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Multi-omics reveal differentiation and maintenance of dimorphic
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Liu2

1Lanzhou University
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December 1, 2021

Abstract

? Dimorphic flowers growing on a single individual plant play a critical role in extreme adaption and reproductive assurance in
plants and have high ecological and evolutionary significance. However, the omics bases underlying such a differentiation and
maintenance remain largely unknown. We aimed to investigate this through genomic, transcriptome and metabolomic analyses
of dimorphic flowers in an alpine biennial, Sinoswertia tetraptera (Gentianaceae). ? A high-quality chromosome-level genome
sequence (903 Mb) was first assembled for S. tetraptera with 31,359 protein-coding genes annotated. Two rounds of recent
independent whole-genome duplication (WGD) were revealed. More than 10% of the novel genes from the recent species-specific
WGD were found to be differentially expressed in the two types of flowers, and this may have helped contribute to the origin of
this innovative trait. ? Other contrasting gene expression between flowers included that related to flower development and color,
hormones, and iridoid biosynthesis. Metabolomic analyses similarly suggested differential concentrations of both hormones and
iridoids in the two types of flowers. The interactions between multiple genes may together lead to contrasting morphology and
open versus closed pollination of the dimorphic flowers in this species. ? A total of 56 candidate genes were identified from the
known iridoid biosynthesis-related pathways. Two hub genes were found to play an essential role in transferring intermediate
products between leaves and flowers during iridoid biosynthesis.

Introduction

Polyphenism is a unique type of phenotypic plasticity, in which the outputs are not continuous but relatively
discrete, arising from the same genotype (Mayr, 1963; Moran, 1992; C.-H. Yang & Andrew Pospisilik,
2019). Its diverse traits and importance in conferring ecological fitness have been widely acknowledged
(Darwin, 1897; Simpson, Sword, & Lo, 2011) in both animals and plants (Abouheif & Wray, 2002; Fawcett
et al., 2018; Yiyang Liu et al., 2021; Zhang et al., 2021). As one of the most widespread polyphenisms
(Joly & Schoen, 2021), dimorphic flowers evolved independently in roughly 700 species from 50 families of
plants (Culley & Klooster, 2007). Such flowers are usually chasmogamous (CH) and cleistogamous (CL)
growing on a single plant and having contrasting shapes, colors, and smells (Campbell, Quinn, Cheplick,
& Bell, 1983; Lord, 1981). CH flowers (hereafter CHs) have bright and colorful petals and nectaries and
remain open for cross-pollination, while CL flowers (hereafter CLs) have green petals and remain closed
for self-fertilization (Darwin, 1897; Lord, 1981). In addition, CLs are always smaller and have a simpler
structure than CHs, leading to lower costs and an automatic transmission advantage (Wang, Du, & Wang,
2017). Therefore, as a ’pessimistic strategy’, CLs can ensure reproductive success under harsh or uncertain
conditions (Schnee & Waller, 1986; Waller, 1980). However, selfing through CLs rapidly leads to inbreeding
depression and adversely affects genetic load (building up harmful mutations) (Ansaldi, Weber, & Franks,
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2018; Charlesworth & Charlesworth, 1987). Thus, outcrossing CHs can effectively increase recombination
and overcome these weakness (Culley & Klooster, 2007; Culley & Wolfe, 2001). Such a trade-off with a
mixed mating system provides high reproductive assurance, allowing plants to survive unpredictable and
extreme environments (Ansaldi et al., 2018; Koontz, Weekley, Haller Crate, & Menges, 2017).

In addition to ecological significance, it would be interesting to know what genes and their expressions have
led to the differentiation and maintenance of such dimorphic flowers with the same genotype (Ansaldi et
al., 2018; Morinaga et al., 2008). Two recent studies have investigated this genetic differentiation through
sequencing the genome and examining gene expression of the dimorphic flowers (Yiyang Liu et al., 2021;
Zhang et al., 2021). For Amphicarpaea edgeworthii (Fabaceae) with dimorphic flowers, the identified genes
with contrasting expressions between aerial CH and subterranean CL flowers were mainly related to MADS-
box genes (Yiyang Liu et al., 2021). Research on Cleistogenes songorica (Gramineae) with dimorphic flowers
suggests miRNA, MYBtranscription factors, and targeted genes are involved in the differential development
of the highly reduced CH and CL flowers in this grass (Zhang et al., 2021). However, the typical structures of
the dimorphic flowers of these two species differ from most species with aerial dimorphic flowers (Campbell
et al. , 1983; Culley and Klooster, 2007). In this study, we used multi-omics data to examine differentiation
and maintenance of dimorphic flowers in a more typical species, Sinoswertia tetraptera (Gentianaceae), an
endangered, alpine biennial restricted to the Qinghai–Tibet Plateau (L. Yang, Zhou, & Chen, 2011). In
the entire family Gentianaceae only this monotypic genus has a mixed mating system with both CH and
CL flowers on the top or basal stem of a single plant (Figure 1a) and CH flowers may disappear in some
plants in the high-altitude extremes (T. He, Liu, & Liu, 2013). The open CH flowers are pale-blue and
large with distinct nectaries, while the closed CLs are green without nectaries. Such contrasting shapes and
colors are similar to most dimorphic flowers of other species (Culley & Klooster, 2007). In addition, this
species has been used as a traditional Tibetan medicine since the 6th century BCE (Rao et al. , 2010) and
is rich in iridoid compounds (Brahmachari et al., 2004; Yue Liu et al., 2017). It remains unknown whether
the two types of flowers contain the same or different concentrations of iridoid compounds and related gene
expressions.

We assembled a chromosome-level de novo genome of S. tetraptera using long Nanopore reads, Illumina
short reads, and Hi-C data. By comparative genomic analyses, we first explored the genome evolution
of S. tetraptera , the first representative of the family Gentianaceae. Then, based on transcriptome and
metabolome analyses, we further examined the omics differentiation and maintenance of dimorphic flowers
in S. tetraptera . Finally, we identified candidate genes involved in iridoid biosynthesis according to the
weighted gene co-expression network analysis (WGCNA) and gene expressions. Our data provide essential
insights into how CH and CL flowers are differentially maintained and iridoids are synthesized in this alpine
plant.

2. Materials and methods

2.1 Plant materials and sequencing

For genome sequencing, one adult plant ofS. tetraptera was collected from Xining, Qinghai Province, China
(N37°15’8, E101deg22’18). Fresh leaves were collected and snap-frozen in liquid nitrogen for DNA isolation.
The modified CTAB method (Doyle & Doyle, 1987) was used to extract the genomic DNA. A Nanopore
library was constructed following the Nanopore library construction protocol. A total of 152.6 Gb long reads
were generated using the PromethION sequence platform (Oxford Nanopore Technologies, [ONT]) (Table
S1). A paired-end library with 350 bp insert fragments was constructed and then 51.8 Gb of raw data were
produced using the Illumina HiSeq 2000 platform (Table S1). We also built a Hi-C library from young leaves
as described previously (Y. Yang et al., 2020) and obtained 121.31 Gb Hi-C reads using the Illumina HiSeq
2000 platform (Table S1).

In addition, seven tissues (roots, stems, cCH [closed chasmogamous] flowers, bCH [blooming chasmogamous]
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flowers, CL [cleistogamous] flowers, and leaves from the branch of CH [termed ’CH leaf’] and CL [CL leaf]
flowers, respectively) from the same plant were collected and immediately frozen in liquid nitrogen. For each
tissue, three samples were collected as biological replicates for RNA-sequencing (RNA-seq) and metabolome
analysis. The total RNA was extracted using a QIAGEN RNeasy plant mini kit for each sample. The
RNA-seq libraries were then constructed with a TruSeq RNA library preparation kit (Illumina). A total of
96.24Gb RNA-seq reads for all 21 libraries were obtained from the HiSeq 2000 platform (Table S1).

2.2 Genome size assessment

The clean reads (152 Gb) from the 350 bp insert-size Illumina library were used to estimate the genome
size based on the 17-mer method. Jellyfish (Marcais & Kingsford, 2011) was used to generate the k -mer
frequency distribution. Genomescope (Ranallo-Benavidez, Jaron, & Schatz, 2020) was employed to estimate
the genome size. The k -mer number was 33,414,462,943, with a peak depth of 34. The estimated genome
size of S. tetraptera was ~ 982.78 Mb (Figure S1, Table S1).

2.3 Genome assembly and quality control

We used NextDenovo v2.4.0 (https://github.com/Nextomics/NextDenovo) tode novo assemble the genome
with ONT long reads (100x). First, the NextCorrect module was applied to correct the raw reads, then the
preliminary genome assembly was generated by the NextGraph module. Purge Haplotigs (Roach et al., 2018)
were used to identify and remove the candidate duplicate haplotypes to manually curate the heterozygous
assemblies. Racon (Vaser, Sović, Nagarajan, & Šikić, 2017) v1.4.20 was then employed to polish the assembly
for two rounds with the corrected ONT long reads (Figure S2 and S3). Finally, we used Nextpolish (J. Hu,
Fan, Sun, & Liu, 2020) v1.3.1 for two rounds of assembly polishing based on Illumina short reads (100×)
and then we generated the final genome assembly.

We anchored the genome assembly to the chromosome level using the Hi-C data. HiC-Pro (Servant et al.,
2015) was employed to control the raw data with default parameters. Bowtie2 (Langmead & Salzberg, 2012)
was used to map the Hi-C reads to the assembled genome. The unique mapped reads were extracted, with
duplicates excluded, by HiC-Pro. Finally, we used LACHESIS (Burton et al., 2013) to cluster, reorder, and
orientate the corrected contigs onto pseudo-chromosomes based on the interaction level.

To assess the quality of our assembly, whole-genome sequencing (NGS) reads and assembled transcripts
were mapped to the genome by BWA (H. Li, 2013) v0.7.17 and HISAT2 (D. Kim, Langmead, & Salzberg,
2015) v2.1.0, respectively. Benchmarking Universal Single-Copy Orthologs (BUSCO) (Simão, Waterhouse,
Ioannidis, Kriventseva, & Zdobnov, 2015) was also employed to assess the completeness of the assembly
based on the dataset of embryophyta_odb10.

2.4 Genome annotation

Repetitive elements were predicted in the genome ofS. tetraptera . We used TRF (Benson, 1999) and MISA
(Thiel, Michalek, Varshney, & Graner, 2003) to identify the tandem repeats and simple sequence repeats
(SSRs), respectively. Transposable elements (TEs) were then identified based onde novo and homology-
based strategies. RepeatMasker (Tarailo-Graovac & Chen, 2009) v4.0.7 was used to run a homology search
for known repeat sequences against the Repbase database v22.11 (Jurka et al., 2005). RepeatModeler (Jurka
et al., 2005) v2.0.10 was employed to predict the TEs based on the de novo method. Finally, all identified
repetitive elements were merged for subsequent analyses.

Protein-coding genes were then predicted in the repeat-masked S. tetraptera genome based on integrated
strategies. The RNA-seq reads derived from the seven tissues (TableS2) were assembled using Trinity v2.6.6
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(Grabherr et al., 2011) in the de novo -based and genome-guided modes, respectively. For transcriptome-
based prediction, the assembled transcripts produced in the two different ways were combined and further
aligned to the genome by PASA v2.1.0 to obtain the gene structures. For homology-based prediction, pro-
tein sequences of seven species (Arabidopsis thaliana (Kaul et al., 2000),Vitis vinifera (Jaillon et al., 2007),
Solanum melongen(Barchi et al., 2021), Calotropis gigantea (Hoopes et al., 2018), Coffea canephora (De-
noeud et al., 2014), Catharanthus roseus (Kellner, Kim, Clavijo, Hamilton, Childs, Vaillancourt, Cepela,
Habermann, Steuernagel, Clissold, McLay, et al., 2015) and Oryza sativa (J. Yu et al., 2002)) were selected
and aligned against the genome of S. tetraptera using GeMoMa (Keilwagen, Hartung, & Grau, 2019) v1.6.1.
Augustus (Stanke, Steinkamp, Waack, & Morgenstern, 2004) v3.3.3, GlilmmerHMM (Majoros, Pertea, &
Salzberg, 2004), and GeneScan (Burge & Karlin, 1997) were then employed for theab initio gene prediction.
The assembled transcripts of S. tetraptera were used as the training set for Augustus. Finally, all forecasts
produced by different strategies were integrated into a final gene set using EVidenceModeler v1.1.1(EVM)
(Haas et al., 2008). BUSCO was used to assess the completeness of gene prediction.

For function annotation of the predicted protein-coding genes, three public databases – Swiss-Port, TrEMBL
(Boeckmann et al., 2003), and NR (Coordinators, 2016) – were used to search against BLAST (Rédei, 2008).
Then we used InterProScan (Quevillon et al., 2005) to predict information relating to protein domains. The
Gene Ontology (GO) terms were retrieved by the pipeline of Blast2GO v2.5 (Conesa et al., 2005). The
pathway information for each gene was assigned by the KEGG database (Conesa et al., 2005).

2.5 Phylogenetic analysis and divergence time estimation

We used OrthoMCL (L. Li, Stoeckert, & Roos, 2003) to identify the gene families (orthologous and paralogous
groups) in S. tetraptera and the other eleven species: O. sativa , C. gigantea, V. vinifera, C. canephora, C.
roseus, Gelsemium sempervirens (Franke et al., 2019), Gardenia jasminoides (Xu et al., 2020), Eucommia
ulmoides (Wuyun et al., 2018), Capsicum annuum ,Aquilegia coerulea (Filiault et al., 2018), andCamellia
sinensis (Xia et al., 2020). A total of 485 single-copy gene groups were identified and extracted. For each
gene, the protein sequences were aligned by MAFFT v7.467 (Katoh & Standley, 2013), and then the coding
sequences (CDS sequences) were aligned by PAL2NAL v.14 (Suyama, Torrents, & Bork, 2006) under the
guidance of corresponding protein alignments. For all CDS alignments, the conserved sites were extracted
to generate the concatenated sequences for each species. Finally, the phylogenetic tree was constructed
by IQ-TREE (Nguyen, Schmidt, Von Haeseler, & Minh, 2015) v1.6.9, with the best-fitted substitution
model produced by ModelFinder (Kalyaanamoorthy, Minh, Wong, Von Haeseler, & Jermiin, 2017) and
1,000 replicates (-bb 1000 -m MFP).

MCMCTREE in the PAML v4.9 package (Z. Yang, 2007) was employed to date the divergence times. Two
fossil constraints and a soft-bound maximum were used at the split node of (1) monocots-eudicots (130-190
million years ago [Ma]) (H. T. Li et al., 2019); (2) asterids-rosids (116–126 Ma) (H. T. Li et al., 2019); and (3)
C. annuum - C. canephora (85-91 Ma) (Hedges, Marin, Suleski, Paymer, & Kumar, 2015). Finally, we used
CAFÉ (De Bie, Cristianini, Demuth, & Hahn, 2006) to explore the expanded and contracted gene families.

2.6 Whole-genome duplication (WGD) analysis

WGD analysis was performed using four genomes: V. vinifera(eudicots; Vvi), C. canephora (asterids; Cca),
G. jasminoides (asterids; Gja), and S. tetraptera (asterids; Ste). Synteny analyses between and within species
were surveyed using wgdi (Sun et al., 2021). Rectangles with different colors highlighted the collinear blocks
containing at least 10 gene pairs. For each colinear gene pair, synonymous substitutions per synonymous site
(Ksvalue) were calculated using the Nei-Gojobori (NG) approach implemented in PAML (Z. Yang, 2007)
v4.9. The median Ks values for each collinear block were extracted to estimate the Ks distributions further
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using wgdi. The collinear blocks were classified into different groups according to their Ks values, then the
genes produced were identified by the two most recent WGDs using wgdi (with ”-a” parameter).

2.7 Gene family analyses

We identified the homologous gene families involved in flowering time, flower development, and flavonoid and
carotenoid biosynthesis inS. tetraptera . The known genes from each family were downloaded as the query
to search against the S. tetraptera genome using BLASTP (Rédei, 2008). HMMER (Eddy, 2011) was then
used to search for previously known domains from corresponding gene families for the candidate sequences.
The candidate genes not harboring the domains searched for were removed. All the query sequences and
the previously known domains are summarized in Table S23-24 and Table S27-28. For each gene family,
MAFFT was used to align the protein sequences. IQ-TREE was used to construct the phylogenetic trees
with default parameters (Nguyen et al., 2015), and further illustrated by EVOLVIEW (Z. He et al., 2016).
We also predicted the transcription factors in the S. tetrapteragenome using PlantRegMap (Tian, Yang,
Meng, Jin, & Gao, 2020) and the PlantTFDB database (Jin et al., 2017). In addition, clusterProfiler v3.6.0
(R package) (G. Yu, Wang, Han, & He, 2012) was used to analyze the enrichment of gene families in this
study.

2.9 Gene expression and weighted gene co-expression network ana-
lysis

A total of 21 transcriptomes from seven tissues (three biological replicates for each tissue) were used to
obtain the gene expression and to perform the weighted gene co-expression network analysis (WGCNA). For
each sample, RNA-seq short reads were filtered using fastp (Chen, Zhou, Chen, & Gu, 2018) with default
parameters, and mapped to the S. tetraptera genome by HISAT2 (D. Kim et al., 2015). The transcripts per
million (TPM) values for each gene were then extracted to measure their expression level by StringTie (Pertea
et al., 2015). Differentially expressed genes (DEGs) between different tissues were identified by DESeq2 (R
package) (Love, Huber, & Anders, 2014). The candidate genes with at least two-fold differential expression
levels in various tissues and an FDR cut-off value of 0.05 were identified as DEGs. The weighted gene co-
expression network analysis was then performed by WCGNA (R package) (Langfelder & Horvath, 2008).
The generated network was visualized using Cytoscape (Smoot, Ono, Ruscheinski, Wang, & Ideker, 2011)
v3.7.2.

2.10 Metabolomics analysis

The samples from the seven tissues were harvested as previously described. For each sample, 20 mg of powder
was prepared and further extracted with 400 μL of 80% aqueous methanol at 4 , followed by centrifugation
for 10 min at 12,000 rpm. LC-MS analysis was performed using the Waters Acquity UPLC System connected
to an AB SCIEX 5500 QQQ-MS.

Gradient elution was achieved on a Waters Acquity UPLC BEH C18 column (100mm*2.1mm, 1.7μm) with
water containing 0.1% formic acid (solvent A) and acetonitrile (solvent B) at a flow rate of 0.30 mL/min
(X. Yu et al., 2020). The column temperature was maintained at 40. The gradient elution program was
as follows: 1-10%B (0-1min),11-60%B (2-5min), 60-90%B (5-7min), held at 99 %B (7-9min), and allowed
to equilibrate for a further 3min before the next injection and the last 8min of the chromatogram solutions
were discarded. The injection volume was 4μL. MS data were recorded with the following parameters: Ion
source, ESI; IonSource temperature, 450; IonSource Gas1, 55arb; IonSource Gas2, 55arb; IonSpray voltage,
4500V; Curtain Gas, 35arb; Collision GAS, 7arb.
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Components eluting from the UPLC-QQQ-MS system were processed in MultiQuant for data preprocessing
with default settings, except that each sample was normalized to the internal standard (X. Yu et al., 2020).
After filtering for outliers, the data were used for the subsequent statistical analysis.

3. Results and discussion

3.1 Genome assembly and annotation

A total of 22 Gb of Illumina short reads (100×) and 73 Gb of Oxford Nanopore Technologies (ONT) long
reads (100 ×) were generated forS. tetraptera (Table S2). The contig-level assembly ofS. tetraptera was
943 Mb in length (covering 96.03% of the estimated size), with 199 contigs and a contig N50 length of
4.9 Mb (Tables S3). Using121Gb (100×) of Hi-C data, we further anchored 95.76% of the assembly (903
Mb) onto six pseudochromosomes (Figure 1b, Table S4, Figure S4). The accuracy and completeness of the
genome assembly were assessed according to the following: (1) 98.90% of NGS reads could be mapped to
the assembly (Table S5); (2) 94%-98% of assembled transcripts could be mapped for more than 50% of the
length (Table S6); (3) 96.50% (1326 out of 1375) Benchmarking Universal Single-Copy Orthologs (BUSCO)
were fully present in the assembly (Table S7). These results indicated that the assembly ofS. tetraptera was
reliable with high completeness, continuity, and accuracy.

Around 70.88% of the S. tetraptera genome was identified as repetitive sequences, consisting of 69.55%
interspersed repeats and 1.33% tandem repeats (Table S8). Long terminal repeats (LTRs) occupied the
greatest proportion (47.51%), including 35.33% that were Gypsy elements and 11.70%Copia elements (Table
S8). In addition, a total of 31,359 protein-coding genes were predicted in the genome, with an average gene
length of 3,297 bp, an average exon sequence length of 224 bp, average exon number of 5.5 per gene, average
intron length of 458 bp, and a GC content similar to the other previously reported Gentianales genomes
(Figure S5-6, Table S9). Among all predicted protein-coding genes, 96.29% were functionally annotated by
at least one database – SwissPort, TrEMBL, InterPro, GO, KEGG, Enogg-Mapper or NR (Table S10).

3.2 Phylogenetic analyses and evolution of gene families

To explore the phylogenetic relationship of S. tetraptera , we first performed the phylogenetic analyses with
the other 11 species (Table S11). A total of 345,243 genes from the 12 species were assigned into 28,703 gene
families (Figure S7,Table S12). For S. tetraptera , 25,573 genes could be clustered into 12,826 identified gene
families (Table S14). A total of 485 groups of single-copy gene families were identified and used to construct
the phylogenetic topology for all species. The phylogenetic positions of all species agreed well with previous
studies (Figure 2a) (Chase et al., 2016; Y. Yang et al., 2020). A sister relationship betweenS. tetraptera and
G. sempervirens was indicated by our results (Figure 2a). Their divergence time was dated to around 61.50
Ma (Figure 2a).

In addition, 3,555 gene families were found to expand in S. tetraptera . GO enrichment analysis revealed that
these expanded gene families were significantly enriched (P<0.01, Q<0.05) in secondary metabolic processes,
mainly involved in terpenoid and flavonoid biosynthesis (Figure 2b, Figure S8-9, Table S13-S16). This may
contribute to the high content of Sinoswertiamatin, sweroside, gentiopicroside, and loganin in S. tetraptera
, which may be relevant to the species’ use in traditional Chinese medicine (Organization, 2002; Rao et al.,
2010).
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. 3.3 Whole-genome duplication (WGD)

We obtained synonymous substitution per site (Ks ) distributions for each species based on the identified
syntenic paralogues. Three rounds of WGD events were detected in S. tetraptera, different from the other
previously reported Gentianales species (C. canephora, G. sempervirens , and C. gigantea ), which all had
only one WGD event (Figure 2c, Figure S10, Table S17-18). For all WGD events in S. tetraptera , the most
ancient one (around 121-136 Ma) was shared by all species used in our study (three Gentianales species
and V. vinifera ), indicating the joint γ event shared by all core eudicots, as inferred in previous reports.
The other two recent WGD events were species-specific in S. tetraptera and dated to 41-46 Ma and 67-75
Ma, respectively, the latter of which occurred shortly after the divergence between S. tetraptera and G.
sempervirens (61.50Ma) (Figure 2c).

To further illustrate the WGD events in S. tetraptera , we undertook a collinearity analysis between V.
vinifera andS. tetraptera . Based on the dot plots of paralogues, the observed syntenic depth ratios of 12:3
in the S. tetraptera - V. vinifera comparison indicated the occurrence of the joint γ event and two unique
recent WGD events inS. tetraptera (Figure 2d). The same results were also revealed from the comparisons of
S. tetraptera - C. canephora ,S. tetraptera - G. jasminoides , S. tetraptera -G. sempervirens , and S. tetraptera
- C. gigantea , respectively (Figures S11-17). In addition, we identified a total of 2,269 genes that strictly
originated from the most recent WGD event. We therefore examined their differentiated expressions between
the two types of flowers, and found that more than 10% of these genes did exhibit contrasting expressions.
They were functionally enriched in heterochronic development and growth, which may contribute to the
development of the innovative dimorphic flowers in S. tetraptera(Figure 2b, Figure S18 and S19, Table
S19-22).

3.4 Transcriptomic and metabolomic differentiation between CH
and CL flowers

In addition to open and closed pollination of these two types of flowers, CH and CL flowers also have
contrasting shapes, colors, and nectaries (L. Yang et al., 2011). The MADS-box gene family plays an
essential role in floral organ development in all angiosperms (Ng & Yanofsky, 2001). We first examined their
expressions in both dimorphic flowers. A total of 59 MADS-box genes were identified in S. tetraptera . They
could further be classified into 12 clades, covering all of the identified clades inO. sativa and A. thaliana
(Figure 3a, Figure S20) (Arora et al., 2007; Parenicova et al., 2003). Compared to O. sativa and A. thaliana
, a conserved copy number of A-, B-, C- and E-class genes were detected inS. tetraptera , including six copies
of AP1 s (class A), two copies of AP3 s and one copy of PI (class B), three copies of AG s (class C), and
one copy of SEP1 and SEP3 (class E) (Figure 3a). Their conserved copy numbers indicated that they may
play a key role in floral organ development (ES & EM, 1991; van Tunen, Eikelboom, & Angenent, 1993).
However, the genes of theAGL15/18 clade were highly expanded in S. tetraptera(Figure 3a) and a total of
21 more copies were identified from the tandem duplication.

Gibberellin (GA), Jasmonate acid (JA), and auxin (IAA) have been reported to play essential roles in
regulating flower development (Ishiguro, Kawai-Oda, Ueda, Nishida, & Okada, 2001; Jibran, Tahir, Cooney,
Hunter, & Dijkwel, 2017; Nagpal et al., 2005; Teotia & Tang, 2015). Our metabolomics analysis revealed
the content of each differed significantly between CH and CL flowers (Figure 3b, Table S23). The contents
of GA and JA in CHs were both significantly higher than those in CLs. We further assessed the expression
level of genes related to GA, JA, and IAA regulated pathways, many of which belong to the MADS-box
gene family (Table S24). AGAMOUS (AG ) (E class of MADS-box gene family) can bind to the promoter
of DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1 ) and further positively regulate the content of JA
(Ito et al. , 2007; Hu et al. , 2017). Both AGand DAD1 were highly expressed in CH flowers, probably
contributing to their significantly higher JA content (Figure 3c). JA is probably involved in flowering by
regulating AGL15/18 genes (MADS-box gene family) (Ishiguro et al., 2001; Jibran et al., 2017).
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AGL15/18 genes have been reported to promote the expression of Gibberellin 2-oxidase 6 (GA2ox6 ) (Zheng,
Zheng, Ji, Burnie, & Perry, 2016) and directly reduce the level of bioactive GAs by catalyzing their immediate
precursors or inactive forms (Y.-X. Hu et al., 2017). The overexpression of AGL15 can delay blooming inA.
thaliana (Adamczyk, Lehti-Shiu, & Fernandez, 2007). We foundAGL15 and GA2ox6 had lower expressions
in CH flowers (Figure 3c), in which a substantially higher concentration of GA accumulated than in CL
flowers (Figure 3b). GA may induce flowering by up-regulating SQUAMOSA promoter binding protein-
like3 (SPL3 ), SPL4 , and SPL5 genes and further promote flowering by targeting with FRUITFUL (FUL
), LEAFY (LFY) , and APETALA1 (AP1 ). FUL (A class of MADS-box gene family) can also promote
the expression of SPL4 to control flower formation (Torti et al., 2012). These genes (SPL3 ,SPL4 , SPL5 ,
AP1 , LFY , and FUL ) were highly expressed in CH flowers (Figure 3c). In addition, the dosage ofAUXIN
RESPONSE FACTOR6 (ARF6 ) and ARF8 could quantitatively affect the timing of flower maturation by
regulating JA accounts (Nagpal et al., 2005). They are inhibited by AGL15/18 and increased IAA (Yang
et al., 2006; Zheng et al., 2016), while IAA could also delay flowering (Ke et al., 2018; Lu et al., 2018).
The expression of ARF6/8 is also consistent with the IAA content in CL flowers (Figure 3b and 3c), which
suggests that IAA may play a role in flower blooming through ARF6/8 .

Moreover, CH flowers are significantly larger than CLs (P <0.01) (Figure 4a, Table S25). Cytokinin (CTK)
may regulate floral organ size by catalyzing itself with cytokinin oxidase/dehydrogenase 3 (CKX3 ) and CKX5
(Bartrina, Otto, Strnad, Werner, & Schmülling, 2011). We found both CTK content and the expression level
of CKX3 and CKX5 were distinctly different between CH and CL flowers. A significantly higher CTK
content was detected in CH flowers than in CLs (Figure 4a). The expression levels of CKX3 and CKX5 in
CH flowers were lower than those in CLs (Figure 4b). These differences may contribute to the contrasting
sizes of CH and CL flowers.

In addition, the petals of CH flowers are more colorful and brighter than CLs to attract pollinators to S.
tetraptera (He et al., 2013). The gene expression levels involved in biosynthesized carotenoids, anthocyanin,
and flavonoids generally engaged in petal coloring were obviously different between the two dimorphic flowers,
with high expression in CHs (Figure 4c and Table S26). Furthermore, petals of CH flowers have nectaries
(Figure 4d), which secrete nectar to attract insects for pollination (He et al., 2013). We identified thesugars-
will-eventually-be-exported-transporters (SWEET ) gene family in the S. tetrapteragenome (Figure S21), and
it has been suggested that the SWEET9 homolog is a significant sugar efflux transporter in plants (Lin et
al., 2014). Most SWEET genes (including SWEET9 ) in S. tetraptera showed a higher expression level in
CH than CL flowers (Figure 4d). However, threeSWEET genes were highly expressed in CLs (Figure 4d). In
fact, two of them, SWEET17 and SWEET2, exhibited high expression levels in all tissues (Figure 4d; Figure
S22), indicating that these two genes may be involved in the sugar efflux transporters in the whole plant
(Guo et al., 2014; Klemens et al., 2013). The third gene, researched on SWEET8 , was highly expressed
in pistil donor ligand (S.-Y. Kim, Yu, Hong, Woo, & Ahn, 2013), which may contribute to the potential
pistil differences between CH and CL flowers in S. tetraptera (Figure 4b; Figure S22). Previous studies
have reported thatblock of cell proliferation 1 (BOP1 ), BOP2, andCRABS CLAW (CRC ) are involved in
nectary development (Kram & Carter, 2009). All of these genes were highly expressed in CHs, suggesting
their essential roles in the nectary development of these flowers (Figure 4d, Table S24).

3.5 Iridoids biosynthesis

Iridoids of S. tetraptera comprise loganin, Sinoswertiamatin, sweroside, and gentiopicroside. We measured
their concentrations in seven tissues. The content of each iridoid in the seven tissues showed similar variation
trends to those reported previously (Yue Liu et al., 2017). Four iridoids had the highest content in CL flowers
out of the seven tissues examined, and their contents in these flowers were all obviously higher than those in
leaves from the branch on which the CL flowers were growing (termed the ”CL leaf”) (Figure 5a, Table S27).
The regulatory pathway of the biosynthesis of iridoids has been reported to consist of the downstream seco-
iridoids pathway and the upstream 2-C-methyl-D-erythritol 4- phosphate (MEP) and mevalonate (MVA)
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pathways (Kellner, Kim, Clavijo, Hamilton, Childs, Vaillancourt, Cepela, Habermann, Steuernagel, Clissold,
Mclay, et al., 2015; Yue Liu et al., 2017; Vranová, Coman, & Gruissem, 2013). We identified a total of 56
candidate genes for these two biosynthesis pathways and assessed their expression levels in different tissues
for subsequent analyses (Table S28-29). As the primary supplier of intermediate products in the biosynthesis
of iridoids, the MEP pathway acts mainly in leaves (Oudin, Courtois, Rideau, & Clastre, 2007; Vranová et
al., 2013). However, these iridoid products are always concentrated in the flowers ofSwertia mussotti (Yue
Liu et al., 2017) and S. tetraptera . Therefore, the intermediate products of these iridoids may be transported
from leaves to flowers in S. tetraptera .

We reconstructed a weighted gene co-expression network for iridoid biosynthesis pathways based on inter-
sections of DEGs containing 8067 genes (618 TFs and 7449 structural genes) for the seven tissues. A total
of 12 modules were clustered, and module 8 (blue) was indeed related to leaves, while module 9 (turquoise)
was linked to flowers (Figure 5b, Figure S23-24). Many of the previously identified 56 candidate genes for
biosynthesis of iridoids were clustered into these two modules. The leaf-related module contained most genes
belonging to the MEP pathway (Figure 5b). Most of them showed higher expression levels in leaves than in
flowers (Figure 5c, Figure S25-26). However, the candidate genes in the MVA pathway were mainly clustered
in the flower-related module and highly expressed in flowers (Figure 5b,5c, Figure S25-26). Similar patterns
were also revealed from the correlation analysis between co-expression network modules and the measured
iridoid contents (Figure S27). These different clustered networks and differentially expressed genes in the
two tissues may suggest the potential genetic basis for the distinct function between leaves and flowers for
iridoid production and transport. Furthermore, we found that the genes from the seco-iridoids pathway were
distributed in both modules. Of these, two SLS genes were clustered as the hub genes (Figure 5b). They
may play an essential role in transporting intermediate products during iridoid biosynthesis between different
tissues in S. tetraptera .

4. Conclusion

In this study, we have reported the genome sequence for S. tetraptera . Based on this reference genome, we
examined transcriptome differentiation of dimorphic flowers. In addition to MADS-box genes (Yiyang Liu
et al., 2021), we revealed more distinctly expressed genes related to open versus closed pollination, nectary
development, petal color, and bioactive compounds when comparing CH and CL flowers inS. tetraptera . It
should be noted that we first found that the new genes derived from the species-specific WGD may have
been involved in the evolution of such an innovative trait. In addition, we found contrasting concentrations
of hormones and iridoids and the differential expression of related genes when comparing the two flower
types. Therefore, the evolution and development of the aerial dimorphic flowers from numerous unrelated
families (Campbell et al. , 1983; Culley and Klooster, 2007) may involve multiple but different genes despite
the common ecological role of reproductive assurance in extreme habitats (Koontz et al. , 2017; Ansaldi et
al. , 2018). Further genomic studies and comparisons of more species with dimorphic flowers are needed to
examine how this innovative trait originated repeatedly in unrelated angiosperms. In addition, we identified
candidate genes for iridoid biosynthesis in S. tetrapterae . Our co-expression analyses revealed two hub genes,
which may be essential in transferring intermediate products during iridoid biosynthesis between leaves and
flowers. This information may be very useful for artificially creating iridoids in cultivated crops in the future.
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. Figure Legends

Figure 1. Overview of the morphology and genome assembly ofSinoswertia tetraptera. (a) Morphology of
the chasmogamous (CH) and cleistogamous (CL) flowers and petals. Scale bars, 1 cm. (b) Genome assembly
and annotations. From inside to outside: (I) gene density in 500kb sliding windows, (II) GC density in
500kb sliding windows, (III) Gypsy density in 500kb sliding windows, (IV) Copia density in 500kb sliding
windows, (V) density of long terminal repeats (LTR) in 500kb sliding windows, (VI) density of TE in 500kb
sliding windows. (VIII) the density of SNP in 50kb sliding windows.

Figure 2. Genome evolution. (a) Chronogram showing divergence times and genome duplications in
angiosperms (Gentianales, Asterids, Rosid, Eudicot, and Monocot), with node age and 95% confidence
intervals. The lengths of light blue labels represent the random values in Ma. Dots with * represent resolved
polyploidization events in previous studies; others indicate new events we identified in this study, while D
indicates duplication events and T triplication events. Pie charts show the proportions of gene families
among the 12 species that underwent expansion or contraction. (b) Functional enrichment analysis of genes
belonging to the last WGD which different expressed between dimorphic flowers (hear called most recent
WGD DEGs) and expanded in S. tetraptera . The length of bars represents the number of genes. The
enriched GO terms of biological progress with corrected P -value <0.01 are presented. Terms presented after
clusterProfiler simplify. (c) After evolutionary rate correction among the various species, the distribution of
average synonymous substitution levels (Ks ) between syntenic blocks was raised by different color lines for
each species. (I) Ks distribution showing Ks distribution from paralogs within a species. (II)Ks distribution
showing Ks from orthologs between S. tetraptera and each of four species indicated by dashed lines. (d)
Synthetic blocks (involving [?] 10 colinear genes) between genomes involving S. tetraptera and V. vinifera.
The corresponding median Ks value is shown for each block, and the various colored rectangles represent
polyploidization events. The homologous chromosomes in grape were selected and are presented in blue.

Figure 3. MADS-box genes and genetic regulation of closed and open dimorphic flowers of S.
tetraptera . (a) A phylogenetic tree of the MADS-box gene family. The numbers of the AGL15/18 sub-class
members within five species and their significance were obtained by the LSD test after Bonferroni (BH)
correction. (b) The level of plant hormones participating in bloom regulation in CH and CL flowers. **p
< 0.01, Student’s t-test. (c) A proposed pathway for the control of closed or open dimorphic flowers. Gene
expression profiles are presented in the heatmap alongside the gene names. The bar shows the expression
level of each gene. Low to high expression is indicated by light yellow to red.

Figure 4. Differentiation between CH and CL flowers. (a) The floral size and the level of cytokinin
differ between CH and CL flowers. **p < 0.01, Student’s t-test. The lower part of the figure presents a
probable cytokinin-dependent pathway controlling the contrasting sizes of dimorphic flowers. Gene expression
profiles are presented in the heatmap alongside the gene names. (b) Gene expression profiles involved in
flower pigment biosynthesis of CH and CL flowers. (c) Gene expression profiles of the SWEET gene family
members, comparing CH and CL flowers.

Figure 5. Iridoid biosynthesis in S. tetraptera. (a) Concentration of four iridoids in seven tissues.
Different letters within each part indicate significance according to the LSD test after Bonferroni (BH) cor-
rection. (b) Sub-network for the leaf and flower module of iridoid biosynthesis. (c) The probable biosynthesis
pathway of four iridoids. Gene expression profiles are presented in the heatmap alongside the gene names.
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