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Abstract

Ecologists often rely on observational data to understand causal relationships. Although observational causal inference method-

ologies exist, model selection based on information criterion (e.g., AIC) remains a common approach used to understand

ecological relationships. However, such approaches are meant for predictive inference and is not appropriate for drawing causal

conclusions. Here, we highlight the distinction between predictive and causal inference and show how model selection techniques

can lead to biased causal estimates. Instead, we encourage ecologists to apply the backdoor criterion, a graphical rule that can

be used to determine causal relationships across observational studies.
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Abstract:

Ecologists often rely on observational data to understand causal relationships. Although observational causal
inference methodologies exist, model selection based on information criterion (e.g., AIC) remains a common
approach used to understand ecological relationships. However, such approaches are meant for predictive
inference and is not appropriate for drawing causal conclusions. Here, we highlight the distinction between
predictive and causal inference and show how model selection techniques can lead to biased causal estimates.
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Instead, we encourage ecologists to apply the backdoor criterion, a graphical rule that can be used to
determine causal relationships across observational studies.

As ecologists, we are often interested in answering causal questions about human impacts on the natural
world, such as the effect of climate-induced bleaching events on coral reef ecosystems (e.g., Graham et al.
2015), the impact of deforestation on biodiversity (e.g., Brook et al. 2003), or the effect of conservation and
management responses on restoring ecosystem services (e.g., Sala et al. 2018). Often, randomized controlled
experiments are unfeasible, and ecologists instead rely on observational data to answer fundamental causal
questions in ecology (MacNeil, 2008). Recently, new advances in technology such as remote-sensing and
animal-borne sensors, as well as increased availability of citizen science and electronic data have further
increased opportunities to answer causal questions from observational data (Sagarin and Pauchard 2010).

In recent years, researchers have advocated for the increased application of causal inference in ecology
for answering cause and effect relationships from observational data (e.g., Larsen et al. 2019; Laubach
et al. 2021) but these approaches have yet to be widely adopted. Instead, drawing causal conclusions
from observational data is typically taboo, with Pearson’s oft-cited “correlation doesn’t equal causation”
used to block attempts to do so (Glymour 2009). This misconception – that causality cannot be inferred
using observational data – has resulted in a culture where ecologists dependent on observational data for
understanding causal relationships avoid explicitly acknowledging the causal goal of research projects and
instead use coded language that implies causality without explicitly saying so (Hernan 2018; Arif et al.
2021).

A common strategy used to understand ecological relationships is to apply model selection, using information
metrics such as Akaike’s information criterion (AIC; Akaike 1973). Such approaches select the ‘best’ model
among a candidate set and subsequently make inferences from parameters that are of ecological interest
within the winning model. Often, these inferences are tied up with causal language, implying that having
selected the best model, one can proceed to using causal language in reference to it (Table 1). However,
model selection is not a valid method for inferring causal relationships – rather, these techniques aim to select
the best model for predicting a response variable of interest. For example, AIC approximates a model’s out
of sample predictive accuracy, using only within-sample data (Akaike 1973). Although numerous model
selection criteria exist (e.g., BIC, Schwarz et al. 1978; DIC; Spiegelhalter et al. 2002; WAIC, Watanabe
2013; LOO-CV; Vehtari et al. 2017), they are all used to compare models based on predictive accuracy
(McElreath 2020; Laubach et al. 2021; Tredennick et al. 2021). Thus, model selection is appropriate
for predictive inference (i.e., which model best predicts Y?), which is fundamentally distinct from causal
inference (i.e., what is the effect of X on Y?).

To demonstrate this distinction, the directed acyclic graph (DAG) in Figure 1 shows the causal structure
of a hypothetical ecological system. DAGs can be used to visualize causal relationships, where variables
(nodes) are connected to each other via directed arrows, pointing from cause to effect (Elwert 2013). For
example, forestry effects species Y both directly (there is a directed arrow between them) and indirectly,
via the directed arrow from forestry to species A and from species A to species Y (Fig 1). To illustrate the
difference between model selection and causal inference we created a simulated dataset that matches the
linear causal structure of this DAG, setting the total (i.e., direct and indirect) causal effect of forestry on
species Y to -0.75 (Appendix S1). We further specified candidate linear regression models that included all
possible covariate combinations where species Y is a response. Using our simulated data and our candidate
models, both AIC and BIC selected a ‘best’ model where forestry, species A, human gravity, climate, and
invasive species Z were included as covariates (Appendix S1). However, interpreting the coefficients of this
model can provide biased causal estimates. For example, the effect of forestry on species richness is shown
to be -0.36 [-0.38, -0.33], instead of -0.75 (Appendix S1).

In this scenario, there are two statistical biases at play. The first is overcontrol bias, which occurs when
the inclusion of intermediate variables along a causal pathway removes the indirect causal effect between
predictor and response (Cinelli et al. 2021). Here, the inclusion of the intermediate variable species A
removes the indirect effect between forestry and species Y. Second, the inclusion of invasive species Z as
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a covariate leads to collider bias, which can result from adjusting for a variable that is caused by both
predictor and response (Cinelli et al. 2021). Here, the inclusion of invasive species Z induces an additional,
but non-causal, association between forestry and species Y.

It is worth noting that although the true predictive model (i.e., the data-generating model for species Y,
where all direct predictor variables – human gravity, species A, forestry, and climate were included as
covariates) was included as a candidate model, both AIC and BIC selected a more complex model with
invasive species Z as a covariate. Here, even though invasive species Z is not a predictor variable for species
Y, its statistical (non-causal) association with species Y increased predictive accuracy, resulting in better out
of sample predictive accuracy. Indeed non-causal associations including collider bias and reverse causation
has been shown to increase predictive accuracy (e.g., Luque-Fernandez et al. 2019; Griffith et al. 2020).
Thus, a model selected based on predictive accuracy should not be assumed to be causally accurate.

A more subtle point is that even if a model captures the data generating process for a response variable of
interest, it may not be appropriate for answering specific causal queries. For example, if we want to know the
total effect of forestry on species Y, a model with all direct predictor variables – human gravity, species A,
forestry, and climate – included as covariates, returns a causal estimate of -0.21[-0.23, -0.18] instead of -0.75
(Appendix S1). Here, the inclusion of species A as a covariate leads to overcontrol bias between forestry and
species Y, removing this indirect effect. As well, this model cannot be used to determine the causal estimates
of other distal drivers, such as climate or fire. Ultimately, causal models must be built based on the specific
causal question at hand, as well as through the careful consideration of the overall causal structure, including
how different predictor variables may be related to one another.

The Backdoor Criterion: Covariate Selection for Causal Inference

As a contrast from model selection approaches, a causal inference methodology that has recently emerged in
ecology is Judea Pearl’s structural causal model (SCM; Pearl 2009). This framework uses DAGs to visualize
researchers’ assumptions about the causal structure of a system or process under study. Once a DAG has
been created, a graphical rule known as the backdoor criterion can be applied to determine the covariates
required to answer a causal question from observational data.

Conceptually, the backdoor criterion instructs us to block all non-causal paths between a predictor and
response variable of interest, while leaving all causal pathways open. Graphically, this translates to blocking
all backdoor paths between a predictor and response variable. Backdoor paths are sequences of nodes and
arrows with an arrow pointing into both the predictor and response variable of interest; if left open, they
can lead to non-causal associations between variables of interest. To block a backdoor path, we can either
(1) adjust for an intermediate arrow-emitting variable or (2) not adjust for a variable with two incoming
arrows (i.e., a collider variable: X ).

For example, given our DAG in Fig 1, to determine the total effect of forestry on species Y, there are four
backdoor paths that must be blocked:

1. Species Y Climate Forestry
2. Species Y Climate Fire Species A Species Y
3. Species Y Species A Fire Climate Forestry
4. Species Y Human Gravity Forestry

The first three backdoor paths can each be blocked by adjusting for the intermediate arrow-emitting variable
climate. The fourth backdoor path can be blocked by adjusting for the intermediate arrow-emitting variable
human gravity. Therefore, to determine the total effect of forestry on species Y, we must adjust for climate
and forestry. Following covariate selection, researchers can determine the appropriate statistical analysis,
given their data. It is important to note that DAGs and the backdoor criterion are compatible with both
linear and non-parametric approaches (Pearl 2009; Elwert 2013). As our simulated data was created using
linear relationships, we have chosen a linear regression model, setting species Y as our response, forestry
as our predictor, and including climate and forestry as controls. This model returned an accurate total
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causal estimate of -0.75[-0.77, -0.73] (Appendix S1). The application of the backdoor criterion can become
increasingly complex with larger DAGs and as such, tools such as ‘dagitty’ (www.dagitty.net; instructions
within site) can help in composing DAGs and specifying causal questions, which will subsequently identify
required backdoor adjustment sets.

Distinction From Model Selection

Covariate selection using the backdoor criterion is fundamentally distinct from information-based model
selection techniques. The backdoor criterion is based on counterfactual reasoning, equating observational
distributions to what would be expected under a randomized control experiment (Pearl 2009). Unlike
model selection, the backdoor criterion was specifically created to answer cause and effect relationships from
observational data. Further, whereas model selection relies on the data to determine the best model, the
backdoor criterion uses domain knowledge, above all else, to determine the best causal model for a given
causal query. The use of DAGs and the subsequent application of the backdoor criterion allows ecologists
to move away from an automated approach of model selection to one that empowers ecologists to think
critically about the cause-and-effect relationships in their study system. The use of DAGs also facilitates
open critique of causal assumptions therefore their causal conclusions, which in turn can lead to productive
scientific debate that deepens our understanding of ecological phenomena (e.g., see Schoolmaster Jr. et al.
2020; rebuttal by Grace et al. 2021; and reply by Schoolmaster Jr. et al. 2021).

Currently, DAGs and the backdoor criterion are significantly less utilized than predictive model selection
techniques for understanding causal relationships in ecology. Thus far, the backdoor criterion has been
applied to understand the causes of species level trait covariation (Cronin and Schoolmaster Jr. 2018),
biodiversity-ecosystem function correlations (Schoolmaster Jr. et al. 2020), and causal drivers of coral-algal
regime shifts (Arif et al. 2021). As these varied examples demonstrate, the backdoor criterion can be widely
applicable for understanding ecological causal relationships. Increasing its use across ecological studies will
require a shift in culture toward openly discussing causality. While predictive model selection techniques
can play an important role in developing good statistical models, they should not be conflated with causal
inference (Laubach et al. 2021). Ultimately, ecologists must start to rely on valid causal inference methods
to answer fundamental causal questions in observational ecology.
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Table 1. A sample of recent observational ecological studies that have used model selection techniques to
answer causal questions, where results are communicated using causal language (e.g., effect, driver, influence).

Paper Causal Question Model Selection Causal Language

Millard et al. 2021 What are the global effects of land-use intensity on local pollination biodiversity? AIC Yes
Lu et al. 2021 What is the impact of land surface temperature on urban net primary productivity? AIC Yes
Safaie et al. 2021 How does high frequency temperature variability effect the risk of coral bleaching? AICc Yes
Morton et al. 2021 What is the impact of wildlife trade on terrestrial biodiversity? BIC Yes
Chinn et al. 2021 What is the influence of intrinsic and extrinsic attributes on neonate survival in wild pigs? WAIC Yes
Montano-Centellas et al. 2021 What are the ecological drivers of avian community assembly along a tropical elevation gradient? AIC Yes
Rode et al. 2021 What are the combined effects of sea ice, seal body condition and atmospheric circulation patterns on polar bears in the Shukchi Sea? AIC Yes
Sinnott-Armstrong et al. 2021. What are the biotic and abiotic drivers of fruit colour syndrome? AICc Yes
Walker et al. 2021 What factors influence scavenger guilds and scavenging efficacy in Southwestern Montana? AICc Yes
Teixeira et al. 2021. How did past environmental changes (prior to human impact) effect lemur population dynamics in Madagascar? AIC Yes
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Figure 1. A directed acyclic graph (DAG) representing the causal structure of a hypothetical ecological
system.
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