THE DETERMINATION OF CONSISTENT AND ACCURATE VALUES OF ?rHo(CaHbOd, a [?] 16) OF ATOMIZATION OF THE AROMATIC COMPOUNDS BY THE SIMULTANEOUS USE OF THE EMPIRICALLY CORRECTED RESULTS AND UNCERTAINTIES OF SEVERAL QUANTUM MECHANICAL APPROACHES.

Gregory Poskrebyshev¹

¹ N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation

December 21, 2021

Abstract

The empirical linear scaling dependencies between the literature (?rHo(Xn,TAB)) and the calculated (?rHo((Xn)i,CALC)) values of atomization of 31 reference aromatic and related compounds (T=298.15K), as well as their standard errors ((SE4)i?(?4)i, Stand.Dev.), are determined for the different quantum mechanical (QMi) approaches. These dependencies are compared and used for the determination of the values of $?rHo((Xn)i,CORRE)\pm3(SE4)i$ of atomization reactions of considered not reference aromatic compounds, as well as for the determination of their values of $?fHo((Xn)i,CORRE)\pm3(SE4)i$. The values of ?fHo((Xn)i,CORRE)MEAN+-3SEYE ([?]99.4% confidence interval), determined using the intersections of the 3(SE4)i intervals, are consistent with all QMi approaches and their literature values. The M06-2X/6-311++G(d,p), M08HX/6-311++G(d,p) and wB97XD/6-311++G(d,p) approaches are recommended for the achievement of accuracy (SEYE)[?]3.8 kJ/mol of the calculated values of ?fHo((Xn)i,CORRE)MEAN. The effects of the number of O-H groups, size and multiplicity of compounds on values of error, also studied in this work, demonstrate the limitations of using of several scaled dependencies.

Hosted file

IJQC_Manuscript_v_01.docx available at https://authorea.com/users/409628/articles/550266the-determination-of-consistent-and-accurate-values-of-rho-cahbod-a-16-of-atomizationof-the-aromatic-compounds-by-the-simultaneous-use-of-the-empirically-corrected-resultsand-uncertainties-of-several-quantum-mechanical-approaches