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Abstract

Functional traits are influenced by phylogenetic constraints and environmental conditions, but previous large-scale studies mod-
eled traits either as species weighted averages or directly from the environment, precluding analyses of the relative contributions
of inter- and intraspecific variation across regions. We developed a joint model integrating phylogenetic and environmental in-
formation to understand and predict the distribution of eight leaf traits across the eastern US. This model explained 68% of trait
variation, outperforming both species-only and environment-only models, with variance attributable to species alone (23%), the
environment alone (13%), and their overlapping effects (25%). The importance of the two drivers varied by trait. Predictions
for the eastern US produced accurate estimates of intraspecific variation and deviated from both species-only and environment-
only models. Predictions revealed that intraspecific variation holds information across scales, affects relationships in the leaf
economic spectrum and is key for interpreting trait distributions and ecosystem processes within and across ecoregions.

Introduction

Global change is expected to cause extensive changes in terrestrial ecosystems, driving unprecedented re-
distribution of plant species and their associated traits (Pecl et al., 2017, Diaz and Cabido, 2001). Plant
functional traits are involved in key ecosystem processes from local community assembly (McGill et al.,
2006, Sterck et al., 2011) to global biogeochemical cycles, and these processes are interconnected across
scales (Reichstein et al., 2014, Peaucelle et al., 2019). Relationships between traits, such as the leaf eco-
nomic spectrum (LES)(Wright et al., 2005) , reveal information about biological constraints in leaf mass
allocation that impact plant ecophysiology and have the potential to improve ecosystem models (Fisher et al,
2015). Biotic interactions, micro-climate, and soil conditions can affect species co-occurrence and influence
local trait distributions (Bruelheide et al., 2018, Simpson et al., 2016), and variation in climate within species
ranges can affect realized niches and drive trait responses (Chave, 2013). Given their central role across levels
of organization, understanding how traits vary within and among species across scales and environments is
essential for conserving present and future ecosystem function (Violle et al., 2014).

Plant traits vary geographically through a combination of interspecific shifts in species abundances and
intraspecific trait variation (Leps et al., 2011, Laughlin et al., 2012, Valladares et al., 2014, Münzbergová
et al., 2017). Understanding how traits respond to the environment across wide geographic areas requires
approaches integrating both sources of trait variation. This is challenging because individual level trait data
are geographically and taxonomically limited, making it hard for traditional methods to identify the relative
importance of inter- and intraspecific variation at large scales (Henn et al., 2018). In addition, effectively pre-
dicting broad-scale geographic patterns requires making predictions for species not included in trait datasets
but widely distributed across the continent. Most current approaches to understanding and predicting trait
variation use community weighted mean approaches (CWM), which circumvent these limitations by either
focusing directly on trait–environment relationships (based on direct relationships between environment and
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community trait averages while ignoring species) or by estimating traits from species averages (using the
environment only for predicting species assembly but ignoring the effect of intraspecific variation) (Miller &
Ives, 2019).

CWMs relying on direct trait-environment relationships offer the advantage of predicting large scale commu-
nity trait distributions without requiring field surveys or estimates of species assembly. However, by ignoring
species identity (e.g., Ordonez et al., 2009) this approach ignores known phylogenetic signals in trait variati-
on driven by biological, physical, and historical constraints (Wright et al., 2004, Anderegg et al., 2018), and
assumes that the environment implicitly captures relevant changes in species distribution and abundance.
Since the information about species identity is missing from predictions, these models cannot be used to ex-
plicitly identify the relative contributions of inter- and intraspecific variation (but see Moles et al. 2014) and
could potentially yield worse predictions for assemblage level trait values (when abundance data is available)
unless the environmental model fully captures relevant shifts in species abundance.

Due to these limitations, it has been suggested that predicting traits directly from species’ average values
(Swenson 2010, Clark 2016, Wieczynski et al., 2019, Swenson 2017, Stahl et al., 2014) offers better estimates of
large-scale trait distributions. These approaches assume that environmental drivers affect trait distributions
indirectly by shaping community structure and species abundance, implying that species distributions are
the best predictor of traits and associated ecosystem function. These models can be used to make predictions
for traits over large areas by training on forest inventories, leveraging species distribution models to forecast
future shifts in species and consequently trait distributions (Swenson & Weiser, 2010, Clark 2016). Yet,
this approach ignores intraspecific variation, which can be larger than interspecific variation for broadly
distributed species (Niinemets, 2015, Messier et al., 2017), and overlooks that species averages within regional
communities may diverge from their global averages (Hulshof & Swenson, 2010).

Both these approaches contribute to our understanding of trait variation and allow for predicting community
level trait distributions without requiring extensive field surveys of traits. However, neither approach is
designed to predict trait variation at the individual level, nor allow for estimating intra-species variation.
Also, they often fail to account for the effect of phylogenetic signal on traits of closely related species (but
see Swenson et al., 2017), which can be potentially important for generating more robust trait predictions
for species that are sparsely sampled (or not sampled at all) across vast geographic areas (Blomberg et al.
2003, Swenson 2013, Swenson et al., 2014). These limitations prevent assessment of the relative importance
of inter- and intraspecific variation on trait distributions across a continuum of geographical scales, reducing
our ability to generalize and understand mechanisms driving trait distributions.

To address these limitations, we developed a model that combines species, their phylogenetic relationships
(from the Tree of Life; Hinchliff et al., 2015) and environmental drivers (climate, elevation, slope, terrain
aspect) with large scale leaf trait data from the National Ecological Observatory Network (NEON) (National
Ecological Observatory Network, 2020). While this method can only predict trait distributions for locations
with species abundance data, it makes it possible to estimate the relative contribution of intra and interspecies
variation on trait distributions across wide geographic areas. This allows us to address whether changes in
environmental conditions have a direct effect on the LES, within and across species. We jointly modeled eight
leaf traits: nitrogen (N%), carbon (C%), chlorophyllA (ChlA%), chlorophyllB (ChlB%), carotenoids (Crt%),
leaf mass per area (LMA, g m-2), lignin (%) and cellulose (%). We compared this combined model to models
based on only environmental drivers or only species and phylogeny information. We integrated the combined
model with US Forest Inventory and Analysis (FIA; USDA Forest Service, 2001, Smith et al., 2002) and
Daymet data (Thornton et al., 2018) to make trait predictions for ~1.2 million trees across the eastern US.
We compared these predictions to the other two approaches to assess the influence of model differences on
large scale prediction, analyzed the relative contribution of environmental factors and phylogeny to leaf trait
variation across ecoregions, and demonstrate the potential use of this data for understanding the processes
structuring ecological systems at scale.

Materials and Methods

2



P
os

te
d

on
A

ut
ho

re
a

28
Ja

n
20

22
|T

he
co

py
ri

gh
t

ho
ld

er
is

th
e

au
th

or
/f

un
de

r.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

us
e

w
it

ho
ut

pe
rm

is
si

on
.

|h
tt

ps
:/

/d
oi

.o
rg

/1
0.

22
54

1/
au

.1
64

33
44

53
.3

48
97

59
5/

v1
|T

hi
s

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
re

vi
ew

ed
.

D
at

a
m

ay
be

pr
el

im
in

ar
y.

Data

We used data from the National Ecological Observatory Network (NEON, National Ecological Observatory
Network. 2020), the Botanical Information and Ecology Network (BIEN, Maitner et al., 2020, Enquist et
al., 2009) and TRY (Kattge et al., 2020) to link information on leaf traits, species identity, and approxi-
mate locations for individual trees. We used Foliar Physical and Chemical Properties (DP1.10026.001) and
Vegetation Structure data (DP1.10098.001) from NEON to build joint trait distribution models with en-
vironmental drivers (climate and topography) alone, phylogenetic drivers (species identity and phylogeny)
alone, and both (combined model). Linking the two different NEON datasets produced individual tree data
with stem geolocation and measures of eight leaf traits (LMA, chlorophyll A and B, carotenoids, lignin,
cellulose, C, N) for 542 trees in 21 sites across the US (Figure S.1). Since foliar trait concentrations vary
significantly with phenology and canopy position (Niinemets et al., 2015), foliar samples were collected at the
“peak of greenness” and from the sunlit portion of the canopy. We tested the generalizability of our approach
outside of NEON by evaluating predictions from independent (out of sample) data available from the BIEN
and TRY datasets (Appendix S1). These two datasets provide measures for C, N and LMA for a total of
223 individual trees. We used data from the Open Tree of Life (Redeling,s 2017) to measure phylogenetic
distance between species.

Data for environmental drivers included average monthly climate data from 1995 to 2015 (Appendix S1)
extracted from Daymet (Thornton et al., 2018) and topographic variables (elevation, slope and aspect)
reported in the NEON and FIA datasets. For three common eastern US tree species (Acer rubrum , Fagus
grandifolia , and Abies balsamea ), we used all publicly available leaf N% data from the TRY database
to quantify intraspecific variation in leaf N% across each species’ geographic range in the US. We selected
these three species because: (1) Abies balsamea is the needleleaf species with the most leaf N% data in
TRY for the US; (2) Fagus grandifolia is the broadleaf species with the most leaf N% data in TRY for the
USA; and (3) Acer rubrum occurs throughout much of the eastern US in a wide variety of habitats (e.g.,
from xeric to mesic; Burns and Honkala 1990) and has abundant leaf N% data in TRY. We combined our
trait modeling approach with forest survey data from the Forest Inventory and Analysis (FIA) database
(https://www.fia.fs.fed.us/ ) to estimate traits for all individual trees surveyed in the FIA across the eastern
USA from 2016 to 2019. We used Lv.3 ecoregions and Lv. 2 ecoprovinces as defined by the Environmental
Protection Agency (McMahon 2001, Omernik et al., 2014) to analyze trait distributions at different scales.

Overview of Models

We modeled the joint multivariate distribution of the eight leaf traits (the response variables) using three dif-
ferent approaches: (1) Environment-only model using climate and topography as fixed effects; (2) Phylogeny-
only model using species as random effects, with covariances among the random effects structured by the
phylogenetic tree for all woody species detected in the FIA database for the eastern US; (3) Combined model
including both environmental and phylogenetic effects. Here, we briefly summarize the modeling framework;
full details are in Appendix S2. All approaches used the same joint-multilevel Bayesian framework and were
evaluated using 5-fold cross-validation. The joint structure of the model allows for modeling traits simulta-
neously, considering the correlation structure across traits embedded in the LES and potentially leveraging
the conditional distribution on known trait values of one or more individuals at a site (Wilkinson et al.,
2020). Environmental effects were fitted using generalized additive models (GAMs) to account for non-linear
relationships. We used thin plate regression splines to estimate the smooth terms, using the brms R package
(Bürkner, 2017). Phylogenetic relationships across species were modeled by including species as a random
effect and accounting for their phylogenetic relationships by estimating their correlation structure from cross-
species cophenetic distances (Paradis et al., 2019). The distance matrix was used to estimate the correlation
structure across taxa, allowing parameter estimates for rare or unsampled taxa to borrow strength from wi-
dely sampled species (de Villemeruil & Nakagawa, 2014). We used multivariate normal families and weakly
informative priors in all cases (Appendix S2).

To reduce collinearity and the number of climate predictors, we calculated a PCA for each climate variable
(net radiation, precipitation, vapor pressure, maximum and minimum temperature) using monthly avera-
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. ges from 1985 to 2015. We used the first component of each PCA to represent each climate variable in
the environment-only and combined models. To quantify uncertainty in model accuracy, we used the 95%
prediction interval of the Bayesian R2 (Gelman et al., 2018). To reduce computation costs of ~15x without
affecting accuracy (Table S.1), we used predictions from 1fold cross-validation for making predictions across
FIA and test model generalizability. See additional methods details in Appendix S1-S3. Code for reproducing
analyses is available on Zenodo (https://zenodo.org/badge/latestdoi/353383665 ).

Estimation of inter- intraspecific variation across scales

We used variance partitioning among two factors (Ribas et al. 2006) to estimate the relative contribution
of inter- vs. intraspecific trait variation at the continental scale by comparing each model (phylogenetic and
environmental) to the combined model following Munoz & Real (2006). The idea of using variance partitioning
to understand intra- vs inter-specific trait variation was originally developed by de Bello et al. (2011; see also
Leps et al. 2006), but this work focused on estimating variance from field data in the absence of a model.
We use the traditional approach from statistics by quantifying the proportion of variance attributable to
purely phylogenetic drivers (σ2Phylo = R2

comined – R2
Env), purely environmental drivers (σ2Env = R2

comined

– R2
Phylo), and the proportion that is jointly shared between them (σ2joint = R2

comined – σ2Phylo – σ2Env).

To quantify the relative effects of environment, species and phylogeny on inter- and intraspecific trait vari-
ation at the regional scale (eastern US), we used the combined model to estimate the leaf traits for all
individual trees in the FIA data.

Results and Discussion

Model evaluation

We built the phylogeny-only, environment-only, and combined (phylogeny and environment) models using
leaf trait data from NEON and evaluated their explanatory power using the Bayesian R2 of the predicted
values for 88 out-of-sample test trees. For all 8 leaf traits, the combined model explained the largest amount
of variance in the held-out test data (average R2 across the 8 traits = 0.64), substantially outperforming both
the environment-only (average R2 = 0.35) and phylogeny-only (average R2 = 0.52) models (Figure 1, Figure
S.2). A hierarchical clustering of model residuals supported two major trait classes (Figure S.3): traits mainly
involved in photosynthesis (Croft et al., 2017) and traits involved in leaf structure. The combined model
had the highest performance for predicting LMA (R2 = 0.81) and the lowest performance for predicting
ChlA (R2 = 0.51). Uncertainty in predictions was accurately estimated across all traits and for all models
(Figure S.4), with the combined model showing mean 95% coverage values ranging from 94.3% to 98.8%.
The importance of different environmental drivers varied among traits, supporting an important role of
climate in driving leaf economics in local communities (Ordoñez et al. 2009). Precipitation and temperature
were mainly important for traits involved in photosynthesis (N%, ChlA, ChlB and Carotenoids), generally
having a positive effect on their concentration (except for ChlB, Figure S.5). Net radiation showed a negative
effect on N%, while vapor pressure generally had a negative effect on pigments but a positive effect on traits
associated with leaf toughness and durability (cellulose, lignin and C%). Elevation was the most important
topographic predictor and the strongest environmental driver of LMA (Figure S.5), consistent with previous
studies (Reich & Oleksyn, 2004, Hedin 2004, Poorter et al., 2009, Kitajima et al., 2016). The joint model
structure also captured the strong correlation among LMA and N% characteristic of the leaf economics
spectrum (Reich et al, 1997, Wright et al., 2004).

Role of species and environment in predicting traits at the continental scale

We used variance partitioning on the Bayesian R2 from out-of-sample test data to explore the relative
contributions of inter- and intraspecific trait variation at continental scale (Supplement 4). On average,
interspecific variation (pure phylogenetic and species effect) accounted for 25% of the total explained variation
across the 8 traits, intraspecific variation (pure environment effect) accounted for 13%, and joint phylogenetic-
environment effects accounted for 23%. The relative importance of inter- and intraspecific effects varied widely
among traits. Species and phylogeny explained most of the variation in structural traits (e.g. LMA, C% and
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. lignin%). For these traits, often used in large scale distribution studies, species distributions may contain more
information about traits than direct predictions from the environment, as previously suggested by CWM
models (Clark 2016, Yang & Swenson, 2018). These results are aligned with previous studies suggesting
that the relative extent of intra-species variation among communities is negatively related to spatial extent
(Siefert, et al. 2015) and that at continental and global scales, patterns of leaf traits are mainly driven by
leaf economic strategies at the species level (Wright et al., 2005). In contrast, the intraspecific component of
the model accounted for as much or more of the variance than the interspecific one for pigments.

This difference between structural and photosynthesis traits may be explained by being driven by different
kinds of tradeoffs. Structural traits are more affected by leaf lifespan and toughness, which varies widely
across species (Wright et al. 2004, Kitajima et al. 2012, Osnas et al. 2018, Lichstein et al. 2021), whereas
photosynthetic traits are less variable among species due to the fundamental need for all species to maximize
carbon gain (subject to ecological conditions and tradeoffs; Wright et al. 2004; Maire et al, 2015). Our
analysis only quantifies intraspecific variation from the upper (sun-lit) canopy. Although this is a common
practice (Pérez-Harguindeguy et al. 2013), it likely results in underrepresenting intraspecific variation by
ignoring leaf variability across the light gradient, a major source of intraspecific variation (Osnas et al., 2018).
Furthermore, 62% of species in our analysis were only sampled within a single NEON site, thus representing
only a small fraction of species’ true environmental ranges. Thus, our analysis likely underestimates the true
level of intraspecific trait variation.

Model transferability

To determine the appropriateness of using the model to make predictions outside of the scope of the NE-
ON dataset, we tested the performance of the combined model on novel locations and novel species using
independent data from the Botanical Information and Ecology Network (BIEN) and a subset of TRY leaf
trait datasets. These datasets include trait data on LMA, N% and C% for 62 species, including 27 species
unavailable in training data (Figure S.1, supplement S1). The combined model showed good transferability
to other data sources (mean R2 = 0.54, 95% coverage = 91%, Figure S.6). The inclusion of full phylogenetic
relationships in addition to environmental predictors yielded successful model transfer to species not sampled
at NEON sites (mean R2 = 0.4, 95% coverage = 94%, Figure 2). This was possible because phylogenetic
relationships allow parameter estimates for unsampled species to borrow strength from closely related species
included in the data (Evans et al., 2016). The model is therefore suitable for large scale application.

Predicting large scale trait variation

To understand large scale variation in traits using our combined model and to compare it to the phylogeny-
only and environment-only approaches, we integrated each of the three models with tree species abundance
and topographic data from ˜30,000 Forest Inventory and Analysis (FIA) plots (˜1.2 million trees) and climate
data from DayMet (Figure S.7, S.8, S.9) to predict leaf traits across the eastern US. Predictions from the
phylogeny-only model produced patterns similar to Swenson & Weiser (2010) (Figure S.10), suggesting that
our approach to representing species-only methods (and any resulting deviations from them) is consistent
with patterns previously reported in literature.

Predictions from the combined model show broad-scale patterns associated with shifts in forest communi-
ties and large-scale climatic and topographic patterns across latitudinal and altitudinal gradients (Figure 3,
S.11). In some cases, trait distributions shifted abruptly between neighboring ecoregions due to a combinati-
on of shifts in local environmental conditions and in community assembly (independent of the environment).
Changes in species composition may explain trait patterns between the Mississippi Plains ecoregion and
Southern Plains ecoregions (Figure S.12). The Mississippi Plains ecoregion is characterized by heavy distur-
bance from agricultural activities and forests are often limited to riparian ecosystems favoring bottomwood
broadleaf species (e.g., Celtis laevigata , Fraxinus pennsylvanica ,Salix nigra ) in contrast to needleleaf species
(e.g.,Juniperus virginiana , Pinus taeda , and Pinus echinata ) more common in the neighboring ecoregi-
ons (Coastal plains mixed forests). Being that broadleaf species are generally characterized by higher N%
and lower LMA, this change in community assembly translates into predicted regional trait patterns. Other
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. ecoregions show little change in species composition compared to neighboring ecoregions instead, suggesting
that shifts in predicted patterns may be attributed to how environmental gradients affect traits directly. This
seems to be the case of the mixed forests in the Appalachian region, where opposing patterns are exhibited
at higher altitudes in the Blue Ridge ecoregion (lower N% and pigment concentrations; higher LMA and
C%) compared to piedmont and valleys in the neighboring ecoregions (higher N% and pigments, lower LMA
and C%) (Figure S.13).

Predictions from the combined model differed from the phylogeny- and environment-only models, suggesting
that phylogeny and environmental drivers contain different information at large scales. Divergence from the
combined model varied across ecoregions (Figure 4). These differences were complex, with regions exhibiting
shifts of different magnitudes and directions from either phylogeny- or environment-only approaches (Figure
4, Figure S.14, Supplement 5). 80% of ecoregion-trait-model combinations exhibited significant differences in
predicted traits between the combined and phylogeny- or environment-only models (p < 0.0001 in paired t-
tests). Accordingly, predictions from the phylogeny-only and environment-only model differed from each other
(p < 0.0001 in paired t-tests) for 93% of ecoregion-trait combinations, which highlights the distinct effects
of the environment and phylogeny on trait distributions and demonstrates the importance of a combined
modeling approach for prediction and inference.

Patterns of divergence from the combined model indicate how phylogenetic and environmental effects vary
biogeographically across the eastern US. Regions with no significant divergence may signal conditions where
the environment affects traits by filtering for species better adapted to local conditions, and traits are well
estimated by both species’ averages and directly from the environment (as in the case of the Mississippi
Alluvial Plains region). For most ecoregions, divergence of the phylogeny- and environment-only models
move in opposite directions (i.e., positive divergence for one opposed to negative divergence for the other).
Significant divergence for the phylogeny-only model indicates that continental-scale species averages fail to
correctly represent trait values at finer scales, because local environmental conditions and/or competition
shift the trait values away from the species mean.

Areas where the combined model predicts higher N% than the phylogeny-only model (blue shading in Fig.
4a) suggest the presence of environmental effects that increase N% above species means. Conversely, orange-
shaded areas in Fig. 4a indicate environmental effects that lower N% below species means. These patterns
may reflect regulatory mechanisms controlled by the environment, where leaves adjust allocation to proteins,
pigments, or structural compounds to balance photosynthetic capacity, toughness, and chemical defense
within ranges constrained by species life history (Weih & Karlsson, 2001, Tjoelker et al., 2001, Crous et
al., 2019, Albert et al., 2010). In contrast, divergence between the combined and environment-only models
(Fig. 4b) could be explained by (i) environmental effects that have a phylogenetic signal not captured by
the environmental variables included in our analysis; and/or (ii) stochastic factors (e.g., disturbance history
and dispersal limitation) that have resulted in species distribution patterns that are decoupled from current
environmental conditions (Burns & Strauss, 2012, McIntyre et al., 1999). Testing mechanistic hypotheses
for the above divergence patterns is beyond the scope of our study. Nevertheless, merely identifying these
biogeographic patterns is a novel step towards better understanding trait distributions and is only possible
using modeling approaches that combine phylogenetic and environmental information.

Large scale intraspecific trait variation

In addition to mapping phylogenetic and environmental trait signals, another essential reason for a combined
approach is that it allows for predictions of intraspecific variation (Figure 5). Models based on CWMs, by
definition, do not account for intraspecific variation. Although environment-only models implicitly include
intraspecific variation, it is not decoupled from trait variation due to shifts in species composition (Hulshof
& Swenson, 2010). This interspecific variation must be separated from intraspecific variation to quantify
the latter. Our combined modeling approach makes this separation possible for hundreds of species-trait
combinations. Quantifying intraspecific variation in a comprehensive manner (i.e., for all species and across
a large geographic region) is a necessary step towards testing hypotheses about the role of individual trait
variation in species coexistence and interspecific competition (Hart et al., 2016). We explore the potential
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. for our approach to enable research understanding the role of intraspecific variation in community dynamics
by (i) comparing our estimates of intraspecific variation to field data for three widespread species, (ii)
describing how the predicted intraspecific variation varies among eastern US species, and (iii) describing
how trait variation may affect trends in one of the trait-tradeoffs described by the LES.

The combined model produced realistic ranges of intraspecific variation when compared with available inde-
pendent data for widely distributed species. Specifically, the intraspecific variation of N% predicted from the
combined model showed ranges similar to those observed from the field by independent datasets for three
widespread and abundantly sampled species in the NEON, FIA and TRY datasets (Abies balsamea, Acer
rubrum , and Fagus grandifolia ). For these species (Figure 5b-d), predictions from the combined model
showed N% covering a large range of values (1.12 N% on average), comparable to the average difference
between evergreen needleleaf and deciduous broadleaf species in the eastern US (1.13 N% based on NEON
field data). Such a wide range of intra-species variation further supports the idea that adaptation to the en-
vironment accounts for a large proportion of community-level variation and may be driving community-level
shifts across environmental gradients (Albert et al. 2010, Violle et al. 2012, Siefert et al. 2015, Fajardo &
Siefert, 2018). The contribution of the environment to intra-species variation may also explain altitudinal
(e.g. Acer rubrum) and latitudinal (e.g. Abies balsamea ) gradients observed for these three species.

Predicted patterns of intraspecific variation varied widely across species. For N%, the ratio of predicted
intraspecific to total observed interspecific variation ranged from less than 10% for species with limited
geographic ranges (e.g., Populus heterophylla ,Sabal palmetto , and Gleditsia aquatica ) to over 60% for
broadleaf species with broad geographic ranges (e.g., Cercis canadensis, Betula lenta , and Carpinus ca-
roliniana ). Intraspecific responses of N% to temperature also showed a variety of patterns among species
(Figure 5a, Figure S.15), including 1) bell-shaped patterns (n=85) like those observed in compilations of
field data (Reich & Oleksyn, 2004, Laughlin et al., 2012); 2) negative relationships (n = 7); and 3) cases with
no significant relationship (n=108). We observed these different patterns despite the model not including
species-by-environment interactions. This is possible due to differences in how the environmental drivers are
jointly related in different subregions of the posterior predictive distribution that represent different geogra-
phic regions and different environments by trait combinations. Therefore, while the underlying relationship
between traits and temperature in the model contains a single dominant mode with an uptick at very high
temperatures, analyzing patterns of trait distributions from predictions across large geographic areas shows
that focusing only on the subregions of the posterior that are relevant to the species of interest can yield
different species level relationships.

Variation in environmental drivers may also impact trends in trait trade-offs, including those described in the
LES. Since these relationships affect nutrient and carbon use efficiency in plants (Reich, 2014), understanding
how they change geographically under different environmental conditions is fundamental for improving how
carbon dynamics are simulated by earth system models (Weng et al., 2017). Our results suggest that within
the Eastern US, the relationship between N% and LMA is weaker than the global inter-species average, but
stronger than local within-species relationships (Figure 6). This relationship, first observed from field data
from the western US (Anderegg et al., 2018), generalizes to the Eastern US and holds when extrapolating
trait values continuously across species ranges. The scale-dependent change in the strength of the relationship
may be driven by different nitrogen to mass allocation strategies between maximizing short term productivity
(higher foliar photosynthetic mass) or long-term defense (higher foliar structural mass) (Osnas et al., 2018).
According to this conceptual model, we expect stronger negative N%-LMA relationship for datasets with
high variation in LMA, due to variation in leaf structural components. This is the case of the global LES,
calculated on species sampled from all biomes and many ecosystems (slope of the logarithmic N%-LMA
linear relationship ˜-0.7, Wright et al., 2004). At local scales, where macro-environmental drivers have a much
smaller effect on LMA variation, adaptations to local conditions may drive higher variation in photosynthetic
mass leading to weaker N% to LMA relationships (slope of the logarithmic N%-LMA linear relationship ˜-0.2;
Osnas et al. 2018). At the intermediate scale of the Eastern US, both strategies may contribute significantly
to the relationship, resulting in N%-LMA trends falling halfway in between the two extremes (slope of the
logarithmic N%-LMA linear relationship ˜-0.43). This slope was consistent across broadleaves, needleleaves,
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. deciduous and evergreen species, providing support that this trait-tradeoff can be represented the same across
plant functional types used in earth system models.

Implications for estimating processes from Earth System Models

These results have important implications for the use of earth system models (ESMs) for estimating eco-
systems processes across scales. Most ESMs treat traits as constants, disregarding variation among species
within plant functional types and intraspecific variation driven by the environment (Ghimire et al., 2016,
Lawrence et al., 2019, but see attempts at integrating more flexible strategies like Fisher et al., 2015). This
was justified by previous evidence suggesting that only interspecific variation mattered at continental scales
(Messier et al. 2010). However, our results demonstrate that even at near-continental scales intraspecific
variation holds meaningful information that needs to be addressed (Figures 1, 5). The need to incorporate
intraspecific variation is magnified when models are applied at smaller scales where the environment affects
traits-tradeoffs to move away from the global LES (Fisher et al., 2018). Because different regions exhibit
different directional shifts from the species-only models (Figure 4) we need to understand environmentally
driven intraspecific traits variation to accurately model regional ecosystem processes.

Conclusions

Both phylogenetic and environmental effects are fundamental to understanding the drivers and distribution
of plant traits. Combining both in a single model is challenging due to data limitations but is possible by
leveraging large scale datasets. This approach allows for improved traits predictions compared to models that
rely on either species average or the environment in isolation and allows for robust predictions for species
and regions not included in the training data. Across Eastern US both interspecies trait variation (driven by
shifts in species’ abundance) and intraspecific variation are key for predicting joint trait distributions, with
effects on the LES. The influence of these components varies by species, trait, ecoregion and scale.

Our approach overcomes previous data limitations by integrating multiple sources of biological and environ-
mental information to create a single integrated model. As new traits, phylogenetic, and species inventory
data is released globally, the combined approach can be extended to new regions and unlock the potential to
study patterns of intraspecific variation for hundreds of traits-species-environment combinations. For exam-
ple, this is already possible by leveraging national forest inventories in some European countries, Canada,
New Zealand (Schelhaas et al, 2006, Rati et al., 2018, Gills et al., 2005, Paul et al., 2021) along with ever-
growing plant traits datasets stored in TRY (https://www.try-db.org/ ). Expanding this work outside the US
could contribute to further understanding the mechanisms driving trait distributions across scales and the
link between traits, species distribution, forest assembly and function.
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