Species losses, gains, and changes in persistent species are associated with distinct effects on ecosystem functioning in global grasslands

Emma Ladouceur¹, Shane Blowes¹, Jonathan Chase¹, Adam Clark², Magda Garbowski¹, Juan Alberti³, Carlos Arnillas⁴, Jonathan Bakker⁵, Isabel C. Barrio⁶, Siddharth Bharath⁷, Elizabeth Borer⁸, Lars Brudvig⁹, Marc Cadotte¹⁰, Q. Q. Chen¹¹, Scott Collins¹², Christopher Dickman¹³, Ian Donohue¹⁴, Guo-Zhen Du¹⁵, Anne Ebeling¹⁶, Nico Eisenhauer¹⁷, Philip Fay¹⁸, Nicole Hagenah¹⁹, Yann Hautier²⁰, Anke Jentsch²¹, Ingibjörg Svala Jónsdóttir²², Kimberly Komatsu²³, Andrew MacDougall²⁴, Jason Martina²⁵, Joslin Moore²⁶, John Morgan²⁷, Pablo Peri²⁸, Sally A Power²⁹, Zhengwei Ren³⁰, Anita Risch³¹, Christiane Roscher³², Max Schuchardt³³, Eric Seabloom⁸, Carly Stevens³⁴, Ciska Veen³⁵, Risto Virtanen³⁶, Glenda Wardle¹³, Peter Wilfahrt³⁷, and Stan Harpole³⁸

¹German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig ²University of Graz ³Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMdP – CONICET) ⁴University of Toronto-Scarborough ⁵University of Washington ⁶Agricultural University of Iceland ⁷Atria University ⁸University of Minnesota ⁹Michigan State University ¹⁰University of Toronto Scarborough ¹¹Groningen Institute for Evolutionary Life Sciences ¹²University of New Mexico ¹³University of Sydney ¹⁴Trinity College Dublin ¹⁵School of Life Science, Lanzhou University, South Tianshui Road 222, Lanzhou, 730000, Gansu, People's Republic of China ¹⁶University of Jena ¹⁷University of Leipzig ¹⁸USDA-ARS Grassland Soil and Water Research Laboratory ¹⁹University of KwaZulu-Natal School of Life Sciences ²⁰Utrecht University ²¹University of Bayreuth ²²University of Iceland ²³Smithsonian Environmental Research Center ²⁴University of Guelph ²⁵Texas State University ²⁶Monash University ²⁷La Trobe University

²⁸Southern Patagonia National University
²⁹Western Sydney University
³⁰Lanzhou University
³¹Swiss Federal Institute for Forest Snow and Landscape Research
³²Max Planck Institute for Biogeochemistry
³³Universitat Bayreuth
³⁴Lancaster University
³⁵Netherlands Institute of Ecology
³⁶University of Oulu
³⁷University of Minnesota Twin Cities
³⁸iDiv: German Centre for Integrative Biodiversity Research

May 20, 2022

Abstract

Global change drivers such as anthropogenic nutrient inputs simultaneously alter biodiversity, species composition, and ecosystem functions such as aboveground biomass. These changes are interconnected by complex feedbacks among extinction, colonization, and shifting relative abundance. Here, we use a novel temporal application of the Price equation to quantify the functional contributions of species that are lost, gained, and persist under ambient and experimental nutrient addition in 59 global grasslands. Under ambient conditions, compositional and biomass turnover was high, but species losses (i.e., local extinctions) were balanced by gains (i.e. colonization). There was biomass loss associated with species loss under fertilization. Few species were gained in fertilized conditions over time but those that were, and species that persisted, contributed to net biomass gains, outweighing biomass loss. These components of community change are key to understanding the relationship between change in composition, diversity and functioning.

Hosted file

_1_Main_Document.pdf available at https://authorea.com/users/407763/articles/552504-specieslosses-gains-and-changes-in-persistent-species-are-associated-with-distinct-effects-onecosystem-functioning-in-global-grasslands