simulate one drug at one concentration
(150 beats) in a population of 530 models was 12, 17, and 35 minutes, for simulations at 3, 1, and 0.2 Hz,
respectively.
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Figure 2. Summary of drug-induced effects on the cardiac ion channels, computed with a simple pore-block
model. Each panel shows one of the 14 reference compounds, with the different bars representing the residual
current after drug-application (in percentage), for each ion channel and drug concentration.

2.3 Metrics for comparison of experiments, simulations, and clinical evidence

We first compared the mean of simulated and experimental AP biomarkers in control conditions (no drug)
for all pacing frequencies, to assess the consistency between in silico and in vitro models. Then, we compared
the results for each compound at each concentration and pacing frequency against control. Results are shown
as percent variations of the means, for both experiments and simulations.

For proarrhythmia risk assessment, we considered two different metrics. The first is the occurrences of

10



drug-induced abnormalities, as previously used by (Passini et al. 2017). In summary, compounds inducing
repolarisation abnormalities in at least one model of the in silico population or one cell of the in vitro rabbit
assay, at any of the tested concentrations, were classified as risky, whereas they were classified as safe if all
models/cells fully repolarised at slow pacing. The second is a metric based on APDggprolongation, since it is
one of the most common biomarkers still used to discriminate between safe and proarrhythmic compounds in
the current preclinical pipelines, even though it is not very specific (Champeroux et al. 2005; Redfern et al.
2003). In particular, we considered a mean APDgg prolongation higher than 10% as a warning for possible
drug-induced proarrhythmic effects. Classification results based on these metrics for in vitro rabbit and in
silicohuman trials were then compared against the clinical risk as reported by CredibleMeds®) (Woosley and
Romer 1999), which divides drugs in multiple categories, based on TdP risk. As shown in Table 1, the 14
reference compounds belong either to category 1 (high risk: the drug prolongs the QT interval and is clearly
associated with a known proarrhythmia risk, even when taken as recommended), 2 (conditional risk: the
drug is associated with TdP but only under certain circumstances, e.g., overdose or interaction with other
drugs), or NC (not classified - the drug was reviewed by CredibleMeds@®) but the evidence available was not
enough to assign it to any of the previous categories. For the purpose of this study, drugs in categories 1 and
2 were considered risky, while drugs in category NC were considered safe.

Finally, to evaluate the consistency between experiments and simulations, we defined a third metric, based
on the mean of drug-induced percent variations in AP biomarkers for each tested drug and concentration:
i) strong agreement, if the trend (increase/decrease) was the same, and the difference between the in vitro
andin silico means was equal or less than 15%; ii) qualitative agreement, if the trend (increase/decrease) was
the same, but the difference between the in vitro and in silico means higher than 15%; iii) disagreement, if
the trend was different, regardless of the magnitude of the mean difference.

3. RESULTS
3.1 Simulated and experimental AP biomarkers in control

Table 2 reports mean and standard deviation of each AP biomarker in control conditions for the in wvitro
rabbit experiments (n=6) and the population of human in silico models (n=530) at slow, normal, and fast
pacing. APDgg (and to a lesser extent APDj5q) is larger in rabbit experiments compared to human simulations
at all pacing frequencies and, to a greater extent, at slow pacing. Decreasing the pacing frequency results in
larger APD prolongation in rabbit than human Purkinje cells, in agreement with what has been previously
measured in rabbit (W. Li et al. 2016) and human (Nagy et al. 2015) Purkinje cells. Both dV/dtpax and
APA were also larger in rabbit experiments than human simulations: again, this is in agreement known inter-
species differences (Cohen, Bean, and Tsien 1984; Nagy et al. 2015; Roche et al. 2010). No major differences
were observed for TOP.

Table 2. Experimental and simulated AP biomarkers in control conditions (no drug) at slow pacing (0.2),
normal pacing (1 Hz) and fast pacing (3 Hz).

Control
Slow pacing  Slow pacing Normal pacing Normal pacing Fast pacing Fast pacing
Ezp Sim Ezp Sim Exp Sim
APDgq 432 £ 119 292 + 65 310 £ 52 281 + 55 216 + 24 212 + 27
APDs3¢ 311 + 107 215 + 59 239 + 53 210 + 50 162 +£ 24 149 £ 22
dV/dtpax 627 + 80 363 +£ 73 616 £+ 72 419 + 79 595 + 62 391 + 79
APA 128 + 3 107 + 4 129 + 3 112 + 4 129 + 3 113 + 4
TOP -89 +1 -84 + 1 91 +1 87+ 1 92 +1 -88 + 1

Data shown as mean + standard deviation. Exp: experiments in in witro rabbit cardiac Purkinje fibres
(n=6); Sim: simulations in human cardiac Purkinje AP models (n=530). APDx: AP duration at X% of
repolarisation; dV/dtyax: maximal upstroke velocity; APA: AP amplitude; TOP: take-off potential.
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3.2 Proarrhythmic risk assessment based on drug-induced repolarisation abnormalities

The occurrence of drug-induced abnormalities in repolarisation was quantified in both experiments and
simulations and is reported in Figure 3 (11" and 12" columns, respectively). These data were used to
classify drugs as safe or risky, as described in the Methods section, and the results are shown in Figure 4A
(left panel). Human in silico drug trials correctly classified all drugs (accuracy=100%), while the in vitro
rabbit models achieved an accuracy of 79%. Indeed, in rabbit preparations, EADs were observed for only 8
out of 11 risky compounds, while no EADs were observed for bepridil, ranolazine, and terfenadine, despite
the wide range of concentrations explored. Diltiazem, nifedipine and verapamil did not induce any EADs in
silico nor in vitro , and were correctly classified as safe.

Figure 5A reports a comparison between experimental and simulated AP traces for three illustrative com-
pounds. Astemizole and cisapride (Figure 5A, left and central panels respectively) induced EADs in both
simulations and experiments. For astemizole, EADs occurred at lower concentrations and largely disappeared
at higher concentrations, due to the concurrent strong (>50%) inhibition of I¢,r, (Figure 2, panel A), whereas
for cisapride EADs were observed up to the highest tested concentration, with increasing duration. Diltiazem
(Figure 5A, right panel) lowered the AP plateau and increased the AP duration in both experiments and
simulations, but it did not induce any repolarisation abnormalities, in line with its safe profile.

Figure 5B shows experimental and simulated AP traces for the tree risky compounds that were correctly
identified by the human simulations based on EADs occurrence (bottom panels), but misclassified by the rab-
bit experiments, i.e., bepridil, ranolazine and terfenadine. Simulations with bepridil showed EADs duration
increasing with drug concentrations, similarly to cisapride, despite a mild (<50%) inhibition of Ic,r, (Figure
2, panel B). Simulations with ranolazine showed EADs only at the highest concentration tested (Figure 5B,
central panel), in line with its conditional proarrhythmic profile. Finally, simulations of terfenadine (Figure
5B, right panel) displayed EADs only at lower concentrations, similarly to astemizole.

From a mechanistic point of view, models developing EADs were characterised by low repolarisation reserve
as previously investigated both in human cardiac Purkinje and ventricular models (Trovato et al. 2020;
Passini et al. 2017)
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Slow pacing (0.2-0.25 Hz) Normal pacing (1 Hz) Fast pacing (3 Hz)
AdV/dtwax | AAPDso AAPDso EADs | AdV/dtwax | AAPDso | AAPDso | AdV/dtwax | AAPDso | AAPDso | TdP
Drug Conc i i . N risk
(EFTPOuAx) M) PEPC| Bxp Sim | Bxp Sim | Exp Sim | Exp Sim | Exp Sim | Exp Sim | Exp Sim | Exp Sim | Exp Sim | Exp  Sim
0.01 33x 3% 1% | 0% 19% | 1% 21% | 0% 5% | - % % 1% | 3% 1%
Astemizole 01 333x | 0% 0% | 9%  55% | 15% 0% 31% 6% 26% | T% 3%
(0.0003) 1 3333x | 1% -13% | 61%  48% | 32% H % % % 16 | % s | L
3 10000x | 7%  -31% | -2%  30% 6% | 0% 1% 8% % | ™% 2%
0.1 3x % 1% | 1% 7% | 7% 19% | 0% 5% 2% 10% | 1% 13%
Bepridil 03 9x 1% -4% | 41% 3% | 35% 4w% [ 0% 17% %1% | % %[
(0.035) 1 29x 55% [ 0% 31% 1% 2% | 8% 3%
3 86x 67% 0% 6% 4% 2% | 14%  40%
0.003 1x 7% % 1% % 5% | 1% 6%
Cisapride 0.03 10x 2% 39% 7% 2% L R
(0.003) 0.1 33x 2% 61% 50%  42% 13%  28% | 22% 39%
0.3 100x 3% 67% 50%  49% = 6%  29% | 28% 43%
1 07x | 0% 1% | 8% 0% | 6% 1% [ 0% 0% % 2% 1% | 2% 1%
Clarithromycin 24 2 3% 1% 2% 2% | 2% 2% | 0% 0% o% % % | 4% 2% .
(1.337) 10 7x -4% 2% | 53% 7% | 48% 9% | 0% 0% -5% 0% 4% | 9% 6%
30 22x 3% 7% | 53% 6% | 50% 19% [40% 1% | 5% 7% | 51% 19% | 51% 20% | -5% -14% | 11% 9% | 12% 12%
0.1 1x % 1% | 6% 2% | 1% 1% | 0% 0% [ 5% 1% | -1% 1% | 1% 0% | 6% 1% 1% | 3% -1%
. 1 8x 2% 2% | -4% 7% | 0% 3% | 0% 0% | 4% 3% | -S% 3% | 1% 2% | -6% 0% | -6% 9% | 0% -a%
7"]'3'1’;:; 3 23x 6% 8% | -10% -14% | -1% 9% | 0% 0% | 5% 9% |-12% -6% | -2% 6% | -8% -5% |-20% -17% | 5% -6% | NC
10 78x | 9% -23% | -23% -9% | 5% 25% | 0% 0% |-12% -23% [ -28% 3% | -4% 21% | -18% -21% | 3% -21% | -11% 2%
30 235x | 1% [cae Caem) 3% | 1o e | % o% | 2% s | % asw | 3% 12% | 1% %
03 04x | -5% 0% |-11% 0% | -1% 0% | 0% 0% | 1% 0% | -1% 1% | 3% 1% | NA 0% [ NA 0% [ NA 1%
1 1x 4% 0% | 10% 2% | 4% 3% | 0% 0% | 3% 1% | 8% 3% |10% 3% | NA 1% [ NA 2% [ NA 2%
Disopyramide 3 ax 6% 2% | 2% 7% | 51% 8% | 0% 1% | 5% 1% | 18% 9% |25% 9% | NA 4% [ NA 5% [ NA 6% N
(0.742) 10 13x | -9% 5% | 3% 2% 4% | 0% 5% |-15% -a% | 13% 25% | 40% 27% | NA  -15% | NA  12% | NA 16%
30 40x NA  -13% | NA  43% | NA  49% | 40% 12% | -34% -12% | -3% 52% | 55% 54% | NA -35% | NA  21% | NA  28%
100 135x | NA_ -33% | NA_ 60% | NA 0% 12% NA  35%
0.0003 01x | 3% 0% | 4% 1% | 4% 0% [ 0% 0% % 0%
Dofetilide 0.001 05x | 1% 0% | 1% 0% |16% 0% [ 0% 0% 8% 1% .
(0.0021) 0.003 1x 3% 0% | S4% 2% | 6% 2% [ 0% 0% 2% 2%
0.01 5% 2% 0% | NA 7% | NA 8% - 1% NA 6%
0.03 4x % 1% | 3% 5% | 1% 1% [ 0% 0% 2% 4%
Nifedipine 03 12x 2% 0% |-17% 2% | -11% 0% [ 0% 0% L1 I
(0.008) 1 125x | 5% 1% | -25% 3% [-15% 1% | 0% 0% % -21%
10 1250x [ 4%  -16% -21% u% | 0% 0% 2% -16%
0.1 003x | 2% 1% | 2% 2% | 7% 3% [ 0% 0% 1% % 2%
Quinidine 1 0.3x 2% 0% | 3% 20% | 5% 26% [ 0% 2% 1% 9% 16%
(3.237) 3 0.9x 9% 2% 33% a9% | 17% 1% 6% o | C
10 3x 20% -10% | ND_ 33% | ND | 61% | 50% 0% 2% 6% | 13%  27%
03 02x | 2% 1% | % 0% | 2% 0% [ 0% 0% % o | 0% 0%
Ranolazine 3 1x 2% 0% | 12% 4% | 13% 5% [ 0% 0% 1% % | 0% 4%
(1.95) 10 5% 6% 3% | 11% 4% | 25% 15% [ 0% 2% - T 16% - o | % ux| 2
30 x| e% e [ame 3wk | o e | ok e | o v |ame s | 7w | sow | oo ame w6l e | % 2%
o 0.003 1x 2% 1% | 0% 1% | 0% 0% | 0% 0% | 3% 0% | 3% 0% | 1% 0% | NA\ 0% | NA 0% [ NA 0%
ms(:i;:;)"! 0.03 15x | 0% 1% | 17% 2% | 2% 3% | 0% 0% | -3% 0% [10% 3% | 5% 3% [ NA 1% [ NA 2% | NA 2% 2
03 150x | 2% 2% 23% | 68% 25% | 33% 7% 13% | NA - 17%
03 0x 3% 1% | % 1% | % 0% [ 0% 0% o | 2% 0%
1 01x | 2% 1% |18% 0% |16% 0% [ 0% 0% o | 4% 0%
(S;:_ZGI:; 3 0.2x 3% 1% | % 1% [ 32% 2% [ 0% 0% % | 9% 1% 1
10 0.7x 1% 1% 5% 6% | 0% 0% % | 19% 4%
30 2 4% 2% 13% 15% | 33% 3% 8% | 31%  10%
0.03 3x 0% 1% | 4% 6% | 3% % | 0% 5% % | 2% 5%
Terfenadine 032 36x 2% 3% | 9% 40% | 17% 4m% | 0% 2% 2% | 4% 2%
(0.009) 144 160x | -9% -16% | -5%  56% | 25% % 0% x| % | C
5.34 593x -36% -40% | 3%  48% | 20% 0% 0% 17% | 3%  32%
01 1x 0% 1% | 9% 1% | 1% 6% | 0% 0% 1% | 3% 2%
Verapamil
(0.088) 1 x| 1% 0% | 26% 3% | 24% 3% [ 0% 0% % | 9% 1% | NC
3 ax | % | s on [ ew | % ox 2% | 2% 1%

Figure 3. Comparison between clinical TdP risk and percent drug-induced AP changes in human simulations
and rabbit experiments for each drug, at different concentrations and pacing frequencies.

Columns description from left to right: 15%: drug name and maximum effective free plasma concentra-
tions (EFTPCpax, in uM); 27d: tested drug concentrations; 3'4: ratio between tested concentrations and
EFTPCyax; from 4'to 9th: experimental and simulated AP biomarkers changes at slow pacing; 10" to
11th: percentage of EADs occurrences in simulations and experiments at slow pacing; from 12" to 23"4: ex-
perimental and simulated AP biomarkers changes at normal and fast pacing; 24'": drug risk category based
on CredibleMeds ® (Woosley and Romer 1999). NA: data not available. Changes are shown as percentage
with respect to control conditions. Colours indicates biomarker increases (red) or decreases (blue) and are
scaled from the minimum to the maximum percent variations for each biomarker at each pacing frequencies.
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A Drug-induced proarrhythmia predictions based on:

EADs occurrences at slow pacing APD,, prolongation at 1 Hz
Simulations Experiments Simulations Experiments
True+ True- True+ True- True+ True-— True+ True-
11 3 8 3 11 1 10 2
False + False— False + False— False + False— False + False —
0 0 (1] ] 2 0 1 1
Accuracy: 100% Accuracy: 79% Accuracy: 86% Accuracy: 86%
Sensitivity: 100% Sensitivity: 73% Sensitivity: 100% Sensitivity: 91%
Specificity: 100% Specificity: 100% Specificity: 33% Specificity: 67%

B Consistency between human in silico and rabbit In vitro APDy,-based safety predictions
1HZ

Astemizole Quinidine

Bepridil Ranolazine

Cisapride Risperidone

Diltiazem Sotalol

Disopyramide Verapamil
Clarithromycin Nifedipine

Dofetilide

W Agreement [ Partial agreement Disagreement

Figure 4. Proarrhythmic risk predictions using in silicohuman or in vitro rabbit models. A) Confusion
matrix for in silico (green) and in vitro (blue) predictions, compared to clinical report of proarrhythmia,
based on EADs occurrences (left panel) or APDgq (right panel); +: Risky drug; -: Safe drug. B) Consistency
between in silico and in vitro drug safety predictions based on APDgg prolongation at 1 Hz. The pie chart
represents the percentage of compounds showing agreement for the majority of the concentration tested
(green), agreement for at least half of the tested concentrations (blue), or disagreement (yellow).
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Figure 5. Comparison between human in silico andin vitro rabbit AP traces at slow pacing, for six
illustrative compounds. In each section, experimental recordings are at the top, and simulated traces at the
bottom. One representative cell/model is shown for each drug. A) Three explicative compounds showing
EADs in both simulations and experiments: astemizole (left), cisapride (centre), diltiazem (right). B) The
three compounds showing disagreement in EADs occurrence between in silico and in vitro results, i.e., EADs
were observed only in simulations and not in experiments: bepridil (left), ranolazine (centre), terfenadine

(right).

3.3 Proarrhythmia risk assessment through AP prolongation:

ments, simulations, and clinical reports
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Since APDgg is widely used in preclinical safety studies, we also evaluated drug-induced changes in APDggin
rabbit experiments and human simulations. Percentage changes compared to control conditions are reported
in Figure 3, while Figure 4A (right panel) shows the confusion matrices obtained by considering as risky the
drugs showing an average APDgq prolongation at 1 Hz greater than 10%, as described in Section 2.3. Based
on this metric, human in silico drug trials correctly classified all risky drugs, even though two safe drugs
resulted false positives, yielding a total accuracy of 86%. This is due to the fact that diltiazem and verapamil
showed significant AP prolongation at high concentrations (78x and 11x, respectively) and were therefore
classified as risky. This AP prolongation is due to the large (>50%) hERG blockade at concentrations far
from the EFTPCmax. In vitro rabbit assays produced the same overall accuracy, even though it was achieved
with one false positive (verapamil) and one false negative (terfenadine), the latter showing very little AP
prolongation at all tested concentrations tested (up to 593x EFTPCyax ), despite is high TdP risk.

The pie chart in Figure 4B summarises the consistency between in silico and in vitro predictions based on
APDggprolongation at 1 Hz: out of 14 reference compounds, 11 are in agreement, 2 are in partial agreement,
and only 1 is in disagreement (categories defined as described in Section 2.3). Disagreement was observed
for terfenadine, which induced up to 85% AP prolongation in simulations, and only up to 7% in in wvitro
rabbit experiments.

Partial agreement was observed for clarithromycin and dofetilide. As shown in Figure 3, both in silico and
in vitro results show a dose-dependent AP prolongation for both drugs. However, the percentage changes
observed in rabbit experiments are much larger than the ones observed in simulations (10% vs 113% for
dofetilide and 20% vs 51% for clarithromycin, respectively, at the maximum tested concentration). A similar
behaviour was also observed for sotalol (Figure 3), and it can be related to known species differences between
humans and rabbit in the response to hERG blockers. It is also worth to notice that in vitro experiments for
dofetilide and sotalol were performed in a narrow range of concentrations (up to 5x and 2x the EFTPCmax,
respectively), limited by the solubility of the drugs. This limitation can be easily overcome with in silico
trials, and — when simulating higher concentrations — we actually observed larger AP prolongations in the
population of models: +57% for dofetilide 0.1 uM and +39% for sotalol at 100 uM.

3.4 Detailed comparison of human in silico and rabbitin vitro drug trials

Figure 3 shows experimental and simulated results for each drug, at each concentration and pacing frequency.
Only dV/dtmax, APDsg and APDgg are included, since minor drug-induced effects were observed for TOP
and APA, in both experiments and simulations. Furthermore, dV/dtyax, APDsg and APDgy are good
markers of Ina, Icar, and Ik,blocks, respectively, since they capture different phases of the AP dynamic:
dV/dtyax is strongly dependent on Iy,, whereas Ic,;, modulates the AP plateau and APDgg, and Ik, is
mainly responsible for the later phase of repolarisation, captured by APDygg.

Figure 6 summarises the comparison between experiments and simulations, based on the results from Figure
3 and using the metric defined in Section 2.3: each pie chart includes (for each biomarker, at each pacing
frequency) the percentage of drug concentrations in either strong agreement (green), qualitative agreement
(green), or disagreement (yellow), across all drug trials. These results clearly demonstrate a high degree of
consistency between experiments and simulations, across all drugs, concentrations, pacing frequencies, and
AP biomarkers.

Results for dV/dtyax show almost total agreement (98% for all pacing frequencies): the only drug showing
disagreement is nifedipine at 10 uM, which slightly increase dV /dtyax (4%) in rabbit and reduces it in humans
(-16%, -17% and -11% at slow, normal and fast pacing, respectively). Drug-induced APDgy changes also
shows a high degree of consistency (94-96%) between experiments and simulations, even though - compared
to dV/dtpmax - a larger portion of drugs showed qualitative rather than strong agreement. Disagreement was
only found in 6%, 5%, and 4% of drug concentrations, for slow, normal, and fast pacing, respectively. Results
for APDj3 also show good agreement (71-83%), despite the percentage of disagreement is higher compared
to dV/dtyax and APDgg. This difference could be explained by the differences in AP morphology between
humans and rabbit: rabbit APs have a more pronounced spike compared to in silico models and this affects
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the voltage threshold to compute the APD3y.

Disopyramide showed larger APDgy at slow pacing in rabbit experiments compared to simulations, and
smaller APD5( at 1 Hz and high concentration (Figure 7A).

Results for quinidine and risperidone were strongly consistent at 1 Hz, whereas - at slow pacing - a larger
AP prolongation was observed in experiments compared to simulations. This could be due to differences in
rate-dependent drug-induced effects on Ic,r, and Ik, between human and rabbit as reported in (Nagy et al.
2015; W. Li et al. 2016).

For all tested concentrations, astemizole, bepridil (Figure 7B) and cisapride induced a larger increase in
APDyg in simulations compared to rabbit preparations, especially at 1 Hz and very high concentrations.
For these three compounds, dV/dtyaxpredictions were strongly in agreement with the experiments at 1 Hz,
whereas, at both slow and fast pacing, they lead to a larger reduction in dV/dtyax in simulations than exper-
iments. For astemizole and bepridil, APD5q was the less consistent biomarker, especially at high frequency,
since simulations showed marked APDsq increased which was not observed in experiments. Simulations and
experiments for clarithromycin showed agreement at fast pacing, whereas at slow pacing, simulations were
just qualitatively in agreement, showing smaller AP prolongation compared to experiments. Simulations and
experiments for ranolazine and terfenadine agreed for dV/dtymax at every pacing frequency and qualitatively
for APDgq at slow pacing. At higher frequencies human simulations showed AP prolongation larger than
in rabbit experiments. Simulated drug-induced APDgy and APDsgprolongations for dofetilide (Figure 7C)
and sotalol were significantly smaller than those observed experimentally in rabbit, at all tested concentra-
tions and pacing frequencies, due to well-known species differences in hERG block sensitivity as discussed
in Section 3.3.
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Biomarkers consistency between human simulations and rabbit experiments

Slow pacing Normal pacing Fast pacing
7% § 2% 8% Ml 2%
g \ \
)
2
>
°
6% 5%
a ‘
<
40%
50%

APD.,

I Strong Agi M Qualitati

Figure 6. Summary of the comparison between experiments and simulations at different pacing frequencies,
for AV /dtyax (top), APDgg (middle), and APD5o (bottom). Pie charts show the percentage of tested com-
pounds at different concentrations in strong agreement (green), qualitative agreement (blue), or disagreement
(yellow). Categories defined as in Section 2.3).
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Figure 7. Comparison between simulated and experimental dose-response curves for APDgy, APDsgand
dV/dtyax, for three representative compounds, at all pacing frequencies: A) disopyramide; B) bepridil;
C) dofetilide. Boxplots: human simulations at different concentrations (one colour per concentration): on
each box, the central mark is the median of the population, box limits are the 25 and 75th percentiles, and
whiskers extend to the most extreme data points not considered outliers, plotted individually as separate
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crosses. Black squares: in vitro rabbit data.

4. DISCUSSION AND CONCLUSION

In this study, we showcase the large impact that human in silicodrug trials can have in the context of
predictions of drug-induced proarrhythmic risk based on ion channel information, by providing new evidence

Drug concentration (M)
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obtained through simulations in human cardiac Purkinje cells. We present results for a selection of 14
reference compounds (at multiple concentrations and pacing rates), using in silico human Purkinje models
with a variety of ionic profiles (n=>530), their comparison to in wvitro rabbit Purkinje fibres experiments
(n=6), and their ability to predicting clinical risk, based on various biomarkers, including EADs occurrence
and APDgo.

The main findings of this study are:

1. In silico predictions using human Purkinje models based on EAD occurrence at slow pacing showed
100% accuracy in classifying risky from safe drugs, while in vitro rabbit experiments yielded 79%
accuracy. This was also superior to predictions based on AP prolongation, which yielded accuracy of
86% for both in silicoand in vitro .

2. In silico drug trials using human cardiac Purkinje electrophysiology models and in vitro rabbit Purkinje
recordings showed a high degree of consistency for all tested compounds, across biomarkers, concen-
trations and pacing frequencies. This supports the credibility of human-based in silicomodelling and
simulations for the replacement of animal experiments in this context of use.

3. Some compounds, e.g., clarithromycin, dofetilide, sotalol and terfenadine, displayed a larger AP pro-
longation in vitro rabbit compared to in silico human recordings. This is in agreement with well-known
differences between rabbits and humans in the response to hERG block.

The high translatability of human-based in silico drug trials to clinical outcome - as demonstrated here
for electrophysiology —highlights their potential for high regulatory impact in drug discovery (Musuamba et
al. 2021). Human-based computational simulations can accurately predict clinical drug-induced arrhythmia
(Passini et al. 2017, 2019; Lancaster and Sobie 2016; Llopis-Lorente et al. 2020; Z. Li, Ridder, et al. 2019).
This is particularly relevant for compounds with positive hERG assays that may not induce arrhythmia due
to their concomitant effect on In, and Icar,.

We previously demonstrated how human in silico trials using ventricular cardiomyocytes reach higher pre-
diction accuracy than animal models for drug-induced pro-arrhythmia (Passini et al. 2017), and also their
consistency with recordings from isolated rabbit wedge and calcium transients from human induced pluripo-
tent stem cell-derived cardiomyocytes (hiPSC-CMs). Here we compare proarrhythmic risk predictions and
drug-induced electrophysiological changes in humanin silico cardiac Purkinje cells against and rabbit in
vitro Purkinje fibres, which is a well-established model for preclinical safety assessments in pharmaceutical
industries.

For preclinical risk assessment, we first considered a metric based on drug induced repolarisation abnormal-
ities occurrences at slow pacing, similar to (Passini et al. 2017; Varshneya, Mei, and Sobie 2021; Sager et
al. 2014). We reached an accuracy of 100% using human in silico drug trials, compared to only 86% using
in vitrorecordings, which failed to identify two compounds with known TdP risk (bepridil and terfenadine)
and one with conditional TdP risk (ranolazine). Our findings are in agreement with previous experimental
studies, showing that these three compounds often did not show EADs when tested in rabbit preparations.
Bepridil up to 10 pM did not induce EADs in rabbit hearts (Hondeghem et al. 2003; Anno et al. 1984),
while it did on hiPSC-CMs at the same concentration (Yu et al. 2019). Similarly, terfenadine did not
induced EADs in rabbit wedge preparations (Vos 2008; Liu et al. 2006), but it did in hiPSC-CMs (Nozaki
et al. 2014). Ranolazine, which is associated with TdP only under certain conditions, e.g. hypokalaemia,
bradycardia, etc. (Woosley and Romer 1999), has shown anti-torsadogenic effects in rabbit hearts at 10 uM
(Sossalla et al. 2014; Frommeyer et al. 2012), but at 100 uM induced EADs on hiPSC-CMs (Blinova et al.
2018; Yu et al. 2019).

The differences in drug-induced EADs occurrence between in silicohuman and in wvitro rabbit results are
likely to be due to the clear advantage of in silico simulations performed in 530 virtual myocytes, rather than
a limited number of experiments (n=6). In addition, the in silico population of models incorporates a large
variability in ionic profiles (over- and under-expression of ionic currents), and we previously demonstrated
that models with low repolarisation reserve are more likely to develop EADs following ion channel blocks,
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both in ventricular and cardiac Purkinje models (Trovato et al. 2020; Passini et al. 2017). Therefore, it is
much more likely to observe drug-induced EADs in human in silico drug trials. This is a clear advantage
when trying to predict risk.

We also evaluated how in silico and in vitro predictions based on drug-induced AP prolongation compare
against clinical risk, since APD is still one of the most common biomarkers considered in preclinical safety,
despite several studies showed that it is not always associated with TdP risk, especially for multichannel
blockers (Champeroux et al. 2005; Redfern et al. 2003). In our study, predictions based on APDgy at 1 Hz
reached the same accuracy (86%)in silico and in vitro , and results were highly consistent (>90%) across all
drugs and all concentrations.

Quantitative comparison of drug-induced changes for all biomarkers (dV/dtyax, APDgg, and APDs5g) and
pacing frequencies between human simulations and rabbit preparations also showed large consistency. This
is a very exciting result, confirming the importance of developing in silico models using experimental data
at different frequencies, as we did for the human cardiac Purkinje models used in this study (Trovato et al.
2020).

Some compounds, e.g., clarithromycin, dofetilide, sotalol and terfenadine, displayed a larger AP prolongation
in vitro compared to in silico , due to well-known differences between rabbits and humans in responding
to hERG block. Previous studies have reported smaller clarithromycin-induced AP prolongation in humans
compared to rabbit (Gluais et al. 2003), and no QT prolongation at therapeutic doses (Démolis et al. 2003).
Also, several studies have reported in rabbit the largest dofetilide-induced AP prolongation, compared to
other species e.g. humans, dog, guinea pig, swine, goat, sheep (Lu et al. 2002, 2001; Terrar et al. 2007; Trovato
et al. 2020). Previous studies also showed larger sotalol-induced AP prolongation in rabbit compared to other
species (Gintant et al. 2001), and AP prolongation between 28% and 37% following superinfusion of sotalol
30 pM in human cardiomyocytes (Tveito et al. 2020), closer to what observed in our simulations (16%) than
in rabbit experiments (96%).

To our knowledge, this is the first study that systematically evaluates and compares homogenous experimental
data capturing drug-induced effect on cardiac Purkinje fibres against in silico results. To minimise noise
and variability in the experimental electrophysiological recordings, we considered a consistent dataset, with
experiments performed in one laboratory and under identical conditions.

In summary, the credibility goals that we satisfied in this study, as defined in (Musuamba et al. 2021),
are: 1) to show higher accuracy ofin silico trials compared to a current-in-use experimental counterpart; ii)
to demonstrate high grade of consistency between simulations and experiments. Our results showed not
only high degree of consistency between in vitro and in silico preparations (Figure 6), but also that human-
based computer simulations can achieve better results than rabbit experiments for risk predictions (Figure
4A) since they are built, calibrated, and validated using human data, thus facilitating translation towards
clinical scenarios.

In addition, there are many more advantages in using in silicomodel compared to perform in vitro animal
experiments. These include: i) reduction of the use of animals in research; ii) reduction of the time required
for drug safety assessment, thus allowing pharma companies to process more compounds in a shorter amount
of time, and accelerate the drug development process; iii) economical advantage, i.e.in silico trials can
be performed in a standard computer; iv) overcome limitations in the tested concentration ranges, due
to drug solubility problems; v) overcome limitations in the number of conditions explored for each drug
(concentrations, pacing frequencies, etc.) and in the number of samples.

To conclude, in silico drug trials in human cardiac Purkinje cells have shown to be consistent with in wvitro
recordings from rabbit Purkinje fibres, and more accurate for predictions of drug-induced proarrhythmic risk.
This supports the opportunity for replacement of animal experiments with human-based in silicosimulations,
in the regulatory context.
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