GPER mediated estrogenic amelioration of sodium channel dysfunction in stressed human induced pluripotent stem cell-derived cardiomyocytes

Xide Hu¹

¹Affiliation not available

November 8, 2021

Running Title

Estrogen alters cardiac sodium currents through GPER

Author names

Xide Hu¹, Lu Fu¹, Mingming Zhao¹, Hongyuan Zhang^{1,2}, Zheng Gong³, Tongtong Ma¹, Jeremiah Ong'achwa Machuki¹, Gabriel Komla Adzika¹, Xiaomei Liu⁴, Renxian Tang⁴, Hong Sun^{1*}

Affiliations

¹ Physiology Department, Xuzhou Medical University, Xuzhou, China.

² Division of Cardiovascular Science, School of medicine, The University of Manchester, Manchester, UK.

³ School of Public Affairs & Governance, Silliman University, Philippines.

⁴ Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China.

* Corresponding author

Prof. Hong Sun, MD, PhD Physiology Department, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China E-mail: sunh@xzhmu.edu.cn

Supplemental material Supplementary figures / tables

Supplemental Figure 1 Abundant expressions of cardiac troponin T and decreasing expressions of GPER gene after siRNA interference in hiPSC-CMs. (A) immunofluorescence of cTnT (green) and DAPI (blue). cTnT, cardiac troponin T; Bars=100 μ m. (B) Relative expression of GPER gene after siRNA knockdown. Unpaired t test was used. **P < 0.01. Data are shown as Mean \pm S.E.M.

Supplemental Figure 2 ISO elevates sodium currents and alteres $I_{\rm Na}$ kinetics as well as action potential parameters in hiPSC-CMs. (A) Average $I_{\rm NaL}$ density. (B) Current-voltage curve of the sodium channel. (C) Peak $I_{\rm Na}$ density. (D) Time constant of recovery from inactivation curve of the sodium channel (E) τ value of recovery from inactivation. (F) Activation and inactivation curve of the sodium channel of hiPSC-CMs. (G-J) Values for k and $V_{1/2}$ of (in) activation. n=17-37 cells, from 9-11 petri dishes. (K) Representative single AP and slope curve of hiPSC-CMs. (L-Q) Values for APA, RMP, dV /dt max, APD₁₀, APD₅₀ and APD₉₀. n=20-34 cells, from 4 petri dishes, separately. An unpaired t test was used. Welch's correction was selectively used in cases of uneven variance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ISO, isoproterenol; $I_{\rm NaL}$, late sodium current; $I_{\rm Na}$, sodium current; k of (in) activation, slope factor of (in) activation; $V_{1/2}$ of (in) activation; τ , time constant of recovery from inactivation; APA, action potential amplitude; RMP, resting membrane potential; dV /dt max, maximal action potential upstroke velocity; APD_{10, 50, 90}, action potential duration at 10%, 50% and 90% repolarization. pA, pico Ampere; pF, pico Farad. Insets: voltage clamp protocols.

Supplemental Figure 3 Effects of estrogen on the time constant of recovery from inactivation of sodium current in hiPSC-CMs. (A and B) Representative traces were showed in each group. Insets: voltage clamp protocols.

Supplemental Figure 4 E2 modifies the action potential parameters of hiPSC-CMs. (A-C) Typical APs and slope curve of hiPSC-CMs. (D-I) Values for APA, RMP, dV /dt max, APD₁₀, APD₅₀ and APD₉₀. n=19-40 cells, from 4-6 petri dishes. *p < 0.05, **p < 0.01, ****p < 0.001.

Supplemental Figure 5 E2 improves ISO induced abnormal action potential parameters of hiPSC-CMs. (A-C) Typical APs and slope curve of hiPSC-CMs. (D-I) Values for APA, RMP, dV /dt max, APD₁₀, APD₅₀ and APD₉₀. n=22-34 cells, from 4-5 petri dishes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Supplemental Figure 6 Effects of GPER on the time constant of recovery from inactivation of sodium current in hiPSC-CMs. (A and B) Representative traces were showed in each group. Insets: voltage clamp protocols.

Supplemental Figure 7 Silence of GPER cancels the effect of estrogen on regulating peak $I_{\rm Na}$ and $I_{\rm NaL}$. (A) Average $I_{\rm NaL}$ density. n=10-25 cells, from 4-9 Petri dishes. (B) Peak $I_{\rm Na}$ density. n=13-32 cells, from 4-11 Petri dishes. (C-F) Values for k and $V_{1/2}$ of (in) activation. n=9-26 cells, from 4-11 Petri dishes. (G) τ value of recovery from inactivation. n=5-17 cells, from 4-10 Petri dishes. (H) Average $I_{\rm NaL}$ density. n=9-26 cells, from 4-10 Petri dishes. (I) Peak $I_{\rm Na}$ density. n=12-37 cells, from 4-11 Petri dishes. (J-M) Values for k and $V_{1/2}$ of (in) activation. n=8-34 cells, from 4-11 Petri dishes. (N) τ value of recovery from inactivation. n=5-32 cells, from 5-11 Petri dishes. One-way ANOVA was used. Kruskal-Wallis test was used selectively in the case of uneven variance. *P < 0.05, **P < 0.01, ****P < 0.0001. GPER, G protein coupled estrogen receptor. Insets: voltage clamp protocols.

Supplemental Figure 8 Effects of silenced GPER on the time constant of recovery from inactivation of sodium current in hiPSC-CMs. (A and B) Representative traces were showed in each group. Insets: voltage clamp protocols.

Supplemental Table 1 : Details in values of statistical analysis and the number of cells for average $I_{\rm NaL}$ density.

Group	Mean \pm S.E.M	n (cells)	Petri dishes
Control	-1.409 ± 0.1558	25	9
0.01 nmol/L E2	-2.299 ± 0.4903	8	3
1 nmol/L E2	-2.386 ± 0.4755	10	4
100 nmol/L E2	-1.938 ± 0.2423	14	4
ISO	-2.600 ± 0.2790	26	10
0.01 nmol/L E2+ISO	-2.209 ± 0.4861	12	4
1 nmol/L E2+ISO	-1.108 ± 0.2739	9	6

Group	Mean \pm S.E.M	n (cells)	Petri dishes
100 nmol/L E2+ISO	-1.290 ± 0.2608	9	4
G1	-1.547 ± 0.1888	13	4
G15	-1.287 ± 0.2632	12	4
G15+E2	-2.426 ± 0.3696	20	4
G1+ISO	-1.201 ± 0.1890	16	4
G15+ISO	-2.284 ± 0.3592	10	4
G15+E2+ISO	-2.644 ± 0.3551	12	4
Negative GPER-siRNA	-1.218 ± 0.1891	19	5
GPER-siRNA	-1.600 ± 0.2371	18	4
GPER-siRNA+E2	-1.572 ± 0.2237	18	5
GPER-siRNA+ISO	-2.417 ± 0.3920	15	4
GPER-siRNA+E2+ISO	-2.559 ± 0.3509	18	4

 I_{NaL} , late sodium current; E2, β -Estradiol; ISO, isoproterenol; G1, G protein-coupled estrogen receptor agonists; G15, G protein-coupled estrogen receptor antagonists; GPER, G protein-coupled estrogen receptor.

Suppler	mental	Tabl	e 2	:	Detail	s in	val	ues	of	statistical	anal	lysis	and	$^{\mathrm{the}}$	e num	\mathbf{ber}	of	cells	s f	or	peak	ΞI	Na
---------	--------	------	-----	---	--------	------	-----	-----	----	-------------	------	-------	-----	-------------------	-------	----------------	----	-------	-----	----	------	----	----

Group	Mean \pm S.E.M	n (cells)	Petri dishes
Control	-577.7 ± 40.21	32	11
0.01 nmol/L E2	-1086 ± 119.4	10	4
1 nmol/L E2	-1191 ± 133.8	13	4
100 nmol/L E2	-865.3 ± 82.75	14	4
ISO	-811.8 ± 43.41	37	11
0.01 nmol/L E2+ISO	-793.5 ± 74.50	12	4
1 nmol/L E2+ISO	-384.2 ± 41.11	12	6
100 nmol/L E2+ISO	-588.0 ± 69.50	13	4
G1	-885.8 ± 75.24	9	4
G15	-651.3 ± 57.12	17	4
G15+E2	-676.6 ± 74.12	21	4
G1+ISO	-536.5 ± 44.83	16	4
G15+ISO	-793.8 ± 103.4	13	4
G15+E2+ISO	-812.7 ± 56.97	19	4
Negative GPER-siRNA	-466.3 ± 82.09	17	5
GPER-siRNA	-603.8 ± 54.23	15	4
GPER-siRNA+E2	-462.6 ± 53.29	17	5
GPER-siRNA+ISO	-714.5 ± 61.06	13	4
GPER-siRNA+E2+ISO	-694.2 ± 66.75	14	4

 I_{Na} , sodium current; E2, β -Estradiol; ISO, isoproterenol; G1, G protein-coupled estrogen receptor agonists; G15, G protein-coupled estrogen receptor antagonists; GPER, G protein-coupled estrogen receptor.

Supplemental Table 3: Details in values of statistical analysis and the number of cells for k of activation.

Group	Mean \pm S.E.M	n (cells)	Petri dishes
Control	0.6123 ± 0.07342	24	10
0.01 nmol/L E2	0.4784 ± 0.03594	8	4
1 nmol/L E2	0.5839 ± 0.1201	12	4
100 nmol/L E2	0.5838 ± 0.1079	12	4
ISO	0.6146 ± 0.09461	34	11
0.01 nmol/L E2+ISO	1.018 ± 0.3049	9	4
1 nmol/L E2+ISO	0.9925 ± 0.4239	8	5
100 nmol/L E2+ISO	1.217 ± 0.3018	10	4
G1	0.5483 ± 0.1588	8	4
G15	0.6775 ± 0.09204	15	4
G15+E2	0.5658 ± 0.08662	15	4
G1+ISO	0.4632 ± 0.1084	13	4
G15+ISO	0.5109 ± 0.08299	12	4
G15+E2+ISO	0.6402 ± 0.1313	18	4
Negative GPER-siRNA	0.8718 ± 0.1446	15	5
GPER-siRNA	0.7959 ± 0.09635	10	4
GPER-siRNA+E2	1.353 ± 0.3517	13	5
GPER-siRNA+ISO	0.3773 ± 0.02849	10	4
GPER-siRNA+E2+ISO	0.6217 ± 0.2054	9	4

k of activation, slope factor of activation; E2, β -Estradiol; ISO, isoproterenol; G1, G protein-coupled estrogen receptor agonists; G15, G protein-coupled estrogen receptor antagonists; GPER, G protein-coupled estrogen receptor.

Supplemental Table 4 : Details in values of statistical analysis and the number of cells for $V_{1/2}$ of activation.

Group	Mean \pm S.E.M	n (cells)	Petri dishes
Control	-51.95 ± 0.9018	24	10
0.01 nmol/L E2	-52.63 ± 2.250	8	4
1 nmol/L E2	-51.37 ± 1.660	12	4
100 nmol/L E2	-54.44 ± 1.769	12	4
ISO	-56.16 ± 1.297	34	11
0.01 nmol/L E2+ISO	-51.65 ± 1.385	9	4
1 nmol/L E2+ISO	-52.42 ± 2.842	8	5
100 nmol/L E2+ISO	-53.00 ± 2.709	10	4
G1	-54.60 ± 2.306	8	4
G15	-51.14 ± 1.310	15	4
G15+E2	-49.89 ± 1.385	15	4
G1+ISO	-56.98 ± 1.607	13	4
G15+ISO	-57.33 ± 1.956	12	4
G15+E2+ISO	-55.11 ± 1.302	18	4
Negative GPER-siRNA	-50.91 ± 0.9862	15	5
GPER-siRNA	-47.32 ± 1.015	10	4
GPER-siRNA+E2	-53.44 ± 2.278	13	5
GPER-siRNA+ISO	-56.68 ± 1.960	10	4
GPER-siRNA+E2+ISO	-55.68 ± 1.644	9	4

 $V_{1/2}$ of activation, half-voltage of activation; E2, β -Estradiol; ISO, isoproterenol; G1, G protein-coupled estrogen receptor agonists; G15, G protein-coupled estrogen receptor antagonists; GPER, G protein-coupled estrogen receptor.

Mean \pm S.E.M	n (cells)	Petri dishes
4.255 ± 0.08697	26	11
4.123 ± 0.04982	9	4
4.074 ± 0.08570	9	4
4.174 ± 0.08291	13	4
4.278 ± 0.09169	33	11
4.150 ± 0.1370	9	4
4.243 ± 0.1257	8	5
4.106 ± 0.08571	12	4
4.070 ± 0.09689	9	4
4.225 ± 0.09732	14	4
4.301 ± 0.1188	17	4
4.195 ± 0.1151	15	4
4.177 ± 0.1031	13	4
4.302 ± 0.1036	17	4
4.583 ± 0.1292	12	5
4.638 ± 0.08516	10	4
4.490 ± 0.1358	10	4
4.275 ± 0.2412	9	4
4.499 ± 0.1053	13	4
	$\begin{array}{r} \text{Mean} \pm \text{S.E.M} \\ \hline 4.255 \pm 0.08697 \\ 4.123 \pm 0.04982 \\ 4.074 \pm 0.08570 \\ 4.174 \pm 0.08291 \\ 4.278 \pm 0.09169 \\ 4.150 \pm 0.1370 \\ 4.243 \pm 0.1257 \\ 4.106 \pm 0.08571 \\ 4.070 \pm 0.09689 \\ 4.225 \pm 0.09732 \\ 4.301 \pm 0.1188 \\ 4.195 \pm 0.1151 \\ 4.177 \pm 0.1031 \\ 4.302 \pm 0.1036 \\ 4.583 \pm 0.1292 \\ 4.638 \pm 0.08516 \\ 4.490 \pm 0.1358 \\ 4.275 \pm 0.2412 \\ 4.499 \pm 0.1053 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Supplemental Table 5: Details in values of statistical analysis and the number of cells for k of inactivation.

k of inactivation, slope factor of inactivation; E2, β -Estradiol; ISO, isoproterenol; G1, G protein-coupled estrogen receptor agonists; G15, G protein-coupled estrogen receptor antagonists; GPER, G protein-coupled estrogen receptor.

Supplemental Table 6 : Details in values of statistical analysis and the number of cells for $V_{1/2}$ of inactivation.

Group	Mean \pm S.E.M	n (cells)	Petri dishes		
Control	-68.06 ± 0.6328	26	11		
0.01 nmol/L E2	-69.75 ± 0.9422	9	4		
1 nmol/L E2	-69.36 ± 0.6028	9	4		
100 nmol/L E2	-66.86 ± 0.9896	13	4		
ISO	-70.54 ± 0.8001	33	11		
0.01 nmol/L E2+ISO	-67.75 ± 1.809	9	4		
1 nmol/L E2+ISO	-69.77 ± 1.604	8	5		
100 nmol/L E2+ISO	-69.41 ± 1.444	12	4		
G1	-70.03 ± 0.9939	9	4		
G15	-69.32 ± 0.7582	14	4		
G15+E2	-70.11 ± 0.9584	17	4		

Group	Mean \pm S.E.M	n (cells)	Petri dishes
G1+ISO	-68.95 ± 0.7643	15	4
G15+ISO	-69.87 ± 0.7944	13	4
G15+E2+ISO	-71.15 ± 0.7586	17	4
Negative GPER-siRNA	-71.58 ± 1.278	12	5
GPER-siRNA	-69.61 ± 0.8926	10	4
GPER-siRNA+E2	-68.98 ± 1.557	10	4
GPER-siRNA+ISO	-66.90 ± 1.183	9	4
GPER-siRNA+E2+ISO	-69.36 ± 1.231	13	4

 $V_{1/2}$ of inactivation, half-voltage of inactivation; E2, β -Estradiol; ISO, isoproterenol; G1, G protein-coupled estrogen receptor agonists; G15, G protein-coupled estrogen receptor antagonists; GPER, G protein-coupled estrogen receptor.

Supplemental Table 7 : Details in values of statistical analysis and the number of cells for τ of recovery from inactivation.

Group	Mean \pm S.E.M	n (cells)	Petri dishes
Control	3.544 ± 0.2019	17	10
0.01 nmol/L E2	3.594 ± 0.1980	8	4
1 nmol/L E2	3.641 ± 0.2212	10	4
100 nmol/L E2	3.350 ± 0.4407	11	4
ISO	4.522 ± 0.2312	32	11
0.01 nmol/L E2+ISO	4.518 ± 0.6411	8	3
1 nmol/L E2+ISO	3.291 ± 0.3461	5	4
100 nmol/L E2+ISO	4.553 ± 0.6519	8	4
G1	5.207 ± 0.7400	7	3
G15	4.973 ± 0.2979	16	4
G15+E2	4.717 ± 0.4154	15	4
G1+ISO	4.147 ± 0.2508	12	4
G15+ISO	4.116 ± 0.3768	11	4
G15+E2+ISO	4.991 ± 0.2917	14	4
Negative GPER-siRNA	4.676 ± 0.2341	5	4
GPER-siRNA	4.633 ± 0.4730	8	4
GPER-siRNA+E2	4.779 ± 0.5478	8	4
GPER-siRNA+ISO	3.386 ± 0.1518	8	4
GPER-siRNA+E2+ISO	3.924 ± 0.2886	8	4

 τ , time constant of recovery from inactivation; E2, β -Estradiol; ISO, isoproterenol; G1, G protein-coupled estrogen receptor agonists; G15, G protein-coupled estrogen receptor antagonists; GPER, G protein-coupled estrogen receptor.

Supplemental Table 8: Details in values of statistical analysis and the number of cells for parameters of action potential.

Group	APA (mV)	RMP (mV)	$\mathrm{d}V/\mathrm{d}t_{\mathrm{max}} \; (\mathrm{mV/ms})$	$APD_{10} (ms)$	APD_{50} (
Control (n=20-25 cells)	113.8 ± 0.9386	-69.83 ± 0.4187	27.70 ± 0.6309	117.3 ± 4.879	302.6 \pm
0.01 nmol/L E2 (n=31-34 cells)	110.1 ± 1.133	-68.17 ± 0.7299	24.02 ± 0.8293	127.2 ± 8.815	326.6 \pm
1 nmol/L E2 (n=19-21 cells)	107.9 ± 1.021	-67.57 ± 1.012	20.35 ± 0.9915	143.2 ± 9.363	376.6 \pm
100 nmol/L E2 (n=35-40 cells)	108.4 ± 0.9901	-66.57 ± 0.7071	23.41 ± 0.7410	130.8 ± 5.379	341.6 \pm
ISO $(n=29-34 \text{ cells})$	109.4 ± 1.482	-69.64 ± 0.6279	21.74 ± 0.7582	97.59 ± 5.575	264.5 \pm
0.01 nmol/L E2+ISO (n=22-28 cells)	106.9 ± 1.189	-64.09 ± 0.7868	19.00 ± 1.284	115.1 ± 6.775	326.4 \pm
1 nmol/L E2+ISO (n=24-27 cells)	109.7 ± 1.230	-66.91 ± 0.5038	23.50 ± 0.9637	109.8 ± 5.416	325.6 \pm
$100 \text{ nmol/L E2+ISO} (n{=}24{\text{-}}26 \text{ cells})$	113.8 ± 1.434	-69.04 ± 0.7847	21.82 ± 0.9924	118.5 ± 5.812	363.7 \pm

APA, action potential amplitude; RMP, resting membrane potential; dV/dt_{max} , maximal action potential upstroke velocity; APD₁₀, action potential duration at 10% repolarization; APD₅₀, action potential duration at 50% repolarization; APD₉₀, action potential duration at 90% repolarization. E2, β -Estradiol; ISO, isoproterenol. Control, 0.01 nmol/L E2, 1 nmol/L E2, 100 nmol/L E2, ISO, 0.01 nmol/L E2+ISO, 1 nmol/L E2+ISO and 100 nmol/L E2+ISO group originated in 4, 5, 4, 6, 4, 5, 4, 4 Petri dishes respectively.