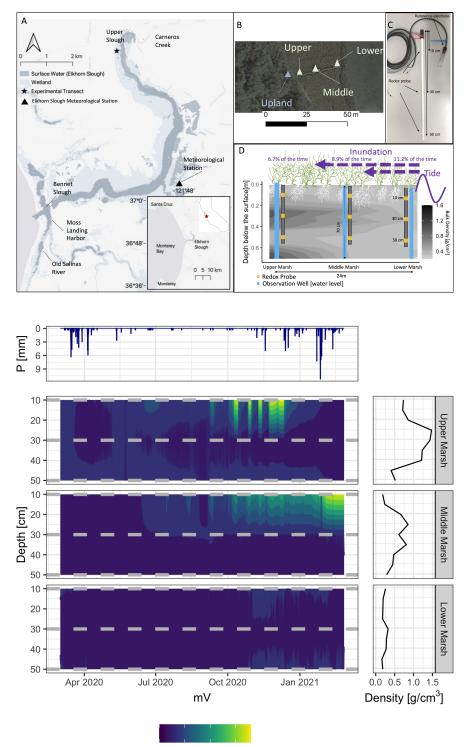
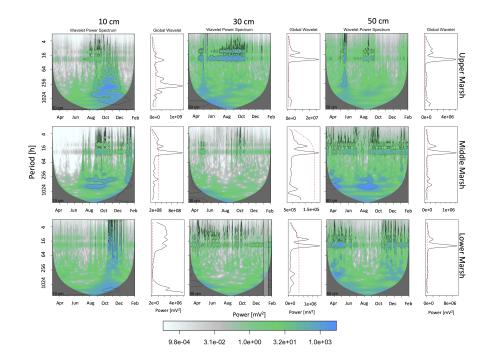
Tidal frequencies and quasiperiodic subsurface water level variations dominate redox dynamics in a salt marsh system

Emilio Grande¹, Bhavna Arora², Ate Visser³, Maya Montalvo¹, Anna Braswell⁴, Erin Seybold⁵, Corianne Tatariw⁶, Kathryn Beheshti¹, and Margaret Zimmer⁷

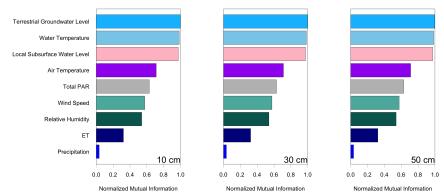
¹University of California Santa Cruz
²Lawrence Berkeley National Laboratory
³Lawrence Livermore National Laboratory
⁴University of Florida
⁵Kansas Geological Survey
⁶The University of Alabama College of Arts and Sciences
⁷University of California Santa Cruz Department of Earth and Planetary Sciences

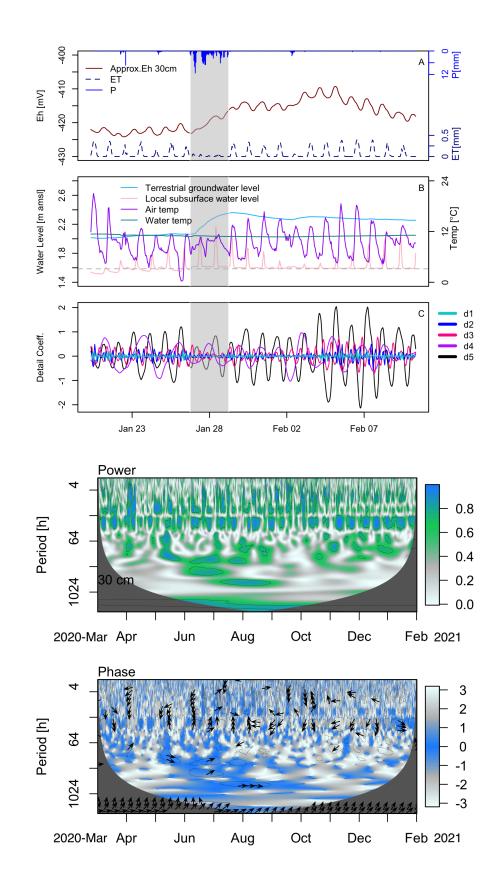

December 2, 2021

Abstract


Salt marshes are hotspots of nutrient processing en route to sensitive coastal environments. While our understanding of these systems has improved over the years, we still have limited knowledge of the spatiotemporal variability of critical biogeochemical processes within salt marshes. Sea-level rise will continue to force change on salt marsh functioning, highlighting the urgency of filling this knowledge gap. Our study was conducted in a central California estuary experiencing extensive marsh drowning and relative sea-level rise, making it a model system for such an investigation. Here we instrumented three marsh positions with different degrees of inundation (6.7%, 8.9%, and 11.2% of the time for the upper, middle, and lower marsh positions, respectively), providing locations with varied geochemical characteristics and hydrological interaction at the site. We continuously monitored redox potential (Eh) at depths of 0.1, 0.3, and 0.5 m, subsurface water levels (WL), and temperature at each marsh position to understand how drivers of subsurface biogeochemical processes fluctuate across tidal cycles, using wavelet analyses to explain the interactions between Eh and WL. We found that tidal forcing significantly affects biogeochemical processes by imparting controls on Eh variability, likely driving subsurface hydro-biogeochemistry of the salt marsh. Wavelet coherence showed that the Eh-WL relationship is non-linear, and their lead-lag relationship is variable. We found that precipitation events perturb Eh at depth over timescales of hours, even though WL show relatively minimal change during events. This work highlights the importance of high-frequency measurements, such as Eh, to help explain factors that govern subsurface geochemistry and hydrological processes in salt marshes.

Hosted file


Document.docx available at https://authorea.com/users/449013/articles/547683-tidalfrequencies-and-quasiperiodic-subsurface-water-level-variations-dominate-redox-dynamicsin-a-salt-marsh-system



-500 -250 0 250

