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Abstract

Stream temperature is an important determinant of fish growth, migration, and survival, and can thus impact the structure

and function of stream ecosystems. Fluctuations in water temperature can occur spatially and temporally, occurring naturally

or because of anthropogenic pressures. Many streams in Michigan and elsewhere in North America receive groundwater

inputs that help regulate instream conditions by stabilizing discharge as well as stream temperature. However, groundwater

withdrawal through high-capacity wells is important to the agricultural industry and water users for irrigation or municipal

water supplies. Withdrawal can cause reductions in streamflow which typically results in increased stream temperature. Other

atmospheric and hydrologic variables (i.e. overland discharge) also impact the rate at which stream temperature changes as

it flows downstream. In this study we deployed paired up- and downstream water pressure and temperature loggers within 21

stream reaches throughout the state of Michigan to quantify and model relationships between stream discharge, air temperature,

and longitudinal change in stream temperature (i.e., temperature flux). Using multi-model selection criteria, we evaluated the

performance of a hierarchical suite of models that predict temperature flux rates as a function of potential driving variables.

The multi-model selection criteria identified a best-fitting model that was able to model the diurnal, seasonal, and annual

variations in rates of longitudinal temperature fluctuations across a majority of sample streams. Partial regression analysis

indicated that proxy variables representing solar radiation at the stream surface were generally the most influential predictors

of longitudinal changes in stream temperature, but air temperature and components of streamflow including groundwater input

were significant predictors and important in many streams.

1 Introduction

Water temperature is a critical determinant of the structure and function of stream ecosystems. Water
temperature has an influence across all trophic levels in streams, from bacteria to fishes, with particularly
important implications for stenothermic organisms such as salmonids that have a relatively narrow range of
optimal temperature. Although stream temperature varies naturally in response to numerous hydrological
and meteorological factors, humans are having an increasing impact through anthropogenic drivers such
as surface and groundwater removal, climate change, changes in land cover and impoundments. Changes
in stream thermal regimes due to anthropogenic influences can impact biological, physical and chemical
processes, as well as overall health of aquatic ecosystems (e.g., Beaupré, St.-Hilaire, Daigle, & Bergeron,
2020; Caissie, 2006; Naiman, Magnuson, McKnight, & Stanford, 1995) As such, it is important to understand
the impact human activities have on stream temperatures relative to natural variation within and across
streams.

In order to successfully protect against negative impacts to a stream’s natural thermal regime and associated
biota, resource managers and policy makers must better understand the ways natural and anthropogenic
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. factors influence stream temperature. The initial impetus for our research was on the effects of groundwater
withdrawal and potential reductions to baseflow on stream temperature as this is an increasing area of concern
in Michigan and elsewhere in the nation. As demands for groundwater increase due to effects of land and water
use and climate change, there is a need to understand the impacts of water withdrawal on stream thermal
dynamics. Although a number of stream temperature models are available (e.g., Beaufort, Curie, Moatar,
Ducharne, Melin, & Thiery, 2016; Beaupré et al., 2020; Herb & Stefan, 2011; Marcé & Armengol, 2008)
relatively few explicitly incorporate the effects of the volume of groundwater input on stream temperature.
Further, results from these studies highlight the varying impact of different components of stream heat
budget across different hydrologic and geomorphic settings, emphasizing that models of different complexity
may perform better in different streams.

Previous research has generally approached the problem of modeling stream temperature by identifying
physical processes thought to be important and developing a single model based on these forcing functions.
For example, the Stream Network Temperature (SNTEMP) model (Theurer, Voos, Kenneth, & Miller,
1984) is a deterministic model that incorporates key meteorological variables as processes that contribute
to a stream’s thermal budget. Similarly, an equilibrium temperature approach (e.g., Edinger, Duttweiler, &
Geyer, 1968; Herb & Stefan 2011) has been adopted to provide model solutions to the complex problem of
thermal budgeting. While following a reductionist approach that has proven successful in many fields such
as experimental physics is intellectually appealing, there are practical limitations to implementing this in a
natural setting. One impediment is the level of detail needed in the data to drive such models (Beaupré et
al., 2020). In theory, factors such as wind velocity or relative humidity need to be measured at the water-air
interface, and at multiple points along a given stream reach. Similarly, stream shading and cloud cover affect
stream heating by solar input and nighttime cooling by longwave radiation, but these factors vary over both
short time scales (e.g., cloud cover can vary rapidly within a day) and longer time scales (e.g., seasonal
changes in foliage) and longitudinally along a stream reach.

Because of these limitations, recent research has explored incorporating a statistical component into stream
temperature models. Two examples include Beaupré et al. (2020) and Marcé and Armengol (2008), both
of which compared the performance of deterministic models to statistical or hybrid stream temperature
models. Both found that models that included a statistical component performed better than deterministic
models. As such, one of our major goals was to develop an approach that used elements of a process-based
model to incorporate the effects of groundwater inputs, and to implement this model within a statistically
based framework. As highlighted above, data are often limited in availability or expensive to acquire, and
as such, there is value in understanding how simpler models requiring fewer inputs perform in comparison
to more parameter-rich models. Such an evaluation is useful by offering insight into the benefit gained by
collecting data to increase parameterization, which can oftentimes become expensive in terms of time and
resources. However, as more data becomes readily available through technological improvements in remote
sensing and geographic information systems, it may become more feasible to develop increasingly complex
predictive models. As such, we also sought to evaluate the impact of model complexity on performance
metrics, a situation that a statistical multi-model inferential framework is well suited to address (Burnham
& Anderson, 2002). One strength of this approach is that the model selection procedure simultaneously
considers goodness of fit and parsimony of the model (e.g., Thayer, Taylor, Hayes, & Haas, 2007).

Our interest in understanding stream temperature dynamics led us to model the flux rate (i.e., change in
temperature between upstream and downstream) as a function of hydrologic and atmospheric variables.
Further, we applied this modeling approach to several rivers in Michigan that were thought a priori to
encompass a range of groundwater input based upon the wide range of physiographic characteristics and
estimations of well yields throughout the state (see Section 2.1). The objectives of this study were to 1)
collect streamflow and temperature data to develop statistical models of longitudinal stream temperature
change; 2) evaluate the performance of a suite of models representing flux rate as a function of potential
driving variables; and 3) identify dominant processes influencing rates of longitudinal stream temperature
change.
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. 2 Methods

2. 1 Study region and data collection

Michigan is located in the Upper Midwest region of the United States. Hydrologic features throughout
Michigan are variable, with groundwater inputs to streams being dependent upon permeability of geologic
deposits and local topography (Seelbach, Wiley, Kotanchik, & Baker, 1997) and surface water availability
being driven by precipitation and climate. Many streams located within the northern Lower and Upper
Peninsulas have groundwater-driven flow regimes due to coarse-textured glacial deposits dominating the local
geology. Yields from groundwater wells in these regions can reach nearly 500 gallons per minute compared to
10 gallons per minute in Southeastern Michigan where confining material dominates (Michigan Department
of Environmental Quality, 2005).

Although Michigan’s landscape has a diverse mosaic of surficial deposits which can explain baseflow con-
tributions to nearby streams, climatic variability is relatively low. Average air temperatures in the Lower
Peninsula range from 15.9 °C to 19.3 °C, while temperatures in the Upper Peninsula are consistently cooler.
Annual groundwater temperatures range from 11.1 °C in the southern Lower Peninsula to 5.6 °C in the
Upper Peninsula (Collins, 1925).

In total, data were obtained for 21 streams spanning a broad geographical range throughout Michigan (Figure
1). Site information for each stream reach is displayed in Table 1, including latitude, longitude, reach length,
and annual groundwater temperature based on Collins (1925). Data were collected using a network of paired
streamgages installed at upstream and downstream locations within each stream over the summer and fall
of 2015 and 2016. Visual inspection of topographic maps ensured that upstream and downstream locations
were situated absent of tributaries entering the reach. In 2015, data were collected from 13 streams beginning
in late July and extending into early November. In 2016, data were collected from 19 streams beginning in
May and extending through October. Water temperature and pressure data were collected using HOBO®

U20 Water Level Loggers at 15-minute intervals but were averaged to hourly intervals. Data loggers were
calibrated against each other using an ice bath that slowly warmed to room temperature. All loggers agreed
within ± 0.18 °C and were corrected for observed constant offsets. The loggers were housed in streamgages
designed using PVC piping attached to a fence post driven into the stream bed. Holes were drilled into the
bottom of the streamgages with mesh lining wrapped around to prevent sediment build up while allowing
water to flow through. Staff rulers were attached to the exterior of the streamgages for reference when
developing stage-discharge curves. Air temperature and barometric pressure data were collected at one of
the paired locations for each stream reach using Monarch® Track-It data loggers. Temperature and pressure
data were collected at 15-minute intervals, but values were averaged to hourly intervals.

In this analysis, longitudinal stream temperature change was calculated as the difference between the down-
stream and upstream gage within each stream for each hourly interval. Flux rate (ΔΤ = °C/km) was calcu-
lated as the change in temperature per stream kilometer, such that positive numbers represent an increase
in temperature (i.e., warming) in the downstream direction, and negative numbers represent a decrease (i.e.,
cooling). As the U20 loggers measure total pressure, water depth was estimated by subtracting barometric
pressure from total pressure and converting to meters of water (i.e., river stage). Barometric pressure readings
were subtracted from total pressure (water and air) readings collected from submerged data loggers to calcu-
late true water pressure. The true water pressure was converted to meters of water which was then adjusted
to reflect staff gage readings collected during site visits for discharge measurements. Discharge measurements
were taken 3 to 5 times each year to capture various river stages at each of the upstream and downstream
locations of each stream reach to develop stage-discharge relationships (Rantz, 1982). Stream velocity was
measured using a SonTek® Flowtracker at 20 – 30 points across the stream channel, and discharge was
calculated. The stage-discharge relationships were estimated using a power function (equation (1)):

Q = aGb (eq. 1)

where Q = discharge (m3/s) and G = gage reading (m), while a and b are parameters estimated by a power
function relating discharge to stream stage. Power functions were also developed to estimate width and depth

3
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. as a function of discharge (equations 2-3):

w = cQe (eq. 2)

d = fQh (eq. 3)

where w is width (m), d is depth (m), and c ,e , f , and h are parameters estimated using a power function.

2.2 Model variables

Broadly speaking, thermal dynamics are affected by heat exchange processes that occur at the air-water and
streambed-water interface and are dependent upon stream discharge. Stream temperature is influenced by any
process that influences heat load of the stream or discharge in the stream channel (Poole & Berman, 2001).
Consequently, the change in stream temperature between two points is impacted by numerous hydrological
and meteorological factors including stream and groundwater discharge, solar radiation, channel slope and
riparian vegetation, among others (Caissie, 2006).

All stream discharge is derived by precipitation; however, the pathways by which precipitation enters the
stream channel can vary among local catchments. As such, longitudinal changes in stream temperature are
influenced by the mixing of water with different temperature signatures resulting from the path of entry
into the stream. The temperature of groundwater inputs from the phreatic aquifer of a stream catchment
is typically the baseline from which stream temperature deviates (Poole & Berman, 2001). Other sources
of discharge (i.e., overland flow) enter the stream channel longitudinally and carry with them different heat
energies causing thermal fluctuations of the discharge in the stream channel. Additionally, as discharge flows
downstream, heat exchange between the air-water and streambed-water interface generally increases stream
temperature during summer months.

2.2.1 Atmospheric variables

Air temperature

The rate at which stream temperature change occurs is directly proportional to the difference between air
and water temperature. A single variable (Ta – Tw ) was incorporated to capture the effect of the air-water
temperature differential. Throughout this paper, (Ta –Tw ) is computed with Tw =Tup . The coefficient
determining this rate was estimated via regression.

Shortwave radiation

Shortwave radiation, usually in the form of direct solar radiation, typically dominates the heat budget
of streams during summer, and can be the largest determinant of stream temperature (Johnson, 2004;
Wondzell, Diabat, & Haggerty, 2019). We accounted for the effects of solar radiation without having direct
measurements of solar heat flux by calculating sun altitude angle and day length for each site. Altitude
angle (α ) and day length (S ) were computed for each hour of day and each day of year, respectively, from
Meeus (1999). Given that the amount of solar radiation reaching the stream channel also depends on several
unmeasured variables, particularly degree of stream shading, we estimated the coefficient representing the
proportion of solar radiation reaching the stream via regression.

2.2.2 Hydrologic variables

Upstream discharge

We derived several variables related to reach scale hydrology using discharge data collected from the paired
streamgages. The ratio of upstream to downstream discharge (Qup /Qdown ) and the difference between
downstream and upstream discharge (Qdown – Qup ) were both used as indicators of gain or loss in discharge,
since inputs to the stream may alter the thermal dynamics of the stream. An additional parameter was
incorporated to reflect only the upstream discharge as the volume of water in the stream would be expected
to influence the relative thermal inertia of the stream (e.g., Stefan & Preud’homme, 1993).

2.2.3 Effects of discharge sources

4
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Since thermal patterns from various sources of discharge can affect stream temperature differently, we created
parameters for heat energy contributions of baseflow, overland flow, and discharge originating from upstream.
To account for stream temperature change induced by energy input of different sources of discharge, we
weighted the heat energy contributions based on water temperature and overall discharge at the downstream
location. Since heat load is a measure of heat energy added to a stream, we then subtracted the upstream
temperature to estimate the relative change in temperature theoretically induced by heat energy inputs of
each source of discharge. For example, the heat energy of discharge originating from upstream was calculated
as follows (equation (4)):

Δυπ = [(QupTup )/Qdown ] – Tup (eq. 4)

where Δυπ is the temperature change induced by the heat energy of upstream discharge, Tup is the water
temperature (°C) measured at the upstream gaging station, andQup and Qdown are the discharges (m3/s)
measured at the respective gaging stations. Similar metrics were computed for baseflow (Δβασε ) and overland
flow (Δοvερ ).

Baseflow

Baseflow discharge (Qbase ) was estimated within each stream reach by determining the gain in discharge
between gaging stations for the lowest 7-day flow period for each year when downstream discharge was
greater than upstream discharge. We chose this method to represent baseflow gain in each stream reach
because this is typically the period during which streamflow is primarily sustained by groundwater discharge
to the stream. Without direct measurements of baseflow within relatively short stream reaches, and because
baseflow can vary over a range of time scales and due to human activities like diversion and withdrawal and
natural processes such as evapotranspiration, we did not account for seasonal fluctuations in baseflow. Thus,
7-day moving averages of Qdown and Qupwere calculated by year for each day and the minimum difference
was determined to be representative of baseflow gain for the year. The temperature of baseflow, Tbase ,
was set as a constant related to the regions where each stream is located throughout Michigan based off of
previous research (UP = 5.6 °C; NLP = 8.3 °C; SLP = 11.1 °C [Collins, 1925]).

Overland flow

The residual flow remaining after subtracting Qupand Qbase from Qdown was considered as overland flow, Qover

. This represents the surface water runoff gained between the up and downstream gages. The temperature
of the overland flow,Tover , is unknown, but we assumed that a 12-hour moving average of air temperature
would represent the temperature of this component. The lag time associated with the 12-hour moving average
was assumed to account for the heat gained by overland surface runoff over the time it would take to reach
the stream channel. Occasionally, we observed periods during which upstream discharge was greater than
downstream discharge, in which case the heat energy was calculated as zero for both of these parameters.

2.3 Regression models

A series of statistical models was developed to represent longitudinal stream temperature flux rates (ΔΤ
) based on hypothesized mechanisms that affect stream temperature dynamics. We used multiple linear
regression analysis to construct models to predict flux rates (°C/km). Models were built in a hierarchical
fashion sequentially incorporating parameters for processes judged to be important in influencing flux rates
such as air temperature, a range of flow components contributing to overall discharge in the stream channel,
and atmospheric conditions. Models were parameterized for each process contributing to temperature change
and were individually fit to each stream. All parameters of the models were considered unknowns, including
an intercept and the coefficients corresponding to the components contributing to temperature change.
Nonlinear optimization (statspackage; R Core Team, 2013) was used to estimate values for each parameter
to minimize the sums of squares between observed and predicted flux rates.

2.3.1 Base model (model 1)

As a base model, the air-water temperature differential, (Ta – Tw ), was related to downstream temperature

5
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. change using linear regression, as in the following equation (equation (5)):

ΔΤ = β 0 +β 1(Ta -Tw ) (eq. 5)

The base model was the simplest model, and subsequent models became progressively complex by incorpo-
rating additional variables (Table 2).

2.3.2 Discharge ratio (model 2)

In this model, the ratio of downstream to upstream discharge was included as a variable to represent the
potential influence of differences in discharge between sample sites as a moderator to temperature flux. By
taking a ratio of discharges, this variable was represented as a dimensionless factor in the model. Increases in
discharge may increase the thermal inertia of the stream, while losses in discharge can increase the residence
time of discharge in the stream reach and exposure to heating sources.

2.3.3 Upstream discharge (model 3)

A variable representing upstream discharge was included since variations in stream temperature have been
shown to be inversely proportional to stream discharge (Poole & Berman, 2001). Another variable,Δφλοω ,
was added to account for the cumulative heat energy of the stream (equation (6)) based on the source of
discharge gain. Thermal contributions of various sources of discharge were weighted depending upon their
proportional contribution to overall discharge.

Δφλοω =[(QupTup ) + (QbaseTbase ) + (QoverTover )]/Qdown(eq. 6)

2.3.4 Discharge differential (model 4)

In this model, the gain or loss in discharge between upstream and downstream locations was incorporated
to account for thermal flux when discharge is lost or gained throughout the reach. This parameter is similar
in intent to the discharge ratio included in model 2 (Table 2), but retains the dimension of discharge, and
as such, would vary across streams of different size.

2.3.5 Day length and altitude angle (models 5, 6, and 7)

Day length (S ) was included in model 5 as a proxy to account for the effects of solar radiation, without
having direct measurements of solar heat flux. A separate parameter representing the sun’s altitude angle (α
) was implemented as a measure of solar radiation for each hour of each day of year in model 6, and model
7 incorporated both parameters.

2.3.8 Differential thermal effects of sources of discharge (models 8, 9, and 10)

Models 8, 9, and 10 included separate parameters for the thermal effects of each of the three components of
overall stream discharge (i.e., temperature contributions of upland discharge, base flow, and overland flow).
These models then included either one or both of the day length and altitude angle parameters.

2.3.9 Incorporating components of heat flux (model 11)

In model 11, we attempted to represent longitudinal temperature change using principles of an energy
balance equation adapted from the methods of Magnusson, Jonas, & Kirchner (2012), which was developed
to estimate downstream temperature change as a function of surface heat transfer and frictional heating.
The downstream temperature change over a stream reach of length L (m) and average width w (m) can be
estimated using equation (7):

ΔΤ (t ) =(q (t )w (t )L )/(Q (t )ςρ ) + (γΔζ )/c + ΔΤρ (t ) (eq. 7)

where q (W/m2) represents the total heat flux across the stream surface, c (J/kg·K) is the specific heat
capacity of water, ρ (kg/m3) is the density of water, Δζ (m) is the difference in altitude between the
upstream and downstream ends of the stream reach, g(m/s2) is the gravitational acceleration, andΔΤρ (°C)
is the residual temperature change.

6
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. In this study, we considered the following four components of surface heat exchange:

q = LE + H + SWnet +LWnet (eq. 8)

where LE is latent heat flux (W/m2), H is sensible heat flux (W/m2),SWnet is net shortwave radiation
(W/m2), and LWnet is net longwave radiation (W/m2). Although equation (8) explicitly predicts how tem-
perature will change along a stream reach, we attempted to estimate longitudinal temperature flux by
incorporating these principles into a statistical regression model. The regression model was developed based
on the principle that surface heat exchange warms or cools the stream at a rate that is proportional to the
heat flux and inversely proportional to discharge. It is important to note that the stream energy balance
equation assumes constant discharge and steady state conditions. Thus, we included additional drivers of
heat exchange, including the air-water temperature differential, baseflow heat energy, and overland flow heat
energy to account for any residual temperature change which cannot be explained by surface heat exchange
(equation (9)). Given that longitudinal temperature flux was approximated using regression equations, and
sensible heat flux is dependent upon latent heat flux, H was not included in model 11. Additionally, the
other components of the stream energy balance equations which remained constant, including the specific
heat capacity of water, the density of water, altitude difference, and gravitational acceleration, were excluded
from the model. Altitude angle was used as a proxy for net shortwave radiation.

ΔΤ = β 0 +β 1(Ta –Tw ) +β 7(Δβασε ) +β 8(Δοvερ ) +β 10[(Tw + 273.16)4/Qup ] +β 11[(exp(Tw ) – exp(Ta

))/Qup ] +β 12(α /Qup ) (eq. 9)

2.4 Model fitting and selection

We evaluated the performance of the aforementioned models representing flux rate as a function of potential
driving variables. The first step in model fitting was to estimate model parameters by minimizing the residual
sums of squares between modeled and observed ΔΤ at the hourly time step. All parameters were considered
free fitting coefficients, so no constraints were placed on possible values. Next, we applied a model selection
procedure using Akaike’s Information Criterion (AIC) (Akaike, 1998). AIC was used because it prioritizes
models based on fitting ability and level of parsimony (see Burnham & Anderson, 2002; Thayer et al., 2007).
AIC was calculated using equation (10), which incorporates the likelihood (L ) (equation (10)), omitting
fixed constants.

AIC = 2k – 2ln(L (parameters |data )) (eq.10)

L (parameters |data ) = –(n /2)loge(RSS ) (eq. 11)

where k is the number of unknown parameters, n is the sample size (number of hourly observations), and
RSS is the residual sums of squares between modeled and observed ΔΤ . Using the above criteria, the model
with the lowest AIC score was judged to fit the observed data best. Further, the weight of evidence of any
given model, ωι , (equation (12)) was used to compare each model’s fitting ability relative to the suite of
models considered:

ωi =
exp(− i

2 )∑M
m exp(− i

2 )
(eq. 12)

where M is the total number of models and Δι is the difference in AIC of any given individual model
compared with that of the best model.

2.5 Identifying dominant factors

Partial R2

Partial regression analysis (QuantPsyc package; Fletcher, 2012) was used to assess the influence of each of
the variables included in the best model identified as best fitting observed longitudinal thermal flux rates.
Partial R2 values are useful for understanding the residual variation accounted for by a predictor variable
that cannot be explained by a constrained model. In other words, the partial correlation coefficient is useful
because it allows for directly estimating the proportion of unexplained variation of the dependent variable
that becomes explained by the addition of an independent variable to the model. In order to determine the
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. partial R2 of a particular predictor variable, the proportion of residual variance can be accounted for by
(SSR –SSE )/SSR , where SSR is the sums of squared errors of the reduced model, and SSE is the sums of
squared errors of the fully parameterized model. Values represent the proportion of variation which cannot
be explained by the predictors in the reduced model when compared to the full model.

3 Results

3.1 Observations of thermal and hydrological data

Individual stream reaches used in this study displayed a wide range of discharges, from 0.01 – 1.79 m3/s
(Table 3). Interestingly, the Carp River, East Branch Black River, Pokagon Creek, and North Branch
Thunder Bay River experienced on average a loss in discharge in the downstream direction (Table 3). While
the volumes of water lost in losing reaches were relatively small, Carp River experienced a 25% loss in
discharge, on average. In contrast, five stream reaches experienced gains in discharge of more than double
the measured upstream discharge. Of these, Cedar Creek experienced the greatest proportional gain in
discharge, followed by Slapneck Creek, Squaw Creek, Hasler Creek, and Butterfield Creek.

Streams displayed a wide range of channel characteristics as exhibited by measurements of width and depth.
Stream width ranged from a minimum of 3.25 m (Honeyoey Creek) to a maximum of 12.00 m (Fish Creek),
while depths ranged from 0.20 m (King Creek) to 0.60 m (East Branch Black River). Likewise, width-
to-depth ratios varied from streams that were relatively narrow and deep to wide and shallow. Honeyoey
Creek had the minimum width-to-depth ratio at 10.16, exhibiting characteristics of relatively narrow and
deep channelization, while Nottawa Creek displayed the greatest width-to-depth ratio at 31.60 (Table 3)
indicative of a relatively wide and shallow stream channel.

Observations of flux rates varied temporally by month and spatially by individual stream reach (Table 4). A
majority of streams (14 of 21) displayed longitudinal stream warming, while the remaining seven showed a
pattern of downstream cooling over the entire study period. Although the seasonal flux rates varied among
streams, the mean flux rate across all streams showed the highest degree of warming in July and August,
with other months showing a mean flux rate of nearly zero (Table 4).

Observations of longitudinal flux rates and average trends were variable by individual streams, as illustrated
for representative streams (Figure 2). Diurnal variations in flux rate showed an alternation between daytime
warming and nighttime cooling in most of the streams (Figure 2), except for Nottawa Creek which consistently
showed a downstream cooling trend. LOESS regressions provided a smoothed representation of the hourly
data highlighting general seasonal patterns. Some streams, such as the Cedar and Prairie Rivers displayed a
pattern of peak rates of warming in the summer and trended towards little or no fluctuation in the spring and
fall. In contrast, Nottawa Creek displayed peak cooling tendencies across both years during the summer,
and the Carp River showed no clear seasonal pattern (Figure 2). Observations also indicate interannual
variability in patterns of flux rates, as evidenced by the Prairie River, which experienced a higher peak rate
of warming in the summer of 2016 compared to 2015 (Figure 2).

Univariate plots of longitudinal stream temperature flux rates in relation to atmospheric and hydrologic
variables showed considerable variation, and as the example in Figure 3 illustrates for the Cedar River, there
was not a clear influence of any single variable on flux rate. These plots did not show any clear signs of
non-linearity in the relations among the driving variable and flux rate.

3.2 Model fit and selection

The fit varied widely between models (Table 5); averaged across all streams, R2 ranged from a minimum
of 0.07 (Model 1) to a maximum of 0.41 (Model 10). As expected, model fit and ability to track trends
improved as parameterization increased, as shown for the Cedar River (Figure 4). Models that ranked
highly contained separate parameters representing each of the individual components of stream heat load
(upstream flow, baseflow, and overland flow) as well as at least one parameter to represent heat exchange
at the stream surface (e.g., day length and/or sun altitude angle). The weight of evidence heavily favored
Models 10 and 11, which contained the most parameters and received the greatest weights in 15 (71%)
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. and 5 (24%) streams (Table 5), respectively, while Model 9 received the greatest weight in a single stream.
The best model (Model 10) was the most complex in terms of model parameters, however improved model
performance offset his additional complexity as indicated by AIC values. The second-best model (Model 11)
was based upon variables derived to represent the principles of surface heat exchange and an energy balance
equation.

Model 10 generally tracked trends well for streams with multiple years of data (Figures 4, 5) but would
occasionally underestimate peak rates of both warming and cooling. The model produced a maximum r-
squared of 0.77 and a minimum of 0.13, while averaging an r-squared of 0.41 across all streams. The inclusion
of individual components of stream heat load (as opposed to a single lumped variable) as well as components
accounting for solar heating appeared to improve model ranking and fit (Table 5; Figure 4). Among many
streams, the model tended to track trends and capture seasonal and interannual variability better than other
models. The model captured a wider range of variability which allowed for more improved fit to seasonal
peaks, although the timing was occasionally earlier or later than observed.

The second-best model (Model 11) was based on prior physical models and included parameters to emulate
solar, longwave, and evaporative heat flux along the longitudinal stream gradient. Additionally, this model
included parameters for the base flow and overland flow components of stream heat load. Model 11 did not
track trends quite as well as the best model, particularly late in the season (Figure 4). The third-best model
(Model 9) contained only one parameter to account for solar heat flux (sun altitude angle) and was the only
other model to account for the greatest weight for any study stream (Squaw Creek). Overall, this model
captured trends nearly as well as the best model, but more often failed to capture peaks in flux rates and
failed to capture the full range of flux rates in many streams.

3.3 Dominant influencing factors

The influence of each variable included in Model 10 on the rate of longitudinal temperature flux was examined
through partial regression analysis. On average, variables incorporating aspects of shortwave radiation (i.e.,
day length and sun altitude angles) captured the greatest proportion of variation in flux rates across all
streams (Table 6). Day length was identified as the factor explaining the greatest proportion of variance in
six streams, while altitude angle was the second leading influencing factor in four streams. The variables
accounting for baseflow and overland flow heat contributions each explained the greatest proportion of
variation in three streams and explained a moderate amount of variation on average across all streams.
Although upstream discharge (Qup ) explained the greatest variation in two streams, it explained relatively
little variation in others. Finally, the discharge differential (Qdown – Qup ) and the thermal effects of
upstream discharge (Δυπ ) explained little variation in flux rates relative to the other variables in the fully
parameterized model.

4 Discussion

4.1 Influence of thermal, hydrological, and meteorological conditions

Our data encompassing a relatively large number of streams with observations across years and seasons
provided a robust data set for calibrating the suite of statistical models we evaluated using parameters meant
to reflect processes thought to influence stream temperature along a longitudinal gradient. We developed a
suite of successively complex models representing internal and external drivers of heat exchange (Poole &
Berman, 2001). In doing so, we were able to determine the relative importance of these factors in influencing
rates of thermal flux. Identifying major factors contributing to potential stream warming is critical in
developing environmental policies for protection against adverse impacts to water resources.

Although there was no single best predictor for all streams, sun altitude angle or day length were the
best predictors of flux rates for most streams. Each of these variables represents aspects of solar heat flux
reaching the stream surface. Day length was identified as a strong predictor of hourly stream temperatures
in a previous study by Risley, Constantz, Essaid, & Rounds (2010) to assess the impacts of groundwater
pumping on stream temperatures. Similarly, Bustillo, Moatar, Ducharne, Thiéry, & Poirel (2014) found that
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. the inclusion of day length improved the precision and accuracy of a statistical model of stream temperature.
Day length and sun angle are completely dependent on latitude, day of year and the time of day. As such,
they are outside of human control, but it is important to note that modifying factors such as riparian shading,
which can be influenced by humans, can reduce the warming effects of solar radiation.

The relative influence of other potential drivers varied widely among streams, with no single variable or set
of variables emerging as next in importance. The lack of a single best predictor suggests that the processes
that dominate the dynamics of stream temperature vary across streams. We have shown that variations in
hydrological conditions, such as discharge, play an important role in stream temperature dynamics. Although
heat energy from overland flow and baseflow ranked as moderately influential factors overall, they were the
most influential variables in several streams. The diverse geographic coverage of the stream reaches in this
study likely contributed to the fact that there was no single best predictor, since streams were located among
a variety of geologic landscapes and land uses that impact local hydrology.

We observed variability in longitudinal flux rates indicative of diurnal, seasonal, and annual variations, as
well as spatial variability among individual streams. Overall, flux rates showed an inverse relationship with
discharge, such that rates of heating and cooling showed less variability as discharge increased; however,
relationships between flux rates and other variables were less obvious. Flux rates generally peaked in late
summer, while trending towards zero fluctuation on average in spring and late fall. Although many streams
showed peak rates of warming during summer months, several streams experienced downstream cooling. For
example, while Nottawa Creek consistently experienced rates of cooling, the effect was greatest during the
summer across both years (Figure 2). Interestingly, it also had the greatest width-depth ratio (Table 3) which
would, in theory, expose the stream surface to a greater amount of solar radiation causing a greater degree
of warming. Further investigation of the causes of cooling (e.g., shading, baseflow input) may offer insight
into options for minimizing impact of human activities on stream temperature.

Of all the processes of heat exchange, input of cold groundwater is the primary mechanism that can consis-
tently cool a stream in a downstream direction. As such, maximizing groundwater input to streams provides
the greatest degree of cooling potential in streams. Evaporative cooling provides an additional mechanism
but does not generally result in cooling consistently enough to result in seasonal averages being decreased.
Similarly, exposure to the night sky leads to black body cooling, which was evident at night across short
periods in some streams but does not lead to consistent cooling. Among other potential drivers under human
control, stream shading likely provides the best buffer for reducing the magnitude of thermal fluctuation.
Although stream shading does not produce a cooling effect, and thus cannot explain reduced downstream
temperatures, it can act as a barrier against direct solar radiation at the stream surface (Larson & Larson,
1996). Further work directly exploring the impact of stream shading as a temperature mitigation tool would
be useful in developing tools to protect cold-water streams (Broadmeadow, Jones, Langford, Shaw, & Nisbet,
2011; Gaffield, Potter, & Wang, 2005; Rutherford, Marsh, Davies, & Bunn, 2004).

Although air temperature is often used as a strong correlate to stream temperature, we found that this
variable alone (Model 1) provided a poor prediction of stream temperature flux at the hourly time scale.
However, models that included measures of stream discharge and solar radiation (Models 5 and 6) provided
relatively good fits to the data, indicating that for many streams, these relatively simple models may be
sufficient and provide a cost-effective means of assessing stream temperature dynamics.

4.2 Model fit and selection

Adopting a multi-model approach to build models allowed us to use a reproducible statistical methodology
and model selection criterion that formalizes the tradeoffs between candidate input variables and the gains
in model fit that accrue. Akaike’s Information Criteria (AIC) was useful for distinguishing the best model
within the hierarchy where models became increasingly complex and contained many of the same or similar
parameters. Providing a set of candidate models allowed for the identification of a best approximating
model for statistical inference by simultaneously considering goodness of fit and parsimony (Burnham &
Anderson, 2002). Although other researchers provide comparisons among various models (e.g., Beaupré et
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. al., 2020; Bustillo et al., 2014; Marcé & Armengol, 2008), to our knowledge none have used AIC as a means
of assessing the tradeoff between model goodness of fit and parsimony. We suggest that such an approach
should be employed to provide a sound statistical basis for choosing among candidate models.

Interestingly, the model identified as providing the best overall fit to the observed data contained the greatest
number of parameters; however, the reduction in sums of squared errors outweighed the penalties incurred
through the high degree of parameterization. Given that stream temperature is dependent upon heat load
and stream discharge, it was important to construct models to represent the physical processes governing
heat exchange at the stream surface, as well as the influence of various sources of discharge. Many models that
have been previously used for representing stream temperature rely on the equilibrium temperature concept
(Beaufort et al., 2016; Edinger et al., 1968). These models have been shown to be inadequate for stream
reaches with significant input of groundwater, however (e.g., Webb, Hannah, Moore, Brown, & Nobilis,
2008). In particular, it was important to separate gains in stream discharge into components of baseflow and
overland flow as these sources of input have different thermal signatures. Models that lumped the effects of
separate components of discharge into a single parameter were not able to represent the dynamics as well
as more highly parameterized models which considered the influence of baseflow and overland flow on flux
rates.

Separating flow into components representing baseflow and “quickflow” (Koskelo, Fisher, Utz, & Jordan,
2012) is a complex task. As Koskelo et al. (2012) discuss, the dominant source of baseflow is typically
groundwater, but quickflow includes sources such as direct precipitation input, overland flow and shallow
subsurface flow (interflow). Each of these components likely has a different thermal signature. We attempted
to account for the seasonality of surface runoff temperatures by incorporating a moving average to relate air
temperatures to the thermal signature of overland flow, however it would be useful to explore other methods
for representing the thermal dynamics of overland or shallow groundwater flow. Additionally, a simple mass
balance method was used to predict the baseflow contributions to each stream. Given the complexities
described above, we felt that this simplification was adequate, however, a complicating factor was evident
in situations where upstream discharge was greater than downstream discharge. These observations indicate
the possibility of stream water loss due to infiltration into groundwater or through human diversion of
surface water and/or groundwater withdrawal. Stream loss due to surface water diversion would likely have
a different impact on flux rates compared to groundwater withdrawal (i.e., reduced baseflow) due to the
different thermal signatures. Although we were unable to attribute these stream losses directly to any of the
aforementioned sources, these observations highlight an opportunity to evaluate the effects of different types
of stream loss on thermal flux rates.

In this research, we chose to model the longitudinal change in stream temperature as a function of potential
driving factors rather than model stream temperature directly. Our choice to approach the problem in this
way was driven by our desire to embed a systems modeling approach (e.g., Haefner, 2005) that emphasizes
system processes and dynamical rates within a statistical framework. In an ecological framework, this ap-
proach has been termed an integrated modeling approach where multiple sources of data are combined and
analyzed in a unified framework (e.g., Zipkin & Saunders, 2018). We propose that this approach is useful as
it allows data from different sources, and potentially collected at different time intervals, to be included in
a statistically rigorous fashion. Further, the coefficients derived from our analyses have direct interpretation
for the physical processes that are represented.

4.3 Future direction

As the effects of longitudinal flux rates of stream temperature vary on a seasonal and yearly basis, sufficient
data must be collected on a range of hydrological and meteorological variables to account for within-year and
between-year variation in order to properly calibrate models. Further analysis is needed to examine effects
of model components on longitudinal flux rates within seasons. For example, models focused on summer
would be particularly useful to water resources management since water withdrawal activities are highest
during this time and water temperatures often approach levels stressful to stream biota. While the model
selection process showed that it was important to include separate parameters representing the influence of
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. each component of discharge on stream temperature, model fit statistics showed the discrepancies between
observed and predicted flux rates were generally greatest in late spring/early summer and fall (Figure 5).
As evidenced by the seasonal discrepancy, this implies a possible problem with predicting temperatures
of groundwater and overland flow since their thermal patterns vary differently with the seasonal weather.
Another possible cause is that the amount of riparian shading may vary seasonally, or even spatially due to
differences among tree species.

While a general goal of scientific modeling is to provide the most accurate representation of a system possible,
the cost of acquiring the data needed to support such models is an important consideration in a resource
management context. The comparison among models in a multi-model framework facilitates the systematic
evaluation of the tradeoffs between predictive capacity and the cost of supporting model building (e.g., Hansen
& Jones, 2008). Although other statistical analysis tools can be brought to bear on the questions posed in this
work, and would potentially provide greater precision, our approach using multiple linear regression within
an AIC model selection framework is intended to be accessible to natural resource scientists in an applied
management setting. Our hope is that the modeling approach presented in this paper provides practitioners
with a practical and useful set of tools for protecting stream habitats.
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Table 1: Site information specific to each stream segment. Streams marked with +are those for which data
were collected for both the 2015 and 2016 field seasons. Up and down refer to upstream and downstream
locations. Streams are arranged by ascending groundwater temperature, based on Collins (1925).

Stream Site Code
Up Latitude
(DD)

Up
Longitude
(DD)

Down
Latitude
(DD)

Down
Longitude
(DD)

Reach
Length (m)

Groundwater
Temperature
(°C)

Morgan
Creek +

MC 46.519698 -87.504502 46.521351 -87.494782 1,106 5.6

Carp
River+

CA 46.509131 -87.418924 46.510534 -87.388497 2,614 5.6

Slapneck
Creek

SL 46.354843 -86.946771 46.350637 -86.928918 1,564 5.6

Spring
Creek+

SP 46.512909 -90.156133 46.513418 -90.177011 1,681 5.6

Middle
Branch
Escanaba
River

ER 46.420206 -87.797962 46.398398 -87.770883 6,131 5.6

Squaw
Creek

SQ 46.057035 -87.18974 45.985396 -87.140559 1,676 5.6

Cedar
Creek

CC 44.375846 -85.972647 44.369588 -85.999598 2,551 8.3
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.

Stream Site Code
Up Latitude
(DD)

Up
Longitude
(DD)

Down
Latitude
(DD)

Down
Longitude
(DD)

Reach
Length (m)

Groundwater
Temperature
(°C)

Cedar
River+

CR 44.956875 -85.132748 44.968664 -85.138993 1,454 8.3

East
Branch
Black
River

EB 45.070651 -84.283728 45.089439 -84.284929 2,879 8.3

Butterfield
Creek+

BC 44.273249 -85.094087 44.256377 -85.03362 5,978 8.3

King
Creek

KC 45.018848 -83.650705 45.047993 -83.634655 5,822 8.3

North
Branch
Thunder
Bay River

NB 45.179007 -83.923148 45.191635 -83.891476 4,630 8.3

Fish
Creek+

FC 43.245992 -84.964747 43.242022 -84.915223 5,186 11.1

Pokagon
Creek+

PC 41.89517 -86.162632 41.915803 -86.175679 4,050 11.1

Pigeon
River+

PI 42.932887 -86.081828 42.91636 -86.146075 6,550 11.1

Honeyoey
Creek

HC 43.433623 -84.701648 43.379136 -84.705982 6,638 11.1

Middle
Branch
Tobacco
River

MB 43.909194 -84.697312 43.929905 -84.666327 4,091 11.1

Nottawa
Creek+

NC 42.192564 -85.060415 42.195998 -85.104618 3,758 11.1

Hasler
Creek

HA 43.042332 -83.423206 43.083594 -83.442947 7,586 11.1

Prairie
River+

PR 41.801832 -85.116614 41.832568 -85.165065 5,863 11.1

Swan
Creek

SC 41.90477 -85.297885 41.921249 -85.312047 2,539 11.1

Table 2: Model numbers and the parameters included within each model denoted with an X. Ta = air
temperature (°C);Tw = water temperature (°C);Qup = upstream discharge (m3/s); Qdown = downstream
discharge (m3/s); S = day length (hr);Δφλοω = cumulative heat energy (°C);Δυπ = upstream heat energy
(°C);Δβασε = baseflow heat energy (°C);Δοvερ = overland flow heat energy (°C); α= sun altitude angle (°).

Model Number Equation

1 ΔΤ = β0 + β1(Ta - Tw)
2 ΔΤ = β0 + β1(Ta - Tw) + β2(Qd/Qu)
3 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω)
4 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω) + β5(Qd - Qu)
5 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω) + β5(Qd - Qu) + β6(S )
6 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω) + β5(Qd - Qu) + β7(α)
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. Model Number Equation

7 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω) + β5(Qd - Qu) + β6(S ) + β7(α)
8 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω) + β5(Qd - Qu) + β6(S ) + β7(α) + β8(Δυπ) + β9(Δβασε) + β10(Δοvερ)
9 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω) + β5(Qd - Qu) + β7(α) + β8(Δυπ) + β9(Δβασε) + β10(Δοvερ)
10 ΔΤ = β0 + β1(Ta - Tw) + β3(Qu) + β4(Δφλοω) + β5(Qd - Qu) + β6(S ) + β8(Δυπ) + β9(Δβασε) + β10(Δοvερ)
11 ΔΤ = β0 + β1(Ta - Tw) + β9(Δβασε) + β10(Δοvερ) + β12([(Tw + 273.16)4/Q ]) + β13([(exp(Tw) – exp(Ta))/Q ]) + β10(α/Χ )

Table 3: Summary of hydrological and thermal characteristics of study reaches. Values are averaged over
the entire study period for each study stream. Change in discharge was calculated such that positive values
indicate longitudinal gains in discharge. Streams are sorted in order of flux rate from warming to cooling.

Stream Air Temperature (°C) Up Discharge (m3/s) Down Discharge (m3/s) Width/Depth Ratio Change in discharge (%) Up Temperature (°C) Down Temperature (°C) Flux Rate (°C/km)

Squaw Creek 17.47 0.04 0.12 14.21 200 16.25 17.21 0.57
Cedar River 16.89 1.34 1.78 19.89 33 12.33 12.66 0.22
Honeyoey Creek 19.90 0.06 0.08 10.16 33 18.57 19.76 0.18
Slapneck Creek 17.01 0.33 1.04 10.55 215 16.26 16.48 0.14
Middle Branch Tobacco River 20.01 0.52 0.53 18.27 2 16.41 16.96 0.13
Swan Creek 20.20 0.38 0.48 27.39 26 19.15 19.41 0.10
North Branch Thunder Bay River 16.64 0.43 0.40 16.84 -7 15.69 16.05 0.08
East Branch Black River 19.09 0.83 0.73 12.73 -12 15.15 15.41 0.07
Pokagon Creek 18.49 0.42 0.41 13.62 -2 16.29 16.59 0.07
King Creek 16.64 0.01 0.01 17.85 0 14.71 15.10 0.07
Fish Creek 18.49 0.86 1.08 26.67 26 17.20 17.40 0.04
Prairie River 19.24 0.21 0.28 21.24 33 16.49 16.70 0.04
Cedar Creek 17.68 0.12 0.56 16.33 367 14.41 14.45 0.02
Carp River 15.67 1.79 1.34 25.84 -25 15.75 15.80 0.02
Middle Branch Escanaba River 15.72 0.99 1.27 25.41 28 17.48 17.42 -0.01
Spring Creek 15.62 0.12 0.20 18.57 67 16.03 15.96 -0.04
Pigeon River 18.21 0.48 0.60 18.08 25 16.35 15.99 -0.06
Butterfield Creek 16.90 0.09 0.19 17.96 111 15.08 14.43 -0.11
Morgan Creek 15.69 0.11 0.14 18.16 27 16.51 16.32 -0.17
Nottawa Creek 19.18 0.55 0.62 31.60 13 19.84 19.13 -0.19
Hasler Creek 17.14 0.04 0.09 19.00 125 18.17 16.87 -0.28

Table 4: Average monthly downstream thermal flux rates (°C/km) of each study stream. Streams are arran-
ged from highest to lowest flux rates during mid-summer months (July-August)

Stream May June July August September October November

Squaw Creek 0.37 0.85 0.66 0.49 0.44
Cedar River 0.27 0.26 0.31 0.32 0.25 0.07 -0.02
Honeyoey Creek 0.06 0.16 0.28 0.24 0.15 0.01
Swan Creek 0.04 0.03 0.24 0.21 0.03 0.05
Slapneck Creek 0.12 0.30 0.16 0.04 0.01
Middle Branch Tobacco River 0.12 0.13 0.17 0.16 0.12 0.07
North Branch Thunder Bay River 0.12 0.16 0.05 0.03 0.01
King Creek 0.13 0.12 0.06 0.03 -0.04
Pokagon Creek 0.07 0.11 0.12 0.11 0.10 -0.01 -0.03
East Branch Black River 0.09 0.08 0.08 0.05 0.04
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. Stream May June July August September October November

Cedar Creek 0.04 0.05 0.07 0.07 -0.04 -0.09
Fish Creek 0.01 0.04 0.08 0.06 0.01 0.01 0.01
Prairie River 0.03 0.05 0.08 0.06 0.03 -0.01 -0.01
Carp River -0.03 0.01 0.03 0.03 0.04 0.08
Middle Branch Escanaba River 0.07 0.10 -0.01 -0.13 -0.17
Pigeon River -0.06 -0.06 -0.02 -0.04 -0.10 -0.06 -0.02
Spring Creek -0.13 -0.16 -0.06 0.04 -0.01 0.05
Butterfield Creek -0.13 -0.18 -0.18 -0.15 -0.09 -0.02 0.03
Morgan Creek -0.38 -0.24 -0.16 -0.12 -0.08 -0.09
Nottawa Creek -0.12 -0.19 -0.21 -0.22 -0.22 -0.12 -0.02
Hasler Creek -0.39 -0.41 -0.42 -0.30 -0.14 -0.02
Overall Mean 0.03 0.01 0.08 0.07 0.02 0.00 -0.01

Table 5: Measures of goodness of fit for each model, averaged across all study streams. Models are ranked
based upon mean weight of evidence in descending order. Results represent averages over each study stream
for the entire study period. K = number of model parameters; AIC = Akaike Information Criterion; ω =
Akaike weight; Count = total number of streams for which each model was identified as providing the best
fit.

Model K R2 AIC ω Count

10 9 0.41 -6826 0.695 15
11 7 0.29 -6072 0.238 5
9 8 0.34 -6344 0.065 1
8 8 0.37 -6503 0.001 0
7 7 0.36 -6390 0.000 0
5 6 0.32 -6086 0.000 0
6 6 0.28 -5893 0.000 0
4 5 0.24 -5613 0.000 0
3 4 0.20 -5360 0.000 0
2 3 0.15 -5044 0.000 0
1 2 0.07 -4625 0.000 0

Table 6: Partial R2 values for each stream for Model 10. Streams are ordered based upon R2 of Model 10.
Values represent the proportion of variation which cannot be explained by the predictors in the reduced
model when compared to the full model. ω represents the model weight of Model 10. Overall R2values
represent fit between observed and predicted values using Model 10.

Stream Ta-Tup Qup Qdown-Qup S Δup Δbase Δover α ω Overall R2

Middle Branch Tobacco River 0.03 0.10 0.02 0.60 0.01 0.00 0.00 0.19 0 0.77
Hasler Creek 0.04 0.05 0.00 0.07 0.00 0.02 0.02 0.03 1 0.71
Middle Branch Escanaba River 0.00 0.00 0.03 0.05 0.00 0.03 0.03 0.07 0.974 0.71
Cedar Creek 0.02 0.01 0.00 0.23 0.02 0.03 0.05 0.01 1 0.62
Butterfield Creek 0.04 0.03 0.00 0.10 0.08 0.00 0.12 0.01 1 0.59
Fish Creek 0.02 0.01 0.00 0.00 0.06 0.07 0.16 0.10 0 0.57
Honeyoey Creek 0.00 0.00 0.00 0.14 0.00 0.07 0.06 0.01 0.998 0.50
North Branch Thunder Bay River 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.14 0 0.47
Morgan Creek 0.00 0.00 0.01 0.24 0.00 0.00 0.00 0.05 0.998 0.42
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. Stream Ta-Tup Qup Qdown-Qup S Δup Δbase Δover α ω Overall R2

Slapneck Creek 0.02 0.20 0.04 0.06 0.00 0.00 0.00 0.02 1 0.35
King Creek 0.14 0.02 0.00 0.00 0.05 0.19 0.12 0.02 1 0.33
Nottawa Creek 0.10 0.01 0.00 0.00 0.03 0.04 0.04 0.47 1 0.32
Cedar River 0.03 0.02 0.00 0.18 0.00 0.00 0.00 0.06 1 0.30
Prairie River 0.01 0.10 0.00 0.09 0.04 0.00 0.01 0.05 1 0.30
Pigeon River 0.09 0.00 0.05 0.01 0.05 0.00 0.00 0.01 1 0.30
Pokagon Creek 0.01 0.05 0.00 0.00 0.07 0.15 0.16 0.00 1 0.30
Squaw Creek 0.15 0.00 0.00 0.04 0.05 0.06 0.06 0.06 1 0.26
Carp River 0.07 0.00 0.01 0.05 0.03 0.11 0.05 0.04 1 0.24
Swan Creek 0.00 0.02 0.00 0.00 0.07 0.10 0.05 0.00 0.505 0.23
East Branch Black River 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.12 0 0.19
Spring Creek 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0 0.16
Overall Mean 0.04 0.03 0.01 0.09 0.03 0.04 0.04 0.07 0.695 0.41

BC

CC

CR

EB

KC

NB

FC HA

HC

MB

NC
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PC PR
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Study Stream Locations
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