
P
os

te
d

on
A

u
th

or
ea

20
D

ec
20

21
—

T
h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
64

00
43

24
.4

31
79

73
2/

v
1

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Towards closed carbon loop fermentations: co-feeding of Yarrowia

lipolytica with glucose and formic acid

Wouter Van Winden1, Robert Mans2, Stefaan Breestraat3, Rob Verlinden3, Alvaro
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Abstract

A novel fermentation process was developed in which renewable electricity is indirectly used as a fermentation substrate,

synergistically decreasing both the consumption of sugar as a first generation carbon source and emission of the greenhouse

gas CO2. To achieve this, a glucose-based process is co-fed with formic acid, which can be generated by capturing CO2

from fermentation offgas followed by electrochemical reduction with renewable electricity. This ‘closed carbon loop’ concept is

demonstrated by a case study in which co-feeding formic acid is shown to significantly increase the yield of biomass on glucose

of the industrially relevant yeast species Yarrowia lipolytica. First, the optimal feed ratio of formic acid to glucose is established

using chemostat cultivations. Subsequently, guided by a dynamic fermentation process model, a fed-batch protocol is developed

and demonstrated on laboratory scale. Finally, the developed fed-batch process is proven to be scalable to pilot scale. An

extension of this proven concept to also recycle the O2 that is co-generated with the formic acid to the fermentation process

for intensification purposes, and a potential further application of the concept to anaerobic fermentations are discussed.

Introduction

The globally increasing level of atmospheric greenhouse gases and its proven effect of global warming is
an urgent incentive for the chemical industry to develop greenhouse gas neutral or even negative processes.
Biotechnology offers a CO2 saving alternative to traditional chemical processes for the production of an ever-
increasing range of carbon containing molecules, by consuming renewable rather than fossil carbon sources.
Still, almost all biotechnological processes emit CO2 originating from the production of sugar as a so-called
first generation carbon source (see e.g. Salim et al. , 2019), from the generation of utilities (power, heat,
steam), as well as from the oxidation of part of the carbon source to generate metabolic energy. As a result,
part of the CO2 that is fixed by the crops producing the carbon source returns to the atmosphere during
the process, and these carbons are lost for the product.

A major step in further decreasing CO2 emissions by biotechnological processes would be to capture the
emitted CO2, electrochemically reduce it to a suitable organic molecule using renewable electricity, and (co-
)feed this carbon source back into the fermentation stage of the process (Noorman. Here we present formic
acid as an example:

CO2 + H2O CH2O2 + 0.5 O2 [eq.1]

Formic acid has been demonstrated as a suitable auxiliary energy source for several microbial species (Bru-
inenberg et al. , 1985; Overkampet al. , 2002; Geertman et al. , 2006; Harris et al. , 2007; Wang et al. ,
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. 2019), which can transfer the electrons from formic acid to NAD+, forming NADH and CO2 with a formate
dehydrogenase enzyme (FDH):

CH2O2 + NAD+ CO2 + NADH + H+ [eq.2]

The cells can then use the NADH generated to either provide reducing power in biosynthetic pathways or
generate metabolic energy (ATP) via aerobic respiration. This closed carbon cycle, where the emitted CO2 is
continuously captured, reduced to formic acid and fed back into the fermentation, can theoretically provide
all ATP via [eq.2] plus respiration. Such processes uniquely use the primary carbon source (e.g. glucose) for
assimilation and therefore have significantly increased biomass and product yields on the primary carbon
source. In essence, such a process is partially decarbonized by replacing a fraction of the glucose substrate
by renewable electricity [Figure 1].

Figure 1: [A] traditional aerobic fermentation process, where glucose is partially oxidized to CO2 to provide
metabolic energy and the remainder is used as carbon source for biosynthesis. [B] alternative ‘closed carbon
loop’ process where co-fed, CO2-derived formic acid serves as energy source and glucose uniquely serves as
carbon source.

To illustrate these process benefits, we postulate the following typical microbial stoichiometry for aerobic
conversion of glucose into biomass:

C6H12O6 + 2.85 O2 + 0.6 NH3 → 3 CH1.8O0.5N0.2 + 3 CO2 + 4.2 H2O [eq.3]

which gives a yield of biomass on O2(Yxo) of 1.05 C-molx/molo2, a yield of biomass on sugar (Yxs) of 3
C-molx/mols, and 1 C-mol of biomass formed per mol of CO2 released (Yxc). Under the assumptions of no

2
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. energetic costs in cross membrane metabolite transport, and a P/O ratio of 1.0 for respiration of NAD(P)H
the catabolic subreaction:

0.475 C6H12O6 + 2.85 O2 → 2.85 CO2 + 2.85 H2O (+ 7.6 ATP ) [eq.4]

can be completely replaced by dissimilation of formic acid:

7.6 CH2O2 + 3.8 O2 → 7.6 CO2 + 7.6 H2O (+ 7.6 ATP ) [eq.5]

resulting in the overall stoichiometry:

0. 525 C6H12O6 + 7.6 CH2O2 + 3.8 O2 + 0.6 NH3 → 3 CH1.8O0.5N0.2 + 7.75 CO2 + 8.95 H2O [eq.6]

which gives a Yxo of 0.79 C-molx/molo2, a Yxs of 5.71 C-molx/mols, and a Yxc of 0.39 C-molx/molco2. Clearly,
the Yxs is higher, but Yxo and Yxc are lower, which is undesired. However, combining the electrocatalytical
reaction of [eq.1] with [eq.6] shows the synergy of the two processes:

0. 525 C6H12O6 + 0.6 NH3 3 CH1.8O0.5N0.2 + 0.15 CO2 + 1.35 H2O [eq.7]

This overall stoichiometry gives an infinitely high Yxo, a Yxs of 5.71 C-molx/mols, and a Yxcof 20 C-
molx/molco2. All three yields are improved relative to [eq.3]. Note that the O2produced in [eq.1] will be
produced in a separate unit operation from the fermentation process where O2 is consumed so even though
the overall process does not consume O2, aeration of the fermentation is still required. The O2produced in
the reduction of CO2 can be used to intensify the fermentation process by injecting pure O2or enriching the
fermentation air (Groen et al. , 2005).

Applying this theoretical concept to Yarrowia lipolytica as a model strain, two factors that impact the
overall yield are the mechanisms for formic acid transport (passive vs. active) and the overall stoichiometry
of NADH dissimilation by the respiratory chain (P/O ratio). Both passive diffusion of formic acid, as well
as anion/proton-symport have been described in earlier research in the yeast S. cerevisiae (Overkamp et al.
, 2002; Geertmanet al. , 2006), and neither of these mechanisms results in a net expenditure of ATP in
transport of formic acid. Moreover, metabolic modelling studies in cultures with Penicillium chrysogenum ,
grown on mixtures of formic acid and glucose, also indicated no ATP expenditure in formic acid transport
(Harris et al. , 2007). In light of these observations and since no data is reported on formic acid uptake in
Y. lipolytica , no ATP expenditure for formic acid uptake was expected in this organism.

In Y. lipolytica the mitochondria contain a branched respiratory chain, constituted by the classic internal,
proton pumping Complex I and an alternative, external NADH dehydrogenase (Kerscher et al., 1999),
combined with the other classical mitochondrial complexes (III and IV) involved in electron transport from
NADH. Complex I and the alternative NADH dehydrogenase provide two entry points for NADH-derived
electrons into the respiratory chain. Since proton pumping by Complex I contributes to the proton gradient
across the mitochondrial membrane whereas the alternative NADH dehydrogenase does not, the overall
stoichiometry (P/O ratio and the equivalent ATP/NADH yield) differs depending on the entry point used.
The physiological contribution of Complex I and alternative NADH dehydrogenase(s) remains enigmatic
(Juergens et al. , 2020 & 2021), which impedes accurate theoretical prediction of the ATP yield of aerobic
substrate dissimilation. Therefore, the optimal molar ratio between glucose and formic acid in the feed,
which is the ratio where formic acid is exactly sufficient to replace glucose dissimilation, must be determined
experimentally.

3
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. In addition to the physiology of Y. lipolytica , practical success of the proposed approach requires (1) a
technologically and economically feasible process to capture CO2 and reduce it to formic acid, and (2) an
industrially relevant fermentation process design in which the formic acid does not accumulate to a level that
affects cell metabolism. The former requirement, capture and conversion of CO2 to formic acid, has been
addressed elsewhere (see e.g. Claassens et al. , 2019; Malkhandi et al. , 2019; Pérez-Gallent et al. , 2021)
and is out of scope of this work. This study covers the latter requirement for the industrially important yeast
species Yarrowia lipolytica for which formic acid consumption has been previously demonstrated (Nsoe et
al. , 2018; Vartiainen et al. , 2019).

Materials and methods

Yeast strains and stocks

Yarrowia lipolytica W29 used in this study is a natural strain, originally isolated from wastewater in Paris,
France. TheSaccharomyces cerevisiae strains used in this study share the CEN.PK genetic background
(Entian and Kötter, 2007; Salazar et al. , 2017) and the FDH knockout strain CEN.PK556-7B was constructed
previously (Overkamp et al. , 2002). Frozen culture stocks were prepared by adding sterile glycerol to an
overnight culture to a final glycerol concentration of 30% v/v and storage of 1 mL aliquots at -80°C.

Shake flask cultivation

For culture maintenance, strains were grown in 500 mL round-bottom shake flasks containing 100 mL YP
medium (10 g/l Bacto yeast extract, 20 g/l Bacto peptone) supplemented with 20 g/l glucose. Precultures
were grown overnight in filter-sterilized synthetic medium (SM) at pH 6.0, prepared as described previously
(Verduyn et al. , 1992a,b) and transferred to fresh medium for characterization in shakeflask.

For strain characterization in shake flasks, the (NH4)2SO4 in SM was substituted by 2.3 g/l urea and 6.6
g/l K2SO4, to provide an equimolar amount of nitrogen and prevent medium acidification due to ammonia
assimilation (Luttik et al. , 2000). When required, formic acid was added to the medium to a final concen-
tration of 1.2 g/l from a concentrated stock solution (99% w/w) prior to sterilization. Heat-sterilized glucose
(110°C, 20 minutes) was aseptically added as carbon source after sterilization. For characterization, cultures
were inoculated into 100 ml SM with 7.5 g/l (42 mM) glucose with and without 1.2 g/l (25 mM) formic acid
in 500 ml round-bottom shake flasks. Shake flask cultures were incubated at 30°C in an Innova incubator
shaker (New Brunswick Scientific, Edison, NJ, USA) set at 200 rpm and a throw of 2.5 cm.

Chemostat cultivation

Aerobic, glucose-limited chemostat cultivations were performed in 2 l laboratory bioreactors (Applikon, Delft,
The Netherlands) with a working volume of 1 l. Cultures were stirred at 800 rpm and sparged with 500 ml
air/min and the dissolved O2 concentration was monitored via an O2 electrode, remaining above 30% of
saturation at atmospheric conditions throughout the cultivation. The pH of the culture was maintained at
5.0 via automated addition of 2 M KOH and the temperature was kept constant at 30°C. SM medium used
in bioreactors contained 5.0 g/L glucose and was supplemented with 0.2 g/L Pluronic PE 6100 antifoam
(BASF, Ludwigshafen, Germany) for the batch phase and 0.4 g/L antifoam for the chemostat phase.

For the initial batch phase, the cultures were inoculated with an overnight preculture to an initial optical
density of approximately 0.04. After glucose depletion, indicated by a rapid drop in the CO2% in the exhaust
gas, the medium pump was switched on to obtain a constant flow rate of 100 ml/h resulting in a dilution
rate of 0.1 h-1. The formic acid concentration in the feed medium was set by aseptically adding formic acid
to the 20 l feed medium vessel prior to the chemostat phase. The working volume was kept constant at 1
l using an effluent pump controlled by an electric level sensor. Chemostat cultures were assumed to be in
steady-state if after at least 5 volume changes, the concentration of biomass in the reactor, as well as the
CO2 concentration in the exhaust gas remained constant (<3% variation) for at least two additional volume
changes.
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. Fed-batch cultivation

Aerobic, glucose / formic acid-limited fed-batch cultivations were performed in 10 l laboratory bioreactors (L.
Eschweiler and Co., Kiel, Germany) and in 300 l pilot bioreactors (Bio Engineering AG, Wald, Switzerland).
The laboratory bioreactors were inoculated from shake flasks. The pilot bioreactors were inoculated from 70
l inoculum reactors (Applikon, Delft, The Netherlands), that were in turn inoculated from shake flasks.

For the shake flasks, 0.5 mL cell stock culture was added to 400 mL of preculture medium (Supplementary
Table S1). Precultures were incubated for 26h in flat bottom flasks with baffles, at 30 °C with a rotational
speed of 150 rpm and a throw of 2.5 cm. The pH of the media was not adjusted before inoculation.

The four laboratory bioreactors (from here onwards denoted as LF1 through LF4) contained 3.6 kg of batch
medium (Supplementary Table S4) and 400 g of preculture. The start weight was 4 kg, while the estimated
end weight was 8.7 kg. No formic acid was dosed in the batch medium, as high initial concentrations of
formic acid were expected to be detrimental to the cells. The media were adjusted to pH 5.0 with NH3

before inoculation.

The process started with a batch phase until carbon depletion. The other operating conditions are given in
Supplementary Table S5. The solutions for pH correction and foam remediation were 25 wt% NH3, 98 wt%
H2SO4 and Basildon 86-013. The carbon feed solutions of the four laboratory scale fermentations are given
in Table 1. The pH of the feed solutions was not adjusted with alkaline titrant.

Table 1: Composition of the carbon feeds of the laboratory (LF) and pilot (PF) fermenters

Compound Concentration (g/kg) Concentration (g/kg) Concentration (g/kg) Concentration (g/kg)

LF1 and PF1 LF2 LF3 and PF2 LF4
Glucose monohydrate 275 242 206 179
Formic acid 0 169 240 291
Water 725 589 554 531

The inoculum bioreactor (from here onwards denoted as IF) of the two pilot fermentations (from here
onwards denoted as PF1 and PF2) was run as a batch process and contained 18 kg of batch medium of
which the composition is given in Supplementary Table S6. The media were adjusted to pH 5.0 with NH3

before inoculation. The inoculum bioreactor was inoculated with 5 shake flask cultures of 400 g each and
then operated according to Supplementary Table S7. 8 Kg of broth from the IF was used to inoculate each
of the two PF. The PF contained 82 kg of batch medium that was identical to the medium of the laboratory
bioreactors. The process started with a batch phase until glucose depletion. The other operating conditions
are given in Supplementary Table S8.

The solutions for pH correction and foam remediation were 25 wt% NH3, 98 wt% H2SO4 and Basildon
86-013. The carbon feed solutions of the two pilot scale fermentations are given in Table 1.

Analytical methods

Biomass determination

For the chemostat cultures, biomass growth was monitored by optical density (OD) measurement at a
wavelength of 660 nm with a Libra S11 spectrophotometer (Biochrom, Cambridge, United Kingdom). For
the fed-batch cultures, biomass growth was monitored by optical density (OD) measurement at a wavelength
of 600 nm with a Thermo Genesys spectrophotometer (Thermo Fisher Scientific, MA, USA).

For the chemostat cultures, dry weight was determined by filtering 10 ml culture broth over a pre-weighed
nitrocellulose filter with a pore size 0.45 μm, washing the filter with demineralized water and drying the
filter for 20 min at 360 W in a microwave oven before weighing again (Postma et al., 1989). Duplicate
measurements varied less than 3.5% throughout the cultivation. For the fed-batch cultures, dry weight was

5
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. determined by centrifuging 2 x 5 mL of culture broth at 6,000 × g for 15 min. The pellet was washed once
by resuspending in deionized water and centrifuged again at 6,000 × g for 15 min. After washing, the pellet
was dried for 24 hours at 105°C and weighed.

Gas analysis

For the chemostat cultures, the offgas was cooled (2 °C) in a condenser and dried, prior to the analysis of O2

and CO2 concentrations using an NGA 2000 analyzer. For the fed-batch cultures, the offgas was analysed
with a Thermo Fischer Prima BT Mass Spectrometer (Thermo Fisher Scientific, MA, USA).

Substrate and metabolite analysis

During the runs, rapidly temperature-quenched samples were taken from the fermenters in order to instantly
stop metabolism and obtain representative measurements of extracellular metabolites such as formic acid.
Immediately after sampling the samples were cooled in syringes filled with precooled steel beads for fast
cooling of the sample (Mashego et al. , 2003). The cells were immediately removed by filtration and samples
were stored frozen.

Extracellular concentrations of glucose and formic acid in culture filtrates were analysed by high performance
liquid chromatography (HPLC) on an Agilent 1260 HPLC, equipped with a Bio-Rad HPX 87H column,
operated at 60°C with 5 mM H2SO4 as mobile phase at a flow rate of 0.600 mL min-1. Detection was
performed by means of an Agilent refractive index detector and an Agilent 1260 VWD detector at 210 nm.

NH3 analysis

The NH3 concentration was measured in supernatant samples using an Orion 4 Star with the Orion 95-12
Ammonia Electrode (Thermo Fisher Scientific, MA, USA).

Results

Natural co-consumption of glucose and formic acid in Yarrowia lipolytica W29 in batch shake-flask cultures

To investigate the innate ability of Yarrowia lipolytica to co-consume glucose and formic acid, strain W29 was
inoculated in synthetic medium with glucose with and without formic acid. S. cerevisiae strains CEN.PK113-
7D (FDH1 , FDH2 ) and the formate dehydrogenase (FDH) double knockout strain CEN.PK556-7B
(fdh1[?]fdh2[?] ) were also tested in medium with glucose and formic acid as positive and negative control,
respectively (Figure 2).

Within 24h, glucose was depleted in all cultures and in the culture of W29 the formic acid concentration
decreased by 9.7 +- 0.2 mM compared to 4.5 +- 0.1 mM for CEN.PK113-7D. In contrast, the decrease in
formic acid in the culture of CEN.PK556-7B (1.2 +- 0.0 mM) was comparable to what was observed in a
sterile culture (1.1 +- 0.0 mM). Strikingly, the optical density after 24h was higher for the W29 culture with
added formic acid (22.3 +- 0.6) than the culture with glucose only (20.3 +- 0.8), consistent with dissimilation
of formic acid in this organism providing additional metabolic energy (ATP).

6
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.

Figure 2: Optical density (A), glucose (B) and formic acid (C) concentrations and pH (D) of shakeflask
cultures of Y. lipolytica and S. cerevisiae. Y. lipolytica strain W29 was incubated with 42 mM glucose with
(closed circles) and without (open circles) 25 mM formic acid, and both S. cerevisiae strains CEN.PK113-7D
(closed squares) and CEN.PK556-7B (open squares) were incubated with glucose and formic acid. A sterile
flask with glucose and formic acid was also included (dashed line, closed triangles). Some data points overlap:
closed & open squares (A), closed & open circles and closed & open squares (B), closed & open squares &
closed triangles (C, first three datapoints) and open square and closed triangle (C, last datapoint).

Determination of the optimal formic acid:glucose ratio in glucose-limited chemostat cultures

Industrial fermentations are typically performed in carbon-limited fed-batch processes, the design parameters
of which include the feed profile and composition. We performed a series of carbon limited chemostat cultures
with various feed compositions to determine the optimal feed-ratio of formic acid to glucose (F:G) for the
Y. lipolytica strain used (Figure 3). A dilution rate of 0.10 h-1 was chosen, well below the maximum specific
growth rate of W29 determined from offgas CO2 of the batch phase preceding the chemostat phase (0.37 ±
0.01 h-1, see Supplementary Materials 2).

For F:G ratios between 0 and 5 mol/mol, a linear increase in the biomass yield on glucose was observed
from 0.50 ± 0.02 to 0.60 ± 0.01 g biomass/g glucose, indicating that in this range formic acid dissimilation
could effectively displace glucose dissimilation. In accordance with the 20% increased biomass yield, the
biomass specific uptake rate of glucose decreased from 0.20 ± 0.01 to 0.16 ± 0.00 g glucose/g biomass/h
(Supplementary Table S9). A further increase in the F:G ratio gave no increase in the biomass yield, even
though up to the highest tested F:G ratio of 11.5 mol/mol >98% of the ingoing formic acid was consumed.
Apparently, beyond a F:G ratio of 5, further consumption of formic acid is decoupled from additional ATP
formation.

7
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Figure 3: Overview of determined biomass yields for formic acid to glucose feed ratios tested in independent
chemostat experiments.

Laboratory scale fed-batch cultivations

The chemostat cultivations indicated an optimal F:G ratio in the feed of 5 mol/mol. This formed the basis
of the experimental design of a fed-batch protocol in which the positive effect of formic acid co-feeding on
the yield was to be confirmed in this industrially more relevant fermentation mode. Four variations of the
fed-batch protocol were tested on laboratory scale, with a fixed feeding rate and F:G ratios that ranged from
0 (experiment LF1), 3 (LF2), 5 (LF3) to 7 (LF4) by replacing part of the water in the carbon feed solution
by formic acid. A dynamic fermentation process model (Supplementary Materials 1) was developed and
applied to quantitatively predict broth weight development, OUR, as well as other fermentation variables,
which allowed to design the experiments such that they would fit the experimental set-up.

The laboratory scale fed batch process proved successful. After the initial batch phase on glucose only, Y.
lipolytica readily consumed the mixed glucose/ formic acid feed when it was dosed at a carbon-limiting rate.
Throughout the fermentations, supernatant samples were taken and analysed for residual formic acid, and
the concentrations were always low (<0.06 g/l) or below the detection limit.

Figure 4 shows the O2 uptake rate profiles of the 4 laboratory scale fermentations with the batch phases
ending between 10-15h, followed by the carbon-limited fed batch phases. The decrease of the OUR after
˜55h for LF1 and after ˜60h for LF2 is caused by O2 transfer limitation of the fermenter. This limitation
resulted from the increasing biomass concentration which in turn led to broth viscosity, a factor that was
not accounted for in the dynamic process model. Until the onset of the late O2 transfer limitation, the
experimental data quantitatively correspond with the simulated fermentations using the dynamic process
model (see Supplementary Materials 1).
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Figure 4: the O2uptake rate (OUR) of the four laboratory scale fed batch fermentations with increasing
molar ratios of F:G and decreasing glucose concentration (see Table 10). The 4 fermentations had F:G ratios
increasing from 0 (LF1, black), 3 (LF2, red), 5 (LF3, blue) to 7 (LF4, green).

The base titrant used in the protocol is ammonia, which simultaneously serves as N-source for biomass
formation. Despite the low pH of the carbon feed solutions that contain high formic acid concentrations, the
titrant dosing to the fermentations is limited (between 100 and 125 g 25 wt% NH3), and varied little between
the 4 fermentations. The ammonia level in the broth was between 0.4 and 0.9 g/l for all 4 fermentations at
all timepoints.

The key results of fermentations LF1-4 are summarized in Table 2. The results agree with the chemostat
findings which showed that co-feeding formic acid with glucose increases the biomass yield on glucose up to
a molar ratio of about 5:1, and that further increasing the ratio gives no benefit in terms of yield. Again,
these results correspond well with the predicted output of the fermentations shown in Error! Reference
source not found. D with one exception: the highest yield for the formic acid: glucose ratio of about
7:1 that is predicted by the model is not observed in practice. The cause of this discrepancy is that the
model assumes a fixed, positive ATP yield for each molecule of formic acid consumed, whereas the chemostat
results indicated a decoupling of ATP formation from formic acid dissimilation past a F:G ratio of 5:1.

Table 2: Average biomass yield on glucose (Yxs) obtained in the laboratory scale and pilot scale fermentations

Experiment Actual carbon feed composition Average yield [g/g] (% improvement)

LF1 Glucose only (glucose: 258 g/kg) 0.49
LF2 2.9:1 molar F:G ratio (glucose: 232 g/kg) 0.54 (+10.2% vs. LF1)
LF3 5.0:1 molar ratio F:G ratio (glucose: 228 g/kg) 0.60 (+22.4% vs. LF1)
LF4 6.9:1 molar F:G ratio (glucose: 174 g/kg) 0.60 (+22.4% vs. LF1)
PF1 Glucose only (glucose: 250 g/kg) 0.44
PF2 4.6:1 molar F:G ratio (glucose: 187 g/kg) 0.53 (+20.5% vs. PF1)

Pilot scale fed-batch cultivations

After the optimal F:G ratio that had been determined in the chemostat experiments had been confirmed
in the laboratory scale fed-batch experiments, the final step of the investigation was to test whether the
obtained positive results of formic acid co-feeding on biomass yield were robust to scaling up to pilot scale.
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. To this end, two out of the four variations of the laboratory scale fed-batch protocol were scaled up to pilot
scale, having F:G ratios of 0 (experiment PF1, scale up of LF1), and 5 (PF2, scale up of LF3). Again,
the dynamic fermentation process model proved valuable in qualitatively predicting the time profiles of key
fermentation parameters during the seed and main fermentation stage before executing the experiments (see
Supplementary Materials 1).

The 300 l pilot scale fed batch process demonstrated that also at this scale Y. lipolytica readily consumes
the mixed glucose/ formic acid feed up to a molar ratio of 1:5. Throughout the fermentations, supernatant
samples were taken and analysed for residual formic acid, and the concentrations were always low (<0.05 g/l)
or below the detection limit. Figure 5 shows the O2 uptake rate profiles of the 2 pilot scale fermentations with
the batch phases ending between 10-12h, followed by the carbon-limited fed batch phases. The oscillation of
the OUR of PF2 between 12-16h was caused by a technical deviation when starting up the feed. The actual
OUR profiles are in good agreement with the profiles of Error! Reference source not found. B that
were simulated to design the experiment.

Figure 5: the O2uptake rate (OUR) of the two pilot scale fed batch fermentations with glucose only (PF1)
and a 1:4.6 molar ratio of glucose: formic acid in the feed (PF2) (see Table 2).

Figure 6 presents the respiratory quotient of the two fermentations, which clearly shows the fast onset of
formic acid dissimilation and its large impact on RQ after the start of co-feeding formic acid (starting around
12h) for PF2.
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Figure 6: the respiratory quotient (RQ) of the two pilot scale fed batch fermentations with glucose only
(PF1) and a 1:4.6 molar ratio of glucose: formic acid in the feed (PF2)

The key results of fermentations PF1+2 are summarized in Table 2 and demonstrate that the observations
in the chemostat and laboratory scale fed-batch, translate well to 300 l pilot scale fed-batch processes. The
absolute biomass yields found on pilot scale are somewhat lower than found on laboratory scale. Still, the
relative improvement of the Yxs of PF2 over PF1 corresponds well with the relative improvement of the Yxs

of LF3 over LF1, where the formic acid to glucose rations were similar. On both scales the Yxs is increased
by 21 ± 1%.

In bioprocess development, it is good practice to check the mass, carbon and nitrogen balances of the process
to ascertain that no inflows or outflows were missed and that flow measurements as well as offline analytics
had a reasonable accuracy. Supplementary Materials 3 presents the results of this check for the fed-batch
experiments performed in this study. For the laboratory scale fermentations the balances closed better (mass
<3%, C <2%, N <8%) than for the pilot scale fermentations (mass <8%, C <10%, N<19%).

Discussion

Energetics of Yarrowia lipolytica co-consuming formic acid

In this work, we found that co-feeding formic acid and glucose, up to a molar ratio of ˜5:1, linearly incre-
ased the biomass yield of Y. lipolytica on glucose (Figure 3). This indicated that under these conditions,
consumption of formic acid by this organism has a net positive ATP yield, similar to previous observations
for other yeasts (Babel et al., 1983; Bruinenberg et al., 1985; Geertman et al., 2006). At F:G feed ratios
[?]5, we observed that 24 +- 2 moles of formic acid were able to displace 1 mole of glucose for dissimilatory
requirements in Y. lipolytica (Supplementary Table S9). Since glucose dissimilation provides 4 ATP and 12
NADH equivalents (assuming no energetic costs of glucose transport) compared to 1 NADH from formic
acid dissimilation, these results indicate that either: 1) the effective P/O ratio of respiration in Y. lipolytica
is low (<1.0), or 2) transport of formic acid comes at a net energetic (ATP) cost, or 3) Y. lipolytica has
a different P/O ratio for formic acid-derived electrons compared to glucose-derived electrons. We believe
the third scenario is most likely, since electrons derived from glucose dissimilation via glycolysis and the
TCA cycle are released in both the cytosol and mitochondria, whereas the electrons released by formic acid
dissimilation via FDH are expected to be released exclusively in the cytosol. Y. lipolytica FDH is described
as cytosolic in UniProt, accession number Q6C5X6. Therefore, glucose derived electrons can be partially
transferred to O2 via proton-pumping complex I in the mitochondria, whereas formic acid derived electrons
are likely transferred to O2 via the less efficient external alternative NADH dehydrogenase.
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. Although no benefit on the biomass yield was observed at higher formic acid to glucose ratios up to 11.5:1,
virtually all formic acid was consumed as indicated by the low residual formic acid concentrations in the
fermenter (Supplementary Table S9). This is in contrast with observations in other yeasts, as in previous work
with aerobic chemostat cultures, formic acid accumulated at F:G ratios higher than 5 inC. utilis cultivations
and higher than 2 in S. cerevisiae(Bruinenberg et al., 1985; Overkamp et al., 2002). The ability to consume
all formic acid at high ratios demonstrates the potential ofY. lipolytica in formic acid co-fed processes.

In this work we used biomass itself as an ATP-intensive product to investigate the potential of formic acid
co-feeding for increasing the product yield. Previous work on antibiotic-producing Penicillium chrysogenum
strains (Harris et al. , 2007) demonstrated that in chemostat setups, formic acid co-feeding can also increase
the yield of product formation. Since Y. lipolytica is used on an industrial scale for synthesis of other ATP-
intensive products, such as citrate, lipids, lipase (Madzak, 2018), a logical next step would be to translate
our fed-batch process to an industrial Y. lipolytica strain engineered for synthesis of one of these molecules.

Supplementary materials 4 and 5 present extensions of the formic acid co-feeding concept of this study,
illustrating how the co-produced O2 can be valorised and how co-feeding of formic acid can even lead to
net-negative CO2 emission processes.

Conclusions

This study has shown proof of principle of co-feeding formic acid to glucose fed cultivations of Y. lipolytica
. This yeast species was shown to consume formic acid up to high molar ratios (>10) relative to the glucose
that was fed, and be able to extract metabolic energy from it up to a formic acid:glucose ratio of about 5.
While this shows that this yeast species is a good natural consumer of formic acid, there is room to benefit
more of its potential.

The study also demonstrated how a fed batch process was developed and successfully executed up to pilot
scale (300 l) in which co-feeding of formic acid at a formic acid:glucose molar ratio of 5 was shown to
increase the yield of biomass on glucose by >20%. A dynamic fermentation process model was developed
based on the initial data and subsequently applied to guide the development of the fermentation protocols
by quantitatively simulating the results of experimental designs before they were executed.

We hope that this work will contribute to further developing the fermentation industry into a sector that
can keep providing mankind with the required molecules for production of food, feed, materials and fuels in
a truly sustainable manner.
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