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Abstract

The collembolan Folsomia candida Willem, 1902, is an important representative soil arthropod that is widely distributed
throughout the world and has been frequently used as a test organism in soil ecology and ecotoxicology studies. However,
it is questioned as an ideal “standard” because of differences in reproductive modes and cryptic genetic diversity between
strains from various geographical origins. In this study, we present two high-quality chromosome-level genomes of F. candida,
for the parthenogenetic Danish strain (FCDK, 219.08 Mb, N50 of 38.47 Mb, 25,139 protein-coding genes) and the sexual
Shanghai strain (FCSH, 153.09 Mb, N50 of 25.75 Mb, 21,609 protein-coding genes). The seven chromosomes of FCDK are
each 25–54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions and large-
scale inversions and translocations but no whole-genome duplication. The strain-specific genes, expanded gene families and
genes in nonsyntenic chromosomal regions identified in FCDK are highly related to its broader environmental adaptation. In
addition, the overall sequence identity of the two mitogenomes is only 78.2%, and FCDK has fewer strain-specific microRNAs
than FCSH. In conclusion, FCDK and FCSH have accumulated independent genetic changes and evolved into distinct species
since diverging 10 Mya. Our work shows that F. candida represents a good model of rapidly cryptic speciation. Moreover,
it provides important genomic resources for studying the mechanisms of species differentiation, soil arthropod adaptation to
soil ecosystems, and Wolbachia-induced parthenogenesis as well as the evolution of Collembola, a pivotal phylogenetic clade
between Crustacea and Insecta.
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Running title

Comparative genomics in Folsomia candida

Abstract

The collembolan Folsomia candida Willem, 1902, is an important representative soil arthropod that is
widely distributed throughout the world and has been frequently used as a test organism in soil ecology and
ecotoxicology studies. However, it is questioned as an ideal “standard” because of differences in reproductive
modes and cryptic genetic diversity between strains from various geographical origins. In this study, we
present two high-quality chromosome-level genomes of F. candida , for the parthenogenetic Danish strain
(FCDK, 219.08 Mb, N50 of 38.47 Mb, 25,139 protein-coding genes) and the sexual Shanghai strain (FCSH,
153.09 Mb, N50 of 25.75 Mb, 21,609 protein-coding genes). The seven chromosomes of FCDK are each 25–
54% larger than the corresponding chromosomes of FCSH, showing obvious repetitive element expansions
and large-scale inversions and translocations but no whole-genome duplication. The strain-specific genes,
expanded gene families and genes in nonsyntenic chromosomal regions identified in FCDK are highly related
to its broader environmental adaptation. In addition, the overall sequence identity of the two mitogenomes
is only 78.2%, and FCDK has fewer strain-specific microRNAs than FCSH. In conclusion, FCDK and FCSH
have accumulated independent genetic changes and evolved into distinct species since diverging 10 Mya.
Our work shows that F. candidarepresents a good model of rapidly cryptic speciation. Moreover, it provides
important genomic resources for studying the mechanisms of species differentiation, soil arthropod adaptation
to soil ecosystems, and Wolbachia -induced parthenogenesis as well as the evolution of Collembola, a pivotal
phylogenetic clade between Crustacea and Insecta.

KEY WORDS: cryptic species; chromosome-level genome; genome synteny; repetitive element expansion;
comparative mitogenomics; miRNA distribution

1 INTRODUCTION

Collembolans have a long evolutionary history (~410 Mya) and are among the most abundant arthropods
on Earth (more than 9,000 known species) (Bellinger et al., 1996-2021). Most species in this group consume
fungi in soil and leaf litter; they have radiated from the littoral zone to mountaintops and are particularly
abundant in epiphytes of tropical rainforests. Collembolans are an integral component of soil ecosystems
and are vulnerable to the effects of soil contamination. The abundance, diversity and molecular data of
collembolans have been widely used to assess the environmental impacts of a range of pollutants on soils

2
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(Hopkin, 1997; Gunstone et al., 2021). Collembola represents a monophyletic lineage forming an early branch
off the line leading to insects. Understanding the evolution of collembolans is pivotal to clarifying the origin
of insects and the early diversification of Hexapoda (Nardi et al., 2003; Misof et al., 2014).

The collembolan Folsomia candida Willem, 1902, is widely distributed in soils throughout the world and
plays an important role in soil ecosystems (Fountain & Hopkin, 2005). The species is easy to maintain
in the laboratory and has been used as a “standard” test organism for more than 50 years in the fields of
population biology, evolutionary ecology, soil biology and ecotoxicology (ISO 11267:2014). In addition, F.
candida is increasingly being used in bioassays of soil remediation methods (Lock & Janssen, 2003) and risk
assessments of industrial chemicals and genetically modified crops (Huang et al., 2019).

As a cosmopolitan species, several strains of F. candida from different geographical origins have been collected
and used by many laboratories (Tully et al., 2006; Tully & Potapov, 2015). Most strains of F. candida show
parthenogenesis, which is probably induced by the endosymbiont Wolbachia (Ma et al., 2016). F. candidais
questioned as an ideal “standard” because of the cryptic genetic diversity revealed in different strains based
on COI and COII gene (Frati et al., 2004), RAPD-PCR and 18S/28S rDNA marker analyses (Tully et al.,
2006). Tully and Potapov (2015) comprehensively compared the morphological characteristics of eleven clonal
strains from Europe and America and one sexual lineage from our lab in Shanghai (FCSH). They identified
all 66 individuals (8 to 12 individuals per strain) as the previously recognized F. candida morphospecies
sensu stricto , with characteristic long furca, the same sensillar chaetotaxy and ventral setae on the third
thoracic segment (Potapov & Yan, 2012). However, most studied characters vary among individuals and
show overlap between strains. FCSH showed the greatest morphological peculiarity, and differed from all
parthenogenetic strains by number of setae on thorax, dens and manubrium (Tully & Potapov, 2015). These
previous studies indicate the possibility of an interesting evolutionary scenario in the cryptic speciation of
F. candida .

Despite the importance of F. candida in evolution and ecotoxicology studies, the genomic resources of F.
candida are limited. Faddeeva-Vakhrusheva et al. (2017) reported a reference genome for F. candida (FCBL,
Berlin strain) of 221.7 Mbp, comprising 162 scaffolds. They found that substantial gene family expansions
were linked to the stress response and that over 800 genes related to lignocellulose degradation had been
acquired by horizontal gene transfer (HGT). It will be very useful to further obtain and compare high-
quality genome information from different strains of F. candida to understand its speciation pattern and
evolutionary history and to reveal the molecular mechanisms of its response to environmental stressors and
reproductive regulation. In this study, by incorporating chromatin conformation (Hi-C) data and sequences
obtained from the PacBio and Illumina platforms, we present chromosome-level genome assemblies of the
parthenogenetic Danish strain (FCDK) and the sexual Shanghai strain ofF. candida (FCSH). Interestingly,
our comparative genome analyses revealed that FCDK and FCSH separated as early as 10 million years
ago (Mya). Despite minor morphological divergences, FCDK and FCSH have accumulated striking genetic
differences, including different genome sizes, chromosome structures, gene numbers, mitogenome sequences,
and microRNA (miRNA) distributions, suggesting they have evolved into two separate species.

2 MATERIALS AND METHODS

Sample collection and rearing

The parthenogenetic Danish strain FCDK was originally obtained in 2007 from Paul Henning Krogh’s lab at
Aarhus University, Denmark, and the sexual Shanghai strain of FCSH was collected in 2008 from Shanghai
Botanic Garden, China. Both strains have been cultured in our laboratory for over 10 years. They are
reared in Petri dishes containing a solidified mixture of plaster of Paris and activated charcoal (9:1 wt/wt,
dissolved in distilled water), fed granulated dried baker’s yeast and distilled water, and kept in an artificial
climate chamber in total darkness (20 ± 1°C, 80% relative humidity).

Comparison of morphological differences

Specimens were mounted on slides in Hoyer’s solution. Their morphological characteristics were carefully
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studied and compared using a NIKON E600 phase contrast microscope, and photographs were taken with a
Nikon DXM1200 digital camera.

Genome sequencing

Total genomic DNA of FCDK and FCSH was extracted from mixed eggs or juveniles, respectively, using
a DNeasy Boold & Tissue kit (Qiagen) following the manufacturer’s protocol. The Illumina sequencing of
FCSH was performed by Geneworks (Suzhou, China) using the Illumina HiSeq X platform. The Pacbio
sequencing of FCSH and both the Illumina and PacBio sequencing of FCDK were performed by Macrogen
(Korea) using the Illumina HiSeq X and PacBio Sequence RSII (P6C4 chemicals) platforms, respectively.
The Hi-C experiments were performed by Frasergen (Wuhan, China) following the standard procedure using
the Illumina HiSeq X platform. The detailed statistics of all sequencing data are shown in Table 1.

Genome assembly

PacBio long reads were assembled using Flye v2.7.1 (Kolmogorov et al., 2019), with a minimum overlap
between reads of 1,000 and two rounds of self-polishing (‘-m 1000 -i 2’). Primary contigs were polished
with two iterations of Illumina short reads using NextPolish v1.3.1 (Hu et al., 2020). Quality control was
performed for short reads prior to polishing using the ‘bbduk.sh’ script in BBTools package v38.82 (Bushnell,
2014): quality trimming (> Q20), length filtering (> 15 bp), polymer trimming (> 10 bp) and correction of
overlapping paired reads. Redundant haplotypic duplications were removed using Purge_Dups v1.0.1 (Guan
et al., 2020) with the default settings. All sequence alignment tasks were performed using Minimap2 v2.17
(Li, 2018) within the above polishing and purging progress. For Hi-C scaffolding, read alignment to the
assembly, duplicate removal, and Hi-C contact extractions were executed using Juicer v1.6.2 (Durand et
al., 2016) employing BWA v0.7.17 (Li & Durbin, 2009) as the aligner. We then used the 3D-DNA v180922
pipeline (Dudchenko et al., 2017) to anchor contigs to generate pseudochromosomes. Possible assembly errors,
such as misjoins, translocations, and inversions, were manually corrected using the Assembly Tools module
within Juicebox v1.11.08 (Durand et al., 2016). Potential contaminants were detected using MMseqs2 v11
(Steinegger & Söding, 2017) to perform BLASTN-like searches against the NCBI nucleotide (nt) and UniVec
databases. Genome quality was further evaluated based on genome completeness and the mapping rate of
raw reads. Genome completeness was assessed using BUSCO v3.0.2 (Waterhouse et al., 2018) against the
arthropod gene set (arthropoda_odb10, n = 1,013). Raw PacBio and Illumina reads were aligned to the
assembly using Minimap2, with the mapping rate calculated with SAMtools v1.9 (Danecek et al., 2021).

Genome annotation

We annotated repetitive elements, noncoding RNAs (ncRNAs) and protein-coding genes (PCGs) in both
genomes. A de novo repeat library was constructed using RepeatModeler v2.0.1 (Flynn et al., 2020), and an
additional LTR discovery pipeline was also applied (‘-LTRStruct’). We then combined the de novo library
with the Dfam 3.1 (Hubley et al., 2016) and RepBase-20181026 databases (Bao et al., 2015) to construct a
custom repeat library, which was employed to mask repeats in the genome using RepeatMasker v4.0.9 (Smit
et al., 2013–2015). We scanned ncRNAs using Infernal v1.1.3 (Nawrocki & Eddy, 2013) and tRNAscan-
SE v2.0.7 (Chan & Lowe, 2019); low-confidence tRNAs were filtered with the tRNAscan-SE built-in script
‘EukHighConfidenceFilter’.

We predicted PCGs using the MAKER v3.01.03 pipeline (Holt & Yandell, 2011), which included the EVi-
denceModeler (EVM, Haas et al., 2008) module. Ab initio , transcriptome and protein homology-based
evidence were employed to support the predicted gene models. Ab initio gene models were generated using
BRAKER v2.1.5 (Br̊una et al., 2021) (a combination of two ab initio predictors, Augustus v3.3.4 (Stanke
et al., 2004) and GeneMark-ES/ET/EP 4.68_lic (Br̊una et al., 2020)); BRAKER can simultaneously in-
corporate transcriptome and protein evidence to improve prediction accuracy. The input transcriptome
alignments were produced using HISAT2 v2.2.0 (Kim et al., 2019), and arthropod proteins were mined from
the OrthoDB10 v1 database (Kriventseva et al., 2019) as a reference. Transcriptome evidence (transcripts)
was assembled using the genome-guided assembler StringTie v2.1.4 (Kovaka et al., 2019). Protein sequences
of Drosophila melanogaster , Tribolium castaneum , Bombyx mori ,Apis mellifera and Daphnia magna were
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downloaded from NCBI and fed to MAKER as evidence of protein homology. EVM was also activated with
the weights of ab initio prediction, transcripts and proteins set to 1, 2 and 8, respectively. We assigned gene
functions using Diamond v2.0.8 (Buchfink et al., 2021) to search the UniProtKB database; the more sensitive
mode and an e-value of 1e-5 were used (‘–more-sensitive -e 1e-5’). We further identified protein domains and
assigned Gene Ontology (GO) and pathway (KEGG, Reactome) annotations using eggNOG-mapper v2.0.1
(Huerta-Cepas et al., 2017) and InterProScan 5.47–82.0 (Finn et al., 2017). Five databases were included
in the InterProScan analyses: Pfam (El-Gebali et al., 2019), SMART (Letunic & Bork, 2018), Superfamily
(Wilson et al., 2009), Gene3D (Lewis et al., 2018), and CDD (Marchler-Bauer et al., 2017).

Inter- and intra-genomic synteny

To reveal chromosomal evolution between FCDK and FCSH, syntenic blocks were detected using MCScanX
(Wang et al., 2012) with an e-value of 1e-10 and a minimum syntenic size of 5 (‘-b 2 -s 5 -e 1e-10’). Protein
sequence alignments were generated by MMseqs2 BLASTP-like searching in the sensitive mode (-s 7.5) with
an e-value of 1e-5. Large chromosomal regions unique to FCDK (no syntenic blocks were defined in FCSH)
were surveyed. GO and KEGG pathway enrichment analyses were performed for PCGs located in these
regions using clusterProfiler v3.14.3 (Yu et al., 2012). The significance level was controlled to the default,
with a p-value of the hypergeometric distribution of 0.01 and a q-value for the multiple comparison FDR of
0.05.

Whole-genome duplication

Li et al. (2018) inferred the occurrence of a whole-genome duplication (WGD) event in F. candida , but
Roelofs et al. (2020) refuted this assumption and proposed a large number of small-scale gene duplica-
tions. We tested the WGD hypothesis in both genomes using three methods: 1) examination of patterns of
collinearity within genomes: intraspecific genomic collinear blocks were identified as in the above syntenic
analyses except that the mode was intraspecific rather than interspecific (‘-b 1’); 2) evaluation of the para-
nome distributions of synonymous distances (Ks, Blanc & Wolfe, 2004): the paralogue Ks distribution and
WGD signal were calculated from coding sequences using wgd v1.1.1 (Zwaenepoel & Van de Peer, 2019),
and kernel density estimation (KDE) and BGMM mixture modelling were used to fit Ks distributions; and
3) observation of the number of HOX gene clusters (Ferrier & Minguillón, 2003): Hox genes were manually
annotated by TBLASTN-like MMseqs2 searches, with a sensitive mode and an e-value of 1e-10, using refe-
rence HOX protein sequences of F. candida mined from the NCBI. Synteny, circus and HOX distribution
figures were visualized using TBtools v1.095 (Chen et al., 2020).

Orthology identification and phylogenetic inference

We inferred PCG sequence orthology across eleven arthropod species: one crustacean (D. magna ), one
dipluran (Catajapyx aquilonaris ), four insects (Zootermopsis nevadensis , T. castaneum , A. mellifera ,
D. melanogaster ), and five collembolans (Sinella curviseta , Orchesella cincta ,Holacanthella duospinosa ,
FCDK, FCSH). Protein sequences ofC. aquilonaris and H. duospinosa were downloaded from i5K, those of
S. curviseta were obtained from FigShare (https://doi.org/10.6084/m9.figshare.7286231.v2), and other data
were procured from NCBI. After removing redundant isoforms, orthogroups (gene families) were inferred
using OrthoFinder v2.5.2 (Emms & Kelly, 2019), and Diamond was employed for sequence alignment in
ultrasensitive mode (‘-S diamond_ultra_sens’).

Single-copy orthologues estimated with OrthoFinder were used to infer phylogeny and divergence times. We
aligned the protein sequences of each orthologue using MAFFT v7.394 (Katoh & Standley, 2013) with the
high-accuracy L-INS-I method, trimmed unreliable homologous sites using BMGE v1.12 (Criscuolo & Gribal-
do, 2010) with stringent parameters (‘-m BLOSUM90 -h 0.4’), and concatenated individual alignments into
a matrix. We then estimated substitution models and partitioning schemes and reconstructed the phylogeny
using IQ-TREE v2.0.7 (Minh et al., 2020); genes that violated SRH (stationary, reversible and homogeneous)
assumptions were excluded (‘–symtest-remove-bad –symtest-pval 0.10’); to reduce the computational bur-
den, the model was restricted to LG (‘–mset LG’), and the top 10% of partitioning schemes were considered
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. (‘–rclusterf 10’); ultrafast bootstrap and SH-like approximate likelihood ratio tests were calculated to assess
node support (‘-B 1000 –alrt 1000’). We estimated divergence times using MCMCTree within the PAML v4.9j
package (Yang 2007); the JC69 substitution model, the independent rate clock model, and the approximate
likelihood calculation and ML estimation of branch lengths were applied. We repeated the runs at least twice
to ensure convergence, and each ran for 60,000 generations, with the first 10,000 considered burn-in. Five
fossils from the PBDB database (https://www.paleobiodb.org/navigator/ ) were applied for node calibration:
one Branchiopoda (<541 Mya), one Hexapoda (<485.4 Mya), the most recent common ancestor (MRCA)
of Diplura and Insecta (>407.6 Mya), one Holometabola (315.2-382.7 Mya), and the MRCA of Coleoptera
and Diptera (>295.5 Mya).

Gene family evolution

We inferred gene family evolution (expansion and contraction) based on the dating tree using CAFE v4.2.1
(Han et al., 2013), and the mode of the single birth-death parameter ‘lambda’ was employed with a signifi-
cance level of 0.01. PCGs from significantly expanded and species-specific gene families were further enriched
for GO and KEGG terms using clusterProfiler with the default parameters (p-value of 0.01, q-value of 0.05).

Annotation of xenobiotic detoxification-related gene families

In contrast to insects, xenobiotic detoxification-related gene families are greatly expanded in Collembola,
possibly due to their adaptations to complex soil environments (Faddeeva-Vakhrusheva et al., 2017; Manni
et al., 2020). The copy numbers of these families of FCDK and FCSH may be different, since the partheno-
genetic strains show a wider distribution and better adaptability than the sexual strains of F. candida .
We annotated the genes of five detoxification-related families, including the cytochrome P450 (CYP), ATP-
binding cassette transporter (ABC), carboxyl/cholinesterase (CCE), UDP-glycosyltransferase (UGT), and
glutathione-S-transferase (GST) families, using the BITACORA v1.3 (Vizueta et al., 2020) pipeline, and we
further manually checked them. BITACORA performed initial BLASTP searches of the annotated proteins
generated via the automatic MAKER pipeline and TBLASTN analyses in the genome assembly and con-
firmed the gene models with protein domains in each family via HMMER searches (Altschul, 1997; Eddy,
2011). Reference protein sequences of D. melanogaster , B. mori and F. candida for the ABC, CCE, GST
and UGT families were obtained from the NCBI RefSeq database, whereas CYP sequences were mined from
Dermauw et al. (2020). HMM profiles of each family were downloaded from the PFAM database: ABC
(PF00005), CCE (PF00135), GST (PF14497, PF02798), CYP (PF00067), and UGT (PF00201). A cut-off
e-value of 1e-5 was applied for BLAST and HMM searches. A close proximity algorithm was used to predict
novel genes from TBLASTN alignments with a maximum intron length of 15,000 bp. The resulting CYP
sequences were manually examined based on conserved protein structures, which were characterized by a
four-helix bundle (D, E, I and L), helices J and K, two sets of β sheets and a coil ‘meander’. The functions of
predicted proteins were checked via online BLASTP analysis in the nonredundant protein database (nr). The
classification of each family and possible sequence errors were assisted by constructing phylogenetic trees.
To construct the phylogenies of five gene families, the amino acid sequences of each family were aligned
using MAFFT via the L-INS-I method and trimmed using trimAl v1.4.1 (Capella-Gutiérrez et al., 2009)
with the ‘gappyout’ mode strategy. Phylogenetic trees were constructed using IQ-TREE, with automatic
model selection and 1,000 ultrafast bootstrap replicates. Tree figures were enhanced using online EvolView
v3 (Subramanian et al., 2019).

Comparative analysis of mitochondrial genomes

The mitochondrial genomes of FCDK (GenBank accession No. OL672753) and FCSH (GenBank accession
No. OL672754) were de novo assembled from Illumina raw reads (approximately 6 GB raw data) using
NOVOPlasty v2.7.2 (Dierckxsens et al., 2017). The assembled mitochondrial genomes were annotated via
the MITOS2 web portal (Donath et al. 2019) and manually checked. The circular representation of the
mitochondrial genome was plotted using the CGview Server (Grant & Stothard, 2008). The alignment of
the two whole mitochondrial genomes was built using the Mauve plugin for Geneious Prime (Kearse et al.
2012), and detailed sequence identities were calculated with custom Python scripts.
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. Comparative analysis of miRNAs

The evolutionary divergence of miRNAs may contribute to the diversification of species (Plasterk et al.,
2006). Liu et al. (2020) analysed the miRNA data of FCDK based on genome and small RNA (sRNA)
data from mixed embryos, juveniles and adults (GenBank accession No. SRP132383). In this study, we de
novo sequenced sRNAs of mixed individual specimens of FCSH, including living embryos, juveniles and
adults in different developmental stages (GenBank accession No. SRP308782). Based on the sRNA data
and chromosomal-level genome assemblies of FCDK and FCSH, known miRNAs with homologous genes
in the miRBase 21 database (Kozomara & Griffiths-Jones, 2014) were identified, and novel miRNAs were
predicted according to the procedure described in Liu et al. (2020). By mapping miRNA precursors to
the corresponding genome using MapChart (Voorrips, 2002), the locations of miRNAs were recorded and
compared between FCDK and FCSH. The miRNA nomenclature followed previous studies (Fromm et al.,
2015; Liu et al., 2020). The prefix MIR- indicates family names, and Mir- indicates gene names. Duplicated
paralogous genes were identified with the letter ‘p’ and a number.

3. RESULTS

Morphological differences between FCDK and FCSH

We checked more than 50 individuals of each strain and found two morphological characteristics that could
distinguish between adults of FCDK and FCSH (Figure 1a-h): the numbers of seta on the retinaculum (2
or 3 for FCSH vs. only 1 for FCDK), which was not included by Tully & Potapov (2015), and the numbers
of ventral setae on the third segment of the thorax (3(4-6)+3(4-6) for FCSH vs. 2(3)+2(3) for FCDK),
which is consistent with the observation of character 11 in Tully & Potapov (2015). However, the numbers of
setae on dens and manubrium vary greatly between individuals, and we have not confirmed the differences
corresponding characters 12 and 17 in Tully & Potapov (2015).

Chromosome-level genome assembly and annotation

We produced 121.19 Gb and 62.21 Gb of total sequencing data for the genome assemblies of FCDK and
FCSH, respectively (Table 1). After primary assembly, polishing, redundancy removal, Hi-C scaffolding, and
contaminant detection, we generated two highly contiguous, nearly complete chromosome-level genomes.
Detailed assembly statistics are summarized in Table 1. FCDK and FCSH had genome sizes of 219.08 Mb
and 153.90 Mb, scaffold N50 lengths of 38.47 Mb and 25.75 Mb, and GC contents of 37.49% and 38.54%, re-
spectively. More than 97% of the genome was anchored to seven pseudochromosomes in both strains (Figure
1i, Table 1). Each chromosome of FCDK was 24.65% - 54.11% longer than the corresponding homologous
chromosome of FCSH (Figure 1j, Table S1). High integrity was revealed by high ratios of single-copy BUSCO
genes (97.3% and 97.0%), very low ratios of duplicated genes (0.8% and 0.9%) indicated no obvious redun-
dancy in the assemblies, and high mapping ratios of long and short reads (> 94%) confirmed the high quality
of the two assemblies. In addition, a scaffold of ˜0.5 Mb in size corresponding to a Wolbachiaendosymbiont
was detected in the FCDK assembly, showing great similarity (99.9%) to Wolbachia sequences assembled
from the FCBL strain (Faddeeva-Vakhrusheva et al., 2007).

We masked repetitive regions with 22.61% (49.53 Mb) and 10.03% (15.43 Mb) of the genomes of FCDK
and FCSH, respectively (Table 1, Table S2 and Table S3). DNA, LINE, LTR and unclassified transposon
elements were significantly enriched at the FCDK-specific regions of Chr1, 3, 4, and 7 (Figure 1i). Relative
to FCSH, many repeat families of FCDK were obviously expanded (Figure 1k), particularly families such as
TcMar-Tc1, CMC-EnSpm, Penelope, Gypsy, and Pao.

Using the Infernal and tRNAscan-SE automatic prediction pipelines, 396 and 334 ncRNAs were identified
in FCDK and FCSH, respectively (Table 1, Table S4 and Table S5). Both strains possessed 21 isotypes of
tRNA and lacked Supres. With regard to snRNAs, FCDK/FCSH exhibited 33/21 spliceosomal RNAs (U1,
U2, U4, U5, U6, and U11), 3/3 minor spliceosomal RNAs (U4atac, U6atac, and U12), 6/7 C/D box small
nucleolar RNAs (snoRNAs), 2/3 H/ACA box snoRNAs, and 1/1 other snoRNA (SCARNA8).

We predicted 25,139 and 21,609 PCGs for FCDK and FCSH, respectively (Table 1 and Table S6). The
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. annotation statistics of the two strains were very similar in terms of the mean lengths of genes (˜4,000
bp), exons (˜250 bp) and CDSs (˜200 bp) and the mean numbers of exons (˜8) and introns (˜6.5) per
gene. However, FCDK showed a longer mean intron length than FCSH (312.1 vs. 263.5 bp). The BUSCO
completeness of predicted proteins exceeded 97% for both strains. In addition, the distribution patterns of
PCGs and transposons on chromosomes showed the opposite trends; i.e., chromosomal regions of high gene
density usually showed a low transposon density and vice versa (Figure 1i). Protein domains of approximately
2/3 of the genes of both strains were identified by InterProScan, and nearly 1/2 of the predicted genes were
annotated in GO and KEGG pathways (Table S6).

Intergenomic synteny and whole-genome duplication

All seven corresponding chromosomes between the FCDK and FCSH genomes exhibit conserved syntenic
relationships (Figure 2a). MCScanX identified 212 syntenic blocks containing 27,559 (59.55%) PCGs from
the two genomes. Both chromosomes 1 and 4 of FCDK showed perfect matches with the corresponding
chromosomes of FCSH; however, some obvious large-scale chromosomal structural variations were present
between other corresponding chromosomes of the two strains. Large-scale inversions occurred at least one,
three, two, and four times on corresponding chromosomes 2, 3, 5 and 7, respectively, of FCDK and FCSH.
Meanwhile, many translocation events occurred on corresponding chromosomes 6 and 7, respectively of the
two strains.

Several large distal regions of FCDK chromosomes 1 (˜10.51 Mb), 3 (˜3.76 Mb), 4 (˜7.71 Mb) and 7 (˜9.13
Mb) did not share any syntenic blocks with FCSH (Figure 2a). The top enrichment GO terms of ˜2,300
PCGs located in these FCDK-specific regions were mainly related to nutrient responses, immunity, stress
tolerance and protein conformation, etc. (Figure 2b), which may associate with the better adaptation of this
strain to the environment relative to FCSH. Most of other enriched GO terms (Figure 2b) and most enriched
KEGG pathways (Figure 2c) were associated with viruses, bacteria and fungi as well as interactions between
these organisms and FCDK. A large number of genes may have been generated from ancient horizontal gene
transfers (HGTs), as revealed by Faddeeva-Vakhrusheva et al. (2017) in the FCBL strain.

We tested the WGD hypotheses using within-genome collinear patterns, paranome Ks distributions, and the
estimated number of HOX gene clusters. First, 14 syntenic blocks (198 genes) were identified within the
FCDK genome, and nine (131 genes) were found within the FCSH genome (Figure 1i), among which only nine
FCDK blocks were distributed on different chromosomes. Most of the blocks occurred in genomic regions
with a high density of transposons. Second, KDEs fit the distributions very well without obvious peaks in the
Ks distributions (Figure 2d). When BGMM mixture components were fit to Ks distributions, none of the four
default hypotheses (1˜4 components/WGDs) was found to be predominant (Figure S2). Third, only a single,
complete HOX gene cluster was identified on chromosome 5 (Figure 1i), with a length of approximately 5
Mb, in both the FCDK and FCSH genomes. The Hox gene cluster showed the same order of Scr , Ftz ,
Antp ,Ubx , lab , pb , Hox3 , Dfd , Abd-Aand Abd-B reported in a previous study (Faddeeva-Vakhrusheva et
al., 2007). Therefore, three lines of evidence (i.e., few within-genome syntenic blocks, an absence of obvious
peaks in Ks distribution plots, and single HOX clusters in the genome) absolutely supported an absence of
WGD events in F. candida .

Orthology inference, phylogeny and gene family evolution

We inferred PCG orthology across ten insects and one crustacean and clustered 90.1% of the genes into
21,942 orthogroups (gene families) (Figure 3a, Table S7). Among these groups, 4,009 orthogroups, including
1,372 single-copy orthogroups, were present in all species, and 4,640 orthogroups, containing 20,304 genes,
were species-specific. A total of 526 orthogroups, containing 4,601 genes, were unique to Collembola. FCDK
exhibited 13,970 gene families, 572 (2,285 genes) of which were unique; FCSH exhibited 13,675 gene families,
including 204 unique families (820 genes) (Table S7).

After aligning, trimming and filtering, a final matrix of 499,899 amino acid sites from 1,304 single-copy
genes was used for phylogenetic inference and dating estimates. The identified phylogenetic relationships
were consistent with recent phylogenomic studies (Misof et al., 2014): Collembola was located at the base
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. of Hexapoda, and Diplura was sister to insects (Figure 3a). Folsomia (Isotomoidea) separated from Ento-
mobryoidea in the Late Triassic-Early Jurassic (186.6-216.8 Mya). FCDK and FCSH diverged in the middle
Neogene (11.7-14.7 Mya), indicating that the two strains had been separated for long enough to be considered
independent species.

Gene family evolution analyses with CAFE identified a large number of significantly expanded families in
most collembolan species (i.e., Entomobryomorpha). Among these families, a total of 224 and 81 were
expanded in FCDK and FCSH, respectively (Figure 3a, Table S8). The two strains shared large expanded
cytochrome P450, ABC transporter, zinc finger, Sec14, pickpocket, lactase-phlorizin hydrolase, chitin-binding
type-2 domain-containing protein, F-box, and ionotropic receptor families (Figure 3b, c; Table S9), which
have generally been found to be expanded in two other Entomobryomorpha species (Faddeeva-Vakhrusheva
et al., 2017; Zhang et al., 2019) and play an important role in the adaptive evolution of Collembola. Relative
to FCSH, FCDK showed additional expansions of histone, glutathione S-transferase, lytic polysaccharide
monooxygenase (LPMO), exoskeleton protein, bacillopeptidase F, beta-lactamase, tenascin, ATP-dependent
DNA helicase, down syndrome cell adhesion molecule-like protein, chymotrypsinogen, gustatory receptor and
neuroligin sequences, which are related to genetic modification, detoxification, cuticle and nervous system
development, digestion, chemosensation, antibiotic biosynthesis and lignocellulose degradation (Figure 3b,
c). In addition to terms related to the regulation of translation and transcription factors, GO and KEGG
enrichment analyses of expanded and species-specific families involved in symbiotic interactions and related
biological processes was performed (Figure S3a-d). However, these terms were absent or generally received
few annotations in FCSH (Figure S3e-h).

Annotation of detoxification-related gene families

The detoxification of xenobiotics is essential for the environmental adaptation of arthropods, including
collembolans. The expansion of detoxification-related gene families is often observed in highly polyphagous
species. We manually annotated ABC, CCE, CYP, GST and UGT genes in the two F. candidastrains
(Table 2, Figure 4, Figure S4). In contrast to D. melanogaster , the ABC, CCE, CYP and GST families
were greatly expanded in the two F. candida strains. FCDK showed greater expansion of the ABC, CYP
and GST families than FCSH, consistent with the wider distribution of the former strain.

ABC transporters function as primary active transporters that transport diverse substrates across lipid
membranes and include eight subfamilies, A-H (Dermauw & Van Leeuwen, 2014). The gene numbers of
ABCB, ABCD, ABCE and ABCF subfamilies are similar among FCDK, FCSH and D .melanogaster (Table
2, Figure 4a). D. melanogaster shows the fewest ABCG and ABCH genes but the greatest number of ABCA
genes, which are related to lipid trafficking (Wenzel et al., 2007). ABCG genes exhibit diverse functions
in eye colouration determination (Ewart et al., 1994; Mackenzie et al., 1999), moulting hormone regulation
(Hock et al., 2000; Broehan et al., 2013) and xenobiotic resistance (Labbe et al., 2011). In contrast to
FCSH, FCDK shows a major expansion of ABCC subfamily, which are functionally diverse, playing roles in
processes comprising ion transport, cell-surface receptor activity and the translocation of a broad range of
substrates (Dean et al., 2001; Kruh & Belinsky, 2003; Moreau et al., 2005).

CCEs hydrolysing carboxylic esters can be classified into three larger classes: dietary/detoxification,
hormone/semiochemical processing and neurodevelopmental functions (Oakeshott et al., 2005). Di-
etary/detoxification CCEs accounted for 2/3 of all annotated CCEs in FCDK and FCSH. The two F.
candida strains possessed five times as many dietary/detoxification-related and two times as many hor-
mone/semiochemical CCEs as D. melanogaster (Table 2). No significant difference in CCE copy numbers
was observed between FCDK and FCSH (Figure S4a).

The CYP superfamily is one of the most groups of important xenobiotic metabolism enzymes in arthropods
and is usually classified into CYP2, CYP3, CYP4 and mitochondrial clans (Feyereisen 2006, 2012). For the
CYPs identified in both F. candida strains, approximately 1/2 of the genes were clustered into the CYP2
clan, whereas few genes were included in the mitochondrial clan (Table 2, Figure 4b). The large number
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. of CYP2 genes found in F. candida was similar to that reported in Chelicerata (Grbić et al., 2011; Fan
et al., 2021) but different from that in insects. CYP2 enzymes are associated with the detoxification and
bioactivation of certain exogenous chemicals (Feyereisen 2006). An obvious expansion of the clan CYP3 was
also observed in FCDK and FCSH; these enzymes have been found to be major participants associated with
xenobiotic metabolism and insecticide resistance across a wide range of artificial or natural chemicals. FCSH
showed a contraction in the CYP4 clan relative to FCDK and D. melanogaster .

GST enzymes play a crucial role in the detoxification of a wide range of exogenous and endogenous com-
pounds, particularly in insecticide resistance (Enayati et al., 2005; Li et al., 2007). GSTs can be classified
into three superfamilies: cytosolic (13 classes), mitochondrial (kappa), and microsomal (MAPEG) (Oakley,
2011). Few microsomal GSTs were observed, and mitochondrial GSTs were completely lacking in the three
taxa. Seven cytosolic classes were observed, among which the epsilon class was absent in FCDK and FCSH
and mu was absent inD. melanogaster (Table 2, Figure S4b). The GST class pattern observed in the two F.
candida strains strongly conformed to that observed in noninsect arthropods (Labbé et al., 2011; Roncalli
et al., 2015; Fan et al., 2021). Folsomia showed a great expansion of the sigma class, which accounted for
more than half of the annotated GSTs. Sigma GSTs have anti- and proinflammatory functions in mammals,
immune response functions in helminth parasites, and lipid oxidation product detoxification functions in
insects (Flanagan & Smythe, 2011).

Insect UGTs have diverse functions, including roles in processes such as detoxification (Smith, 1955), insec-
ticide resistance (Lee et al., 2005), pigmentation (Hopkins & Ahmad, 1991), and sclerotization (Hopkins,
1992). FCDK and FCSH each had 48 UGTs, which was slightly greater than the number in D. melanogaster
(Table 2). Most FolsomiaUGTs were clustered into two clades with node support of 100 and were isolated
from D. melanogaster UGTs, indicating an independent origin of Folsomia UGT families (Figure S4c).

Comparative analysis of mitochondrial genomes between FCDK and FCSH

The mitochondrial genomes of both FCDK and FCSH share the ancestral gene order found in Pancrustracea.
The genome sizes of the two strains were slightly different, at 15,141 bp for FCSH and 15,177 bp for FCDK,
with a 36 bp insertion in the FCDK mitochondrial sequence between trnQ and trnM (Figure 5a, b). Fourteen
out of 37 mitochondrial genes shared the same gene length in FCDK and FCSH. The overall sequence identity
between the two mito-genomes was 78.2% (Figure 5c). The average pairwise identity was 77.13% for 13 CDSs,
87.0% for 22 tRNAs, 82.6% for 2 rRNAs, and 60.2% for the noncoding regions. The pairwise identity of the
standard barcoding region (a 658 bp sequence in the 5’ region of the cox1 gene) in these two sibling species
was 80.9%. Such great sequence divergence would be unlikely to be attributable to intraspecies variation.
Strengthened by the mitochondrial genome analyses, FCDK and FCSH should be regarded as two distinct
species.

miRNA comparison between FCDK and FCSH

FCDK and FCSH shared 91 miRNAs from 64 miRNA gene families (Figure 6a), including 78 known miRNAs
from 53 families conserved in crustaceans and hexapods, and 13 miRNAs from 10 predicted families (MIR-fca1
to MIR-fca10) originated in the ancestor of FCDK and FCSH, since none of the miRNAs in the latter group
were found in other collembolan genome data by the BLAST algorithm. Notably, seven known conserved
miRNAs (MIR-bg5, MIR-927, MIR-3049, MIR-6012, MIR-971, MIR-11, and MIR-995a) were annotated in
the sRNA data of FCSH but not in the sRNA or genomic data of FCDK. These miRNAs have probably
been lost in FCDK.

By mapping miRNA precursors to the corresponding chromosomes, it was found that the locations of most
shared miRNAs in FCDK and FCSH showed evolutionarily conserved synteny (Figure 6b). Only three F.
candida -specific miRNAs (fca6-p1, fca6-p2 and fca4-p4) were located on different chromosomes of FCDK
and FCSH.

It is of note that there were many more specific miRNAs in FCSH than in FCDK. Thirty-nine miRNAs from
15 predicted families (MIR-fcaSH-n1 to MIR-fcaSH-n15) were unique to FCSH, but only 9 miRNAs from 6
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. predicted families (MIR-fcaDK-n1 to MIR-fcaDK-n6) were unique to FCDK. We think that these miRNAs
are strain specific since they could not be found in other collembolan genomes. Most FCDK-specific miRNA
families had only one copy, with the exception of MIR-fcaDK-n3. However, many FCSH-specific miRNA
families showed multiple duplications (Figure 6a) and tended to form clusters on chromosome 7 (Figure
6b). The remarkable differences in the miRNA distribution in FCSH and FCDK confirm that they have
experienced independent evolutionary processes and evolved into different species.

4 DISCUSSION

Based on the comparative genomic analyses of the two strains of F. candida , we found significant differences
between them in terms of both genome structure and gene distributions. The genome of FCDK (219.08 M)
was 65.18 M (42.4%) larger than that of FCSH (153.90 M); half of this difference consisted of repetitive
elements (34.1 M); and each chromosome of FCDK was 25-54% longer than the corresponding chromosome
of FCSH (Figure 1). The seven pairs of chromosomes showed obvious large-scale chromosomal inversions
and translocations, and several large distal regions of FCDK chromosomes 1, 3, 4 and 7 did not share any
syntenic blocks with FCSH (Figure 2). There were 3,530 more PCGs annotated in FCDK than in FCSH
(Table 1). The numbers of FCDK-specific gene families and genes (572/2285) were far greater than the
numbers of FCSH-specific sequences (204/820) (Table S7). In addition, FCDK and FCSH showed obvious
divergence between their mitochondrial genomes and miRNA distributions. The overall sequence identity
of the two mitogenomes was only 78.2%, and the pairwise identity of their standard DNA barcodes (658 bp
of COI) was 80.9%, which is much lower than the similarity observed in individuals from the same insect
species (Hebert et al., 203). Although 91 common miRNAs of FCDK and FCSH showed conserved synteny
on their homologous chromosomes, there were many more strain-specific miRNAs in FCSH (39 miRNAs from
15 predicted families) than in FCDK (9 miRNAs from 6 predicted families). Moreover, most FCDK-specific
miRNA families had only one copy, but many FCSH-specific miRNA families showed multiple duplications,
which tended to form clusters on chromosome 7 (Figure 6). All of these genetic differences demonstrated
that after 10 million years of divergence (Figure 3), FCDK and FCSH have evolved into distinct species.

In F. candida , parthenogenetic strains usually show a wider distribution and stronger environmental adapt-
ability than bisexual strains (Tully & Potapov, 2015). The genomic differences revealed in this study demon-
strated obvious evolutionary advantages of the parthenogenetic FCDK genome. Relative to bisexual FCSH,
FCDK showed more strain-specific and expanded gene families, many of which were involved in resistance to
environmental xenobiotics, such as the ABC, CYP and GST families (Table 2). Interestingly, histone H2A,
one of the core histones, showed obvious expansion in FCDK (Figure 3b). The sequences and expression
patterns of core histones can profoundly alter chromatin properties, and their posttranslational modifica-
tions, such as acetylation, methylation, and ubiquitination, are involved in the regulation of nucleosome
dynamics (Lawrence et al., 2016). In particular, variants of histone H2A are associated with DNA repair
and gametogenesis (Hanson et al., 2013) as well as environmental responses (Talbert & Henikoff, 2014). The
potential roles of expanded H2A genes in FCDK deserve further study. In addition, FCDK genes exhibited
longer introns than FCSH genes (Table 1). Introns can provide selective advantages to cells by regulating
alternative splicing, gene expression, chromatin assembly, etc. (Jo & Choi, 2015), and they might play roles
in determining species-specific characteristics and complexities (Carvunis et al., 2012).

The genetic drivers of species differentiation have always been a hot research topic. Our study reveals
several possible factors contributing to the genetic divergence between FCDK and FCSH. First, the increase
in transposon copies is a very important driving force leading to the enlargement of the genome (Chalopin et
al., 2015; Talla et al., 2017), and transposable elements may contribute significantly to divergent chromatin
structures (Diehl et al., 2020). In this study, we found that transposons were significantly enriched in the
FCDK-specific regions of Chr1, Chr3, Chr4, and Chr7 (Figure 2), and many repeat families were obviously
expanded in FCDK (Figure 3b). Most chromosomal regions with a high transposon density showed a low gene
density and high recombination (Figure 1). Second, a large number of genes acquired through HGT located
in FCDK-specific chromosome regions probably play important roles in the spread of antibiotic resistance
and genome evolution (Faddeeva-Vakhrusheva et al., 2017). Significantly, Wolbachiainfection may induce or

11
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. accelerate speciation and contribute to reproductive isolation (Werren, 1998), which is probably associated
with increased recombination (Singh, 2019). Although we did not find any obvious genomic characteristics
related to the differences in reproductive mechanisms between FCDK and FCSH based on comparative
genomic analyses, our high-quality genome data provide a basis for further mechanistic studies. In addition,
strain-specific miRNAs could drive the adaptive diversification of the genomic regulatory mechanisms of
FCDK and FCSH. Novel miRNAs could be gained and lost relatively rapidly across closely related groups,
especially when these groups undergo extensive adaptive diversification (Xiong et al., 2019). It would be
interesting to further study how miRNA genes evolve and contribute to speciation.

In conclusion, we generated two high-quality chromosome-level genomes of the Folsomia candida DK and
SH strains, revealed their genomic differences, and proposed that they have differentiated into two separate
species. Our work provides important genomic resources for studying speciation and the effect of Wolbachia
on host reproduction and genetic differentiation, as well as the basis for mechanistically understanding soil
arthropods in the context of soil ecology, and the evolution links between insects and crustaceans.
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Tables

Table 1 Genome sequencing, assembly and annotation statistics of two Folsomia candidastrains

Content Folsomia candida DK Folsomia candida SH

Sequencing
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. Content Folsomia candida DK Folsomia candida SH

Illumina (Gb) 59.47 (270X) 13.74 (90X)
PacBio (Gb) 12.87 (58X) 11.79 (76X)
Hi-C (Gb) 48.85 (222X) 36.72 (238X)
Genome assembly
Assembly size (Mb) 219.08 153.90
Number of pseudo-chromosomes (sizes) 7 (216.64 Mb) 7 (150.53 Mb)
Number of scaffolds/contigs 75/321 250/850
Longest scaffold/contig (Mb) 44.87/13.22 32.28/8.88
N50 scaffold/contig length (Mb) 38.47/2.51 25.75/0.79
GC content (%) 37.49 38.54
BUSCO completeness (%) 97.3 97.0
Mapping ratio of Illumina reads (%) 97.14 94.71
Mapping ratio of PacBio reads (%) 95.52 97.02
Protein-coding genes
Number 25,139 21,609
Mean gene length (bp) 3,973.0 3,835.2
Exons/CDS/introns per gene 7.7/7.4/6.4 8.1/7.8/6.8
Mean exon/CDS/introns length 253.9/197.7/312.1 248.6/198.3/263.5
BUSCO completeness (%) 97.0 97.6
Repetitive elements
Size (Mb) 49.53 (22.61%) 15.43 (10.03%)
DNA transposons (Mb) 9.38 (4.28%) 2.56 (1.67%)
SINEs (kb) 15.59 (0.01%) 30.74 (0.02%)
LINEs (Mb) 3.21 (1.47%) 0.60 (0.39%)
LTRs (Mb) 4.82 (2.20%) 2.19 (1.43%)
Unclassified transposons (Mb) 29.31 (13.38%) 7.40 (4.81%)
Number of ncRNA* 396 334
rRNA 70 39
miRNA 34 28
snRNA 54 42
tRNA 115 104

*The number was estimated by the Infernal and tRNAscan-SE automatic prediction pipeline.

Table 2 Comparison of detoxification-related gene families among the two Folsomia strains
and Drosophila melanogaster(Dmel).

Family Clan FCSH FCDK Dmel

ABC 118 132 56
ABCA 2 2 10
ABCB 7 10 8
ABCC 15 25 14
ABCD 3 3 2
ABCE 1 1 1
ABCF 3 3 3
ABCG 69 69 15
ABCH 17 19 3

CCE 117 120 36
Dietary/Detoxification 81 82 14
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. Family Clan FCSH FCDK Dmel

Hormone/Semiochemical 20 20 8
Neuro-developmental 16 18 14

CYP 183 203 87
Mitochondrial 4 6 12
CYP2 100 104 7
CYP3 56 59 36
CYP4 23 34 32

GST 70 79 40
Microsomal 5 5 3
Delta 4 4 11
Epsilon 0 0 14
Mu 13 13 0
Omega 5 4 5
Sigma 39 48 1
Theta 2 3 4
Zeta 2 2 2

UGT 48 48 35

FIGURE LEGENDS

FIGURE 1 Morphological and genomic comparison between FCDK and FCSH. (a) Adult female FCDK. (b)
FCDK furca with 1 well-developed apical seta. (c) Four ventral setae on the third thoracic segment of FCDK.
(d) Adult female FCSH. (e) Adult male FCSH. (f-g) FCSH furca with 3 or 2 well-developed apical setae. (h)
Seven ventral setae on the third thoracic segment of FCSH. (i) Circos graph of the genome characteristics of
FCDK and FCSH. Element distributions in 100 kb sliding windows from outer to inner circles: chromosome
length, GC content, density of protein-coding genes, DNA transposons, SINE/LINE/LTR retrotransposons,
unclassified (other) transposons and simple repeats. Hox gene clusters are masked on chromosome 5. For
collinear blocks, reddish links are intraspecific, and links of other colours are interspecific. (j) Comparison
of chromosome lengths of both strains. The number of protein-coding genes on chromosomes is shown in
brackets. (k) Comparison of major expanded repeat families between the two strains. Only repeat families
larger than 100 kb are shown.

FIGURE 2 Chromosomal synteny, gene enrichment and Ks frequency distributions. (a) Syntenic links
among chromosomes, arrows indicate nonhomologous regions; (b)–(c) GO (b) and KEGG pathways (c)
of protein-coding genes located in nonhomologous regions of FCDK chromosomes 1, 3, 4 and 7. (d) Ks
frequency distributions in the FCDK and FCSH genomes.

FIGURE 3 Phylogeny and gene family evolution. (a) Dating tree and orthologue statistics. Node values
represent the 95% highest probability densities of divergence times (unit, 100 Mya). Numbers of significantly
expanded and contracted gene families are labelled at terminals. ‘1:1:1’ represents shared single-copy ortho-
logues, ‘N:N:N’ represents multicopy orthologues shared by all species, ‘Collembola’ represents orthologues
unique to Collembola, ‘Others’ represents unclassified orthologues, and ‘Unassigned’ represents orthologues
that cannot be assigned to any orthogroups. (b)-(c) Significantly expanded gene families and corresponding
orthologue numbers in FCDK (b) and FCSH (c).

FIGURE 4 Massive expansion of Folsomia ABC (a) and CYP gene families (b). Ultrafast bootstrap values
are indicated at the nodes. Dk, FCDK (red name); Sh, FCSH (blue name); Dm, Drosophila melanogaster
(green name).

FIGURE 5 Gene organizations and alignment of two mitochondrial genomes. (a) FCDK (15,177 bp). (b)
FCSH (15,141 bp). CDS, tRNA, rRNA and rep origin sequences are shown in the figure. The names of the
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. majority-strand-encoded genes are labelled in the outer circle, the minority-strand-encoded genes are labelled
in the inner circle, and the gene order, GC content, and GC skew of both strand tracks are located between
labels. (c) Mauve alignment with a horizontal track to show the global similarity of the two mitochondrial
genomes. The degree of DNA sequence similarity is indicated by the height of the red-coloured regions.
The box-like diagrams show the annotation of coding regions (white boxes), tRNA genes (green), and rRNA
genes (red).

FIGURE 6 Comparison of the miRNA distribution between FCDK and FCSH. (a) Distribution of miRNA
genes and families. (I) Conserved miRNAs in both strains; (II) FCDK-specific miRNAs; (III) FCSH-specific
miRNAs. (b) The chromosomal distribution of miRNAs in FCDH (red bars) and FCSH (blue bars). The
serial numbers of chromosomes (chr1-chr7) are shown on the top of each chromosome. The miRNAs are
labelled to the right of the bar, corresponding to their gene locations on the chromosomes. Brown lines
indicate miRNAs shared by the two strains (black names). Red names represent FCDK-specific miRNAs,
and blue names represent FCSH-specific miRNAs.
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