Chromosome-level genome assembly reveals female-biased genes for sex determination and differentiation in the human blood fluke Schistosoma japonicum

Xindong Xu¹, Yifeng Wang², Qingtian Guan³, Gangqiang Guo¹, Xinyu Yu⁴, Yang Dai⁴, Yaobao Liu⁴, Guiying Wei¹, Changhong Wang¹, Xiaohui He¹, Jin Ge⁵, Ziqiu Zhang⁵, Arnab Pain⁶, Shengyue Wang⁷, Wenbao Wang⁸, Neil D. Young⁹, Robin Gasser⁹, Donald P. McManus¹⁰, Jun Cao⁴, Qi Zhou², and Qingfeng ZHANG¹

¹Tongji University
²Zhejiang University
³King Abdullah University of Science and Technology
⁴Jiangsu Institute of Parasitic Diseases
⁵Novogene Bioinformatics Institute
⁶King Abdullah University of Science and Technology Biological and Environmental Science and Engineering Division
⁷Shanghai Jiao Tong University
⁸Xin Jiang Medical University
⁹The University of Melbourne
¹⁰QIMR Berghofer Medical Research Institute

November 7, 2021

Abstract

Schistosomiasis is a neglected tropical disease of humans caused by blood flukes of the genus Schistosoma – the only dioecious parasitic flatworms. Although aspects of sex determination, differentiation and reproduction have been studied in some Schistosoma species, almost nothing is understood for Schistosoma japonicum - the causative agent of schistosomiasis japonica. This relates mainly to a lack of high-quality genomic and transcriptomic resources for this species. As current draft genomes for S. japonicum are highly fragmented, we assembled here a chromosome-level reference genome (seven autosomes, the Z-chromosome and partial W-chromosome), achieving a substantially enhanced gene annotation. Utilising this genome, we discovered that the sex chromosomes of S. japonicum and its congener S. mansoni independently suppressed recombination during evolution, forming four and two 'strata', respectively. By exploring the W-chromosome and sex-specific transcriptomes, we identified 35 W-linked genes and 257 female-preferentially transcribed genes (FTGs) and identified a signature for sex determination and differentiation in S. japonicum. These FTGs cluster within autosomes or the Z-chromosome and exhibit a highly dynamic transcription profile during the pairing of female and male schistosomules (advanced juveniles), representing a critical phase for the maturation of the female worms, suggesting distinct layers of regulatory control of gene transcription at this stage of development. Collectively, these data provide a valuable resource for further functional genomic characterisation of S. japonicum, shed light on the evolution of sex chromosomes in this highly virulent human blood fluke and provide a pathway to identify novel targets for development of intervention tools against schistosomiasis.

Hosted file

MER-20211010.docx available at https://authorea.com/users/444935/articles/544572chromosome-level-genome-assembly-reveals-female-biased-genes-for-sex-determinationand-differentiation-in-the-human-blood-fluke-schistosoma-japonicum

Hosted file

Figure.pdf available at https://authorea.com/users/444935/articles/544572-chromosome-level-genome-assembly-reveals-female-biased-genes-for-sex-determination-and-differentiation-in-the-human-blood-fluke-schistosoma-japonicum