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Abstract

Objective: To develop a predictive model to identify women with recent gestational diabetes (GDM) most likely to progress

to impaired glucose tolerance postpartum. Design: Observational study. Setting: Academic medical center in the United

States. Population: Postpartum women with recent GDM, defined by Carpenter-Coustan criteria & 1-year postpartum HbA1c

assessment. Methods: We used lasso regression with k-fold cross validation to develop a multivariable model to predict

progression to impaired glucose tolerance, defined as HbA1c [?] 5.7%, by 1 year postpartum. Predictive ability was assessed

by the area under the curve, sensitivity, specificity, positive and negative predictive values. Main Outcome Measures: Impaired

glucose tolerance. Results: Of 203 women, 71(35%) had impaired glucose tolerance at 1 year postpartum. The final model

had an AUC of 0.81 (95% CI 0.74, 0.87) and included eight indicators of weight, body mass index, Hispanic ethnicity, GDM

in a prior pregnancy, GDM diagnosis < 24 weeks’ gestation, and fasting and 2-hour plasma glucose at 2 days postpartum. A

cut-point of [?] 0.24 predicted probability had sensitivity 80% (95% CI 69, 89), specificity 58% (95% CI 49, 66), PPV 57% (95%

CI 46, 68) and NPV 83% (95% CI 74, 89) to identify women with impaired glucose tolerance at 1 year postpartum. Conclusions:

Our predictive model had reasonable ability to predict impaired glucose tolerance around delivery for women with recent GDM.

Funding: National Institute of Mental Health and American Diabetes Association. Keywords: gestational diabetes, impaired

glucose tolerance, type 2 diabetes prevention; predictive model

Introduction

Gestational diabetes mellitus (GDM), defined as impaired glucose metabolism first identified in pregnancy,
complicates an estimated 288,000 pregnancies in the United States annually.1,2Without intervention, an es-
timated 70% of women with GDM progress to type 2 diabetes within 10 years of delivery.3 Women with
GDM are at higher risk for stroke, cardiovascular and liver disease during their lifetime.4-7 Current guide-
lines recommend that women with recent GDM receive an oral glucose tolerance test (OGTT) at 4-12 weeks
postpartum and annually thereafter.8,9However, postpartum OGTT completion is less than 50%.10-13 Re-
cently, an OGTT at 2 days postpartum, prior to women being discharged after delivery, was shown to have
comparable predictive ability as an OGTT at 4-12 weeks postpartum, with superior completion rates.14

Despite this advance, the sensitivity and positive predictive value of an OGTT at either 2 days or 4-12 weeks
postpartum to predict progression to impaired glucose tolerance post-partum remains at 50% or less. This
leads to a missed opportunity to identify individuals after delivery most likely to develop type 2 diabetes
over their life course.14

Predictive models have been used to develop clinical risk scores, such as the FINDRISC Diabetes Risk
Score, to identify non-pregnant persons at high risk for progression to types 2 diabetes for follow-up and
intervention.15-18 These risk scores do not account for glucose metabolism in pregnancy and therefore are
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. not applicable to women with recent GDM. In women with GDM, age, body mass index (BMI), race/
ethnicity, family history of type 2 diabetes, and insulin treatment in pregnancy are all correlated with the
risk of progressing to pre-diabetes and type 2 diabetes postpartum,1,19,20but have not been integrated into
a clinically useful prediction model to identify high risk women at delivery.

To fill this gap, we developed a predictive model using clinical data available around the time of delivery to
identify women with GDM in their most recent pregnancy who are at high risk for progression to impaired
glucose tolerance by 1 year postpartum.

Methods

Study Population and Design

Data for this study come from a prospective cohort study of pregnant women with GDM, diagnosed by
a 1-hour glucose challenge test value [?] 200 mg/dl or by the Carpenter-Coustan criteria for the 3-hour
100-gram OGTT, in care at a single academic medical center in the United States. Details of the study have
been published previously.14Briefly, postpartum women with recent GDM were recruited between January
2017 and July 2018 and were eligible for enrollment if they were[?] 18 years of age and fluent in English
or Spanish. Women were excluded if they intended to move outside of the state in the coming year, could
not tolerate a 75-gram glucose tolerance test (e.g., women with a history of gastric bypass), or had a known
hemoglinopathy. At 2 days postpartum, all participants underwent a 2-hour 75-gram OGTT. Participants
and their providers were blinded to the results of this OGTT. Postpartum care was otherwise not altered.
Women were contacted to receive an OGTT at 4-12 weeks postpartum, in accordance with current clinical
guidelines. Participants were followed through 1 year postpartum. In this analysis we included women that
had an HbA1C measure at 1 year postpartum (+/- 4 months) to assess glucose metabolism (n=203/300,
68%; Figure 1). All study participants provided written informed consent prior to data collection and ethical
approval was provided by the Institutional Review Board Women and Infants Hospital in Providence, Rhode
Island (IRB #836907).

Measures

The primary outcome was impaired glucose tolerance at 1 year postpartum, defined as a HbA1c [?]5.7%.
We evaluated the number of women with HbA1c [?] 6.5%, consistent with type 2 diabetes, but did not
consider type 2 diabetes as an outcome because of the small number of events. Covariate information
for potential predictors of impaired glucose tolerance at 1-year postpartum were collected using surveys
at study enrollment, in which women self-identified race-ethnicity, education history, and insurance status,
and from electronic medical records, which included information on maternal age, weight and height, pre-
pregnancy BMI, family history of type 2 diabetes, timing of GDM diagnosis and management, and delivery
and neonatal complications. Information on plasma glucose values at 2 days postpartum was available for
all study participants via study records.

We identified potential predictors known to be associated with progression from GDM to impaired glucose
tolerance or type 2 diabetes postpartum based on literature review.21 Covariates were considered for inclusion
into the predictive model if they were collected during prenatal care or within 2 days of delivery, in order
to facilitate identification of women with recent GDM who may be at high risk for progression to impaired
glucose tolerance prior to hospital discharge for delivery. Details about all candidate predictors considered
are available in Supplemental Table S1. Potentially collinear candidate predictors were considered (e.g. pre-
pregnancy BMI and obesity) to allow the model to select the covariate(s) with the best predictive value.22

Statistical Analysis

We developed a predictive model to identify women with recent GDM around the time of delivery at high
risk for developing impaired glucose tolerance by 1 year postpartum. Model development proceeded in
several steps. First, to address missing data among potential predictors, we used multiple imputation with
chained equations where continuous and count variables were imputed using predictive mean matching
(n=30 imputations).23 Second, within each multiply imputed complete dataset we used logistic regression to
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. evaluate bivariable associations between each candidate predictor and impaired glucose tolerance. Finally,
to develop a parsimonious multivariable model we used Lasso regression with k-fold cross validation (k=10
folds) for covariate selection and combined estimates across multiply imputed datasets using Rubin’s rules.23

Lasso regression is a predictive modeling approach that allows for principled covariate selection when there
is a large number of collinear covariates.22,24

A priori we specified that any covariate selected in >60% of the imputed datasets would be included in the
final multivariable model.29,30 The discriminatory ability of each model was assessed by the area under the
receiver operating curve (AUC). To evaluate the robustness of the final multivariable model, we performed
sensitivity analyses including only participants with complete case and examining how exclusion or inclusion
of predictors of type 2 diabetes which may not be available in routine care (e.g. glucose values at 2-days
postpartum) or be collinear (e.g. weight and BMI) influenced model results (Supplemental Table S2).

Finally, we evaluated the calibration and predictive ability of the final multivariable model to identify women
at high risk for impaired glucose tolerance at 1 year postpartum. To assess model calibration, model predicted
probabilities for impaired glucose tolerance were categorized into quartiles, cross-tabulated, and graphed
against true event outcomes.31 To evaluate model predictive ability, we assessed the sensitivity, specificity,
and positive and negative predictive values (PPV, NPV) across a range of predicted probability cut-points
to identify women most likely to progress to impaired glucose tolerance by 1 year postpartum. Statistical
analyses were performed using Stata 16.1 (StataCorp. 2019. Stata Statistical Software: Release 16 . College
Station, TX) and R 4.0.2 (R Core Team. 2020. R: A language and environment for statistical computing .
Vienna, Austria: R Foundation for Statistical Computing).

Funding

This work was supported by the National Institute of Mental Health (grant number R00 MH112413) and
the American Diabetes Association (grant number 1-16-ICTS-118). The funding source had no involvement
in the study design, analysis or interpretation.

Results

We included 203 women with an HbA1c measure at 1 year postpartum; of whom 71 (35%) had impaired
glucose tolerance. Nine women (4%) had HbA1c [?] 6.5%, consistent with type 2 diabetes at 1 year postpar-
tum. Overall, our cohort was diverse (31% Hispanic and 10% non-Hispanic Black), women were overweight
(median BMI 29.6; IQR 25.7, 34.9), over half required insulin or medication for GDM management during
pregnancy, and 12% were diagnosed with GDM at <24 weeks’ gestation (Table 1). Hispanic women were over
represented among those who developed impaired glucose tolerance (48% with impaired glucose tolerance
versus 21% without), while white women were under-represented (32% with impaired glucose tolerance vs
57% without). Women who developed impaired glucose tolerance were more likely to report a family history
of type 2 diabetes (64% vs 48%), be obese pre-pregnancy (70% vs 36%), be diagnosed with GDM at <24
weeks’ gestation (23% vs 6%), have experienced GDM in a previous pregnancy (34% vs 17%), and require
insulin or medication for GDM management in their most recent pregnancy (67% vs 52%).

Eight candidate predictors were selected for inclusion into the final multivariable model. They included
continuous pre-pregnancy weight, continuous pre-pregnancy BMI, pre-pregnancy obesity (BMI [?] 30 kg/m2,
versus not), GDM in a previous pregnancy (yes versus no or first pregnancy), Hispanic ethnicity (yes versus
no), GDM diagnosis before 24 weeks’ gestation (yes versus no), and continuous measures of fasting and 2-hour
plasma glucose at 2 days postpartum. Wea priori specified that candidate predicators would be included
into the final model if they were selected by a Lasso model in >60% of imputed datasets; however, all but
one of the predictors included in the final model were selected in 100% of imputed data sets (Supplemental
Figure S3). The final multivariable model had an AUC of 0.81 (95% CI 0.74, 0.87; Table 2).

In sensitivity analyses, we examined the robustness of the final multivariable model in several ways. First,
we excluded 2-day postpartum glucose data because glucose testing at this time is not standard of care.
Second, we removed each of the weight and BMI variables individually to evaluate the impact of having
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. highly correlated variables (e.g. weight and BMI) in the final model. Third, we removed the indicator for
Hispanic ethnicity since ethnicity is not a reliable indicator of genetic differences and this variable likely
captures a complex mix of ethnicity and social processes which may influence Hispanic women’s risk of
impaired glucose tolerance.25Finally, we replaced Hispanic ethnicity in the final model with family history
of type 2 diabetes to evaluate if a more direct measure of genetic risk (e.g. family history) influenced
model results. All sensitivity analyses resulted in comparable or slightly reduced AUC compared to the final
multivariable model from the primary analysis (Supplemental Table S2).

To identify women with impaired glucose metabolism at 1 year postpartum, we examined several possible
cut-points of predicted probabilities from the final multivariable model. A cut-point of 0.13 resulted in a
sensitivity of 96% and specificity of 35%, 44% PPV and 94% NPV to identify women with impaired glucose
tolerance at 1 year postpartum (Table 3; Supplemental Figure S4). This cut point would identify 76% of
the population for potential postpartum intervention, miss predicting impaired glucose tolerance in 2% of
women, and incorrectly predict impaired glucose tolerance in 42% of women. A cut-point of 0.65 resulted
in specificity of 96%, sensitivity of 39%, PPV 8% and NPV 75%. This cut-point would identify 17% of the
population for additional intervention, miss predicting impaired glucose tolerance in 21% of women, and
incorrectly predict impaired glucose tolerance in 3% of women.

To assess calibration of the final multivariable model, we compared observed and predicted probabilities of
the outcome. Observed and predicted probabilities were similar for women in the lower two quartiles of risk,
but were overestimated for women in the highest two quartile or risk, which may indicate model overfitting
because of the small number of events in this sample (Supplemental Figure S5).22

Discussion

Main Findings

Our predictive model for use around the time of delivery demonstrated good discriminatory ability (AUC
0.81; 95% CI 0.74, 0.87) and improved prediction over reported OGTT values at 4-12 weeks postpartum
(AUC 0.60; 95% CI 0.53, 0.67)14, the current standard of care, to identify women at high risk for post-
partum impaired glucose tolerance. Compared to reported values for a postpartum OGTT, our model also
demonstrated improved sensitivity, specificity, PPV and NPV at several cut-points to identify women with
impaired glucose tolerance by 1 year postpartum.14 Our results provide proof of concept that a risk score
may be able to accurately identify women with recent GDM around the time of delivery who are likely
to progress to impaired glucose tolerance postpartum. With less than 50% of women with recent GDM
receiving any postpartum glucose testing or intervention,10,13 identifying high risk women around the time
of delivery could help to target follow-up testing and intervention efforts in this high risk population.

Adults with impaired glucose metabolism are at high risk of progressing to type 2 diabetes, making them
an important population for early intervention and prevention.26 To develop a clinically useful model, we
prioritized potential predictors that can be readily collected in the prenatal and early postpartum period,
and used a Lasso regression, which is a data-driven predictive modeling algorithm, to select covariates
for inclusion in a final model. This algorithm has been used to identify clusters of clinical predictors of
progression to type 2 diabetes in non-pregnant populations,27-29 but have not been employed in populations
with recent GDM. Our final model included eight covariates that are known to correlate with the risk of
progression to impaired glucose tolerance in women with GDM including, pre-pregnancy weight and BMI,
previous GDM, early GDM diagnosis, Hispanic ethnicity, and fasting and 2-hour plasma glucose at 2 days
postpartum.19,25,30-34

The predictive ability of the final model did not change meaningfully in several sensitivity analyses, including
excluding plasma glucose values at 2 days postpartum, which is not currently standard of care. Model findings
were also robust when evaluating the exclusion of collinear weight and BMI covariates within the model,
suggesting that while these variables are closely correlated, including both in the model overall improves
prediction, rather than adversely affecting the model’s performance. Model performance did not change
meaningfully when Hispanic ethnicity was removed from the model or replaced with family history of type
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. 2 diabetes.25

Strengths and Limitations

This analysis has several strengths and limitations. Strengths include the use of a rich set of covariates
from the prenatal and early postpartum period, including glucose metabolism values at 2 days postpartum,
robust methods including the use of a predictive modelling algorithm to identify important predictors in
the presence of a small number of events and several collinear variables, internal validation with k-fold cross
validation, and calibration assessment of the final model.22 In addition, we used multiple imputation to
address missing covariate data, which is often ubiquitous in routinely collected clinical data.36 Limitations
include the fact that only 68% of women from the parent study (n=300) had glucose metabolism assessed at 1
year postpartum and were included in the present analysis, raising the possibility of selection bias. However,
a previous analysis of these data indicated that on average, women who returned at 1 year postpartum
were similar to women who did not across measured covariates, with the exception of being more likely
to be privately insured.14 Women in the study were followed for only 1 year postpartum, which is too
short to evaluate type 2 diabetes as an outcome. Our analysis also included information on race/ethnicity
as a potential predictor of impaired glucose tolerance. Type 2 diabetes is well known to have a genetic
component37,38. However, race and ethnicity are not reliable indicators of genetic differences.39 In this
context, race/ethnicity likely represent social rather than genetic differences. We note the lack of additional
covariates related to social stratification (socioeconomic status, healthcare access, etc.) as a limitation.
Finally, in our calibration analysis we observed some evidence of model overfitting in women in the highest
two quartiles of predicted risk, which may reflect the small sample size in our cohort and indicates the need
to validate these findings in larger cohorts of women with GDM.

Interpretation

We evaluated a range of potential cut-points from our predictive model that could be used to prioritize groups
of women to target for different interventions. For example, the Diabetes Prevention Program demonstrated
that lifestyle modification in women with a history of GDM reduces the risk of type 2 diabetes by 50%, but
is costly to implement at $9,000/year.35 For our model, a cut-point of 0.24 would identify 56% of women
for additional intervention and had reasonable sensitivity (80%) and low specificity (58%), suggesting it
could be a useful cut-point to identify a high risk subgroup of women for the most intensive and costly
postpartum lifestyle modification interventions. Conversely, a cut-point of 0.13 would identify 76% of the
population for further intervention, had higher sensitivity (96%) and lower specificity (35%) and may be more
appropriate for low-cost interventions, such as metformin or other pharmacological interventions. Future
cost-effectiveness analyses are required to investigate the implications of offering interventions to women
with GDM based on different cut-points from the proposed model.

Our results indicate a clinical prediction model may be useful around the time of delivery to identify women
with recent GDM at high risk for impaired glucose tolerance. However, a larger study with longer follow-up
is needed to assess the model’s ability to predict type 2 diabetes. In addition, future work should explore
whether covariates such as socioeconomic status, healthcare access, and diet help to predict type 2 diabetes
risk.

Conclusions

Women with recent GDM are at high risk for progressing to impaired glucose tolerance and eventually type 2
diabetes. Our model prioritized the use of information routinely available or easy to collect as part of routine
care and had good predictive ability to identify women at highest risk of progression. Future research should
evaluate, refine, and externally validate our model in larger cohorts of women with recent GDM followed for
longer periods of time to evaluate the ability to predict type 2 diabetes. If found to be valid and reliable, a
predictive model to identify women with recent GDM at highest risk to progress to type 2 diabetes would
have important prevention benefits for type 2 diabetes among this high risk population.

Acknowledgements: None declared.
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Tables

Table 1: Clinical characteristics from pre-pregnancy and delivery among 203 women with gestational dia-
betes mellitus (GDM) in their most recent pregnancy by impaired glucose metabolism status at 1 year
postpartum.

Characteristic Characteristic Normal HbA1c at 1 year PP (n=132) Abnormal HbA1c at 1yr PP (n=71) Total (n=203)

Median (IQR) Median (IQR) Median (IQR)
Demographic and clinical characteristics Maternal age (years) 32 (29, 36) 32 (29, 35) 32 (29, 35)

Gravidity 2 (1.5, 3) 3 (2, 4) 2 (2, 4)
Gestational age at first prenatal visit 9 (8, 11) 9 (8, 12) 9 (8, 12)
Gestational age at delivery 39 (38, 39) 38 (37, 39) 39 (38, 39)

n (%) n (%) n (%)
Education Less than secondary 11 (8.5%) 6 (8.7%) 17 (8.5%)

Secondary or higher 119 (91.5%) 63 (91.3%) 182 (91.5%)
Race White 75 (56.8%) 23 (32.4%) 98 (48.3%)

Non-Hispanic Black 14 (10.6%) 7 (9.9%) 21 (10.3%)
Hispanic 28 (21.2%) 34 (47.9%) 62 (30.5%)
Other 15 (11.4%) 7 (9.9%) 22 (10.8%)

LGA neonate No 7 (5.3%) 6 (8.5%) 13 (6.4%)
Yes 125 (94.7%) 65 (91.6%) 190 (93.6%)

Family History of DM No 58 (52.3%) 22 (36.1%) 80 (46.5%)
Yes 53 (47.8%) 39 (63.9%) 92 (53.5%)

Previous GDM Gravidity = 1 33 (25.0%) 13 (18.3%) 46 (22.7%)
Gravidity > 1, no previous GDM 76 (57.6%) 34 (47.9%) 110 (54.2%)
Gravidity > 1, previous GDM 23 (17.4%) 23 (33.8%) 47 (23.2%)

Pre-pregnancy BMI (kg/m2) Underweight 1 (0.8%) 0 (0%) 1 (0.5%)
Normal 35 (26.7%) 6 (8.5%) 41 (20.3%)
Overweight 48 (36.6%) 15 (21.1%) 63 (31.2%)
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. Characteristic Characteristic Normal HbA1c at 1 year PP (n=132) Abnormal HbA1c at 1yr PP (n=71) Total (n=203)

Obese 47 (35.9%) 50 (70.4%) 97 (48.0%)
GDM diagnosis < 24 wk gestation No 121 (93.8%) 55 (77.5%) 176 (88.0%)

Yes 8 (6.2%) 16 (22.5%) 24 (12.0%)
Gestational Weight Gain Category In Range 39 (35.5%) 18 (28.1%) 57 (32.8%)

Above Range 36 (32.7%) 28 (43.8%) 64 (36.8%)
Below Range 35 (31.8%) 18 (28.1%) 53 (30.5%)

Took Insulin or Medication for GDM Management No 64 (48.5%) 23 (32.4%) 87 (42.9%)
Yes 68 (51.5%) 48 (67.6%) 116 (57.1%)

LGA neonate No 7 (5.3%) 6 (8.5%) 13 (6.4%)
Yes 125 (94.7%) 65 (91.6%) 190 (93.6%)

Table 2: Bivariable and Multivariable Logistic Regression Results for Predicting of Impaired Glucose
Metabolism at 1 Year Postpartum.

Individual
Predictors

Individual
Predictors

Combined
Predictors

Combined
Predictors

Bivariable
Logistic
Regression
Results*

Bivariable
Logistic
Regression
Results*

Multivariate
Logistic
Regression
Results+

Multivariate
Logistic
Regression
Results+

Time Period Predictor OR (95%
CI)

AUC (95%
CI)

OR (95%
CI)

AUC (95%
CI)

Prenatal Pre-pregnancy
weight,
continuous

1.02 (1.01,
1.02)

0.71 (0.64,
0.78)

1.01 (0.99,
1.03)

0.81 (0.74,
0.87)

Prenatal BMI
pre-pregnancy,
continuous

1.11 (1.07, 1.17) 0.72 (0.65, 0.80) 1.01 (0.89, 1.14)

Prenatal Pre-pregnancy
obesity (BMI
[?] 30) vs. not

4.31 (2.31,
8.02)

0.67 (0.61,
0.74)

1.37 (0.46,
4.05)

Prenatal Previous GDM
gravidity>1 &
had GDM
previously vs.
not

2.42 (1.24,
4.71)

0.58 (0.52,
0.65)

1.53 (0.68,
3.44)

Prenatal Hispanic vs.
not

3.41 (1.83,
6.38)

0.63 (0.57,
0.70)

3.44 (1.59,
7.47)

Prenatal GDM
diagnosis <24
weeks GA vs.
not

3.98 (1.66,
9.55)

0.58 (0.53,
0.63)

2.05 (0.72,
5.83)

2 days
postpartum

Fasting
Plasma
Glucose,
continuous

1.06 (1.03,
1.09)

0.65 (0.57,
0.74)

1.04 (1.01,
1.07)

2 days
postpartum

2-hour Plasma
Glucose,
continuous

1.01 (1.01,
1.02)

0.64 (0.56,
0.72)

1.01 (1.00,
1.02)
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. Individual
Predictors

Individual
Predictors

Combined
Predictors

Combined
Predictors

* Bivariable
MI Logistic
Results =
Bivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

* Bivariable
MI Logistic
Results =
Bivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

* Bivariable
MI Logistic
Results =
Bivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

* Bivariable
MI Logistic
Results =
Bivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

* Bivariable
MI Logistic
Results =
Bivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

* Bivariable
MI Logistic
Results =
Bivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

+ Multivariate
MI Logistic
Results =
Final
multivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

+ Multivariate
MI Logistic
Results =
Final
multivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

+ Multivariate
MI Logistic
Results =
Final
multivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

+ Multivariate
MI Logistic
Results =
Final
multivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

+ Multivariate
MI Logistic
Results =
Final
multivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

+ Multivariate
MI Logistic
Results =
Final
multivariate
logistic
regression on
M=30
multiply
imputed
datasets
combined with
Rubin’s Rules

Table 3: Ability to Predict Impaired Glucose Metabolism, defined as HbA1C [?]5.7%, at 1 Year Postpartum
by Predicted Probability Cut-point

Cut-
point

Sensitivity,
% (95%
CI)*

Specificity,
% (95%
CI)

Positive
predic-
tive
value, %
(95% CI)

Negative
predic-
tive
value, %
(95% CI)

Proportion
of the
popula-
tion
identified
by the
risk
score for
interven-
tion,
%

Proportion
of the
popula-
tion the
risk
score in-
correctly
pre-
dicted
event, %

Proportion
of the
popula-
tion the
risk
score
missed
predict-
ing an
event, %

[?] 0.13 95.77 (88.14,
99.12)

34.85 (26.77,
43.63)

44.16 (36.17,
52.37)

93.88 (83.13,
98.72)

75.86 42.36 1.48

[?] 0.20 90.14 (80.74,
95.94)

51.52 (42.66,
60.30)

50.00 (41.04,
58.96)

90.67 (81.71,
96.16)

63.05 31.53 3.45

[?] 0.24 80.28 (69.14,
88.78)

57.58 (48.68,
66.13)

50.44 (40.88,
59.98)

84.44 (75.28,
91.23)

55.67 27.59 6.90

[?] 0.33 71.83 (59.90,
81.87)

71.21 (62.69
(78.76)

57.30 (46.37,
67.74)

82.46 (74.21,
88.94)

43.84 18.72 9.85
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.

Cut-
point

Sensitivity,
% (95%
CI)*

Specificity,
% (95%
CI)

Positive
predic-
tive
value, %
(95% CI)

Negative
predic-
tive
value, %
(95% CI)

Proportion
of the
popula-
tion
identified
by the
risk
score for
interven-
tion,
%

Proportion
of the
popula-
tion the
risk
score in-
correctly
pre-
dicted
event, %

Proportion
of the
popula-
tion the
risk
score
missed
predict-
ing an
event, %

[?] 0.40 67.61 (55.45,
78.24)%

80.30 (72.49,
86.71)

64.86 (52.89,
75.61)

82.17 (74.46,
88.35)

36.45 12.81 11.33

[?] 0.55 52.11 (39.92,
64.12)

90.15 (83.75,
94.65)

74.00 (59.66,
85.37)

77.78 (70.36,
84.09)

24.63 6.40 16.75

[?] 0.65 39.44 (28.03,
51.75)

95.45 (90.37,
98.31)

82.35 (65.47,
93.24)

74.56 (67.30,
80.93)

16.75 2.96 21.18

* 95% confidence intervals are calculated using the normal approximation method of the binomial CI, based
on the predicted probabilities derived using Rubin’s Rules, z1- α/2=1.96, N=203, n dependent on the estimate
of interest, and p equal to the point estimate of the proportion of interest.

Figure Legends

Figure 1 : Study Population Flow Chart
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