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Abstract

Clustering approaches are pivotal to handle the many sequence variants obtained in DNA metabarcoding datasets, therefore
they have become a key step of metabarcoding analysis pipelines. Clustering often relies on a sequence similarity threshold to
gather sequences in Molecular Operational Taxonomic Units (MOTUs) that ideally each represent a homogeneous taxonomic
entity, e.g. a species or a genus. However, the choice of the clustering threshold is rarely justified, and its impact on MOTU over-
splitting or over-merging even less tested. Here, we evaluated clustering threshold values for several metabarcoding markers
under different criteria: limitation of MOTU over-merging, limitation of MOTU over-splitting, and trade-off between over-
merging and over-splitting. We extracted sequences from a public database for eight markers, ranging from generalist markers
targeting Bacteria or Eukaryota, to more specific markers targeting a class or a subclass (e.g. Insecta, Oligochaeta). Based on
the distributions of pairwise sequence similarities within species and within genera and on the rates of over-splitting and over-
merging across different clustering thresholds, we were able to propose threshold values minimizing the risk of over-splitting,
that of over-merging, or offering a trade-off between the two risks. For generalist markers, high similarity thresholds (0.96-0.99)
are generally appropriate, while more specific markers require lower values (0.85-0.96). These results do not support the use of
a fixed clustering threshold (e.g. 0.97). Instead, we advocate a careful examination of the most appropriate threshold based on
the research objectives, the potential costs of over-splitting and over-merging, and the features of the studied markers.
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Abstract

Clustering approaches are pivotal to handle the many sequence variants obtained in DNA metabarcoding
datasets, therefore they have become a key step of metabarcoding analysis pipelines. Clustering often relies
on a sequence similarity threshold to gather sequences in Molecular Operational Taxonomic Units (MOTUs)
that ideally each represent a homogeneous taxonomic entity, e.g. a species or a genus. However, the choice
of the clustering threshold is rarely justified, and its impact on MOTU over-splitting or over-merging even
less tested. Here, we evaluated clustering threshold values for several metabarcoding markers under different
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criteria: limitation of MOTU over-merging, limitation of MOTU over-splitting, and trade-off between over-
merging and over-splitting. We extracted sequences from a public database for eight markers, ranging from
generalist markers targeting Bacteria or Eukaryota, to more specific markers targeting a class or a subclass
(e.g. Insecta, Oligochaeta). Based on the distributions of pairwise sequence similarities within species and
within genera and on the rates of over-splitting and over-merging across different clustering thresholds, we
were able to propose threshold values minimizing the risk of over-splitting, that of over-merging, or offering
a trade-off between the two risks. For generalist markers, high similarity thresholds (0.96-0.99) are generally
appropriate, while more specific markers require lower values (0.85-0.96). These results do not support the use
of a fixed clustering threshold (e.g. 0.97). Instead, we advocate a careful examination of the most appropriate
threshold based on the research objectives, the potential costs of over-splitting and over-merging, and the
features of the studied markers.

Keywords

metabarcoding marker; sequence variant; analysis parameter; MOTU over-splitting, MOTU over-merging;
alpha diversity

Introduction

DNA metabarcoding studies are typically based on a succession of experimental steps governed by important
methodological choices (Zinger et al. 2019). These include a) the definition of sampling design and selection
of sampling sites (Dickie et al. 2018), b) the approach used for the preservation of the starting material
(Tatangelo et al. 2014, Guerrieri et al. 2021), c) the protocol used for DNA extraction (Taberlet et al. 2012,
Eichmiller et al. 2016, Zinger et al. 2016, Lear et al. 2018, Capo et al. 2021), d) the selection of appropriate
primers to amplify a taxonomically-informative genomic region (Elbrecht et al. 2016, Fahner et al. 2016,
Ficetola et al. 2021), e) the strategy adopted for DNA amplification and high-throughput sequencing of
amplicons (Nichols et al. 2018, Taberlet et al. 2018, Bohmann et al. 2022), f) the pipeline selected for
bioinformatics analyses (Boyer et al. 2016, Calderon-Sanou et al. 2020, Capo et al. 2021, Couton et al. 2021,
Macher et al. 2021, Machler et al. 2021), and g) the statistical approach used to translate metabarcoding data
into ecological information (Paliy and Shankar 2016, Chen and Ficetola 2020). Each of these methodological
choices can heavily influence the reliability and interpretation of results (Alberdi et al. 2018, Zinger et al.
2019), and there is thus a critical need for the development, proper assessment and optimization of methods
specially dedicated to DNA metabarcoding.

When analyzing metabarcoding data, bioinformatic pipelines generally produce a list of detected sequences,
that can be assigned to a given taxon with a more or less precise taxonomic resolution. However, the num-
ber of unique sequences obtained after bioinformatic treatment is generally much higher than the number
of taxa actually present in the sample (Calderon-Sanou et al. 2020, Machler et al. 2021). This stems from
multiple reasons including genuine intraspecific diversity of the selected markers and errors occurring during
the amplification or sequencing steps. Consequently, sequence clustering approaches are often used to collap-
se very similar sequences into one single Molecular Operational Taxonomic Unit (MOTU), which does not
necessarily correspond to a species in the traditional sense (Kopylova et al. 2016, Froslev et al. 2017, Bhat
et al. 2019, Antich et al. 2021). Sequence clustering can be performed using similarity thresholds, Bayesian
approaches, or through single-linkage (Antich et al. 2021). Approaches based on similarity thresholds can
have excellent performance and they display several advantages such as flexibility and easy implementation
(Kopylova et al. 2016, Wei et al. 2021). However, two key parameters have to be determined a priori when
performing clustering based on sequence similarity. The first one is the sequence to be selected as representa-
tive of the cluster. In the case of metabarcoding studies, keeping the most abundant sequence of the cluster
as the cluster representative is a convenient way of merging sequence variants generated during the PCR or
sequencing steps with the original sequence they derive from (Mercier et al. 2013). The second parameter
is the similarity threshold (clustering threshold) used to build MOTUS (Clare et al. 2016, Calderon-Sanou
et al. 2020, Wei et al. 2021). Choosing this threshold is delicate without prior knowledge of the maker and
its intrinsic level of diversity. A too low threshold can collapse different taxa into the same MOTU (over-
merging), while a too high threshold can create too many MOTUs (over-splitting) compared to the actual
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diversity levels (Clare et al. 2016, Roy et al. 2019, Schloss 2021).

Some works suggest that the ecological interpretation of metabarcoding data can be relatively robust to the
threshold selected for sequence clustering. For instance, Botnen et al. (2018) used thresholds ranging from
0.87 to 0.99 of sequence similarity to analyze multiple microbial communities, and they obtained community
structures highly coherent across thresholds. Nevertheless, levels of alpha diversity can be heavily impacted
by the threshold selection. Ideally, the threshold used for clustering would depend on a trade-off between
MOTU over-splitting and MOTU over-merging. A growing number of markers are currently being used in
metabarcoding studies (Taberlet et al. 2018), with some allowing broad-scale biodiversity assessment but
having limited taxonomic resolution (e.g. 18S rDNA primers amplifying all eukaryotes; Guardiola et al. 2015)
and others being highly specific to one single class or even family (e.g. Baamrane et al. 2012, Ficetola et al.
2021). Biodiversity surveys generally aim to generate a set of MOTUs that are each associated with a unique
taxon, and with all taxa situated at the same level in the taxonomic tree, to facilitate comparisons. In these
conditions, optimal clustering thresholds probably strongly differ across markers. One can for example expect
high similarity thresholds for highly conserved markers, and lower clustering thresholds for markers showing
high intraspecific variability (Kunin et al. 2010, Brown et al. 2015). However, there is limited quantitative
assessment of how optimal clustering thresholds vary across markers (but see Alberdi et al. 2018).

In this study, we analyzed sequences from a public database (EMBL) to identify clustering thresholds for
different markers and under different criteria. We considered eight metabarcoding markers (Table 1), ranging
from generalist ones (e.g. a 16S rDNA-based marker targeting Bacteria and a 18S rDNA-based marker
targeting Eukaryota) to more specific markers (e.g. markers specific of earthworms, insects or springtails).
We evaluated how clustering thresholds can change for each taxonomic group, depending on the criterion
adopted to set the threshold. We used two alternative strategies to identify thresholds, each time with
different objectives in mind. First, following a procedure similar to the one adopted in barcoding studies
(Meyer and Paulay 2005), we compared the distribution probabilities of sequence similarities among different
individuals of the same species and among different species of the same genus to identify thresholds: i )
minimizing the risk that different sequences of the same species are split in different MOTUs (i.e. risk of
over-splitting); ii ) minimizing the risk that distinct but related species are clustered in the same MOTU
(i.e. risk of over-merging); iii ) balancing the risk of over-splitting and over-merging (Figure 1A). Second,
we calculated the over-splitting and over-merging rates of the studied markers for a range of clustering
thresholds, to identify values that minimize the two error rates (Figure 1B). We expect that, if researchers
want to minimize over-splitting, they should select lower clustering thresholds than if they want to minimize
over-merging. Furthermore, we expect higher clustering threshold values for generalist markers compared to
markers targeting one class or more restricted taxonomic groups, because of the lower taxonomic resolution
and slower evolutionary rate of the former.

Methods

Markers examined and construction of sequence datasets

We focused on a set of eight DNA metabarcoding markers (Bact02, Euka02, Fung02, Sper01, Arth02, Coll01,
Inse01, Olig01) targeting different taxonomic groups (Table 1). Four of these markers can be considered as
generalist, i.e. targeting entire superkingdoms or kingdoms: Bact02 targeting Bacteria; Euka02 targeting
Eukaryota; Fung02 targeting Fungi; Sper01 targeting Spermatophyta (vascular plants). One marker was
intermediate (Arth02; targeting arthropods, i.e. the most species-rich phylum on Earth). Finally, three were
more specific, i.e. targeting groups from classes to subclasses: Coll01 targeting Collembola (springtails);
Inse01 targeting Insecta; Olig01 targeting Oligochaeta (earthworms).

For each of these markers, a sequence database was built from EMBL release 140 as follows. An in silico
PCR was first carried out by running the program ecoPCR (Ficetola et al. 2010) using the corresponding
primers (Table S1). Three mismatches per primer were allowed (-e option), and the amplified amplicon length
without primers was restricted (-l and -L options) to the expected length interval (Table S1). The amplified
sequences were further filtered by keeping only those belonging to the target taxonomic group, showing
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a taxonomic assignment (i.e. taxid) at the species and genus levels and having no ambiguous nucleotides.
This allowed assembling a working dataset, from which we extracted two sub-datasets. The “within-species”
dataset was built by keeping only species for which at least two sequences (identical or not) were available;
if >2 sequences were available for a given species, we randomly selected two sequences for that species. The
“within-genus” dataset was built by keeping only genera for which at least two sequences were available; if
>2 sequences were available for a given genus, we randomly selected two sequences for that genus. For some
markers (Bact02, Euka02, Fung02, Inse01, Sper01), the within-species dataset and sometimes the within-
genus dataset still contained a very large number of sequences (>10,000). To limit computation time for
these markers, we randomly selected a subset of 5000 different taxa, to reach a final number of sequences
equal to 10,000. Table S2 summarizes the number of sequences in the different datasets.

Calculation of sequence similarities and probability distributions

As a measure of sequence similarity, we computed the pairwise LCS (Longest Common Subsequence) sco-
res between pairs of sequences in the within-species and within-genus datasets using the sumatraprogram
(Mercier et al. 2013). Methodological comparisons showed that this algorithm provides an excellent balance
between performance and computation efficiency (Jackson et al. 2016, Kopylova et al. 2016, Bhat et al.
2019).As sumatra provides pairwise scores for all possible pairs of sequences, the similarity scores resulting
from the within-species dataset were filtered in R (R Core Team 2020) to keep only those representing simi-
larities between sequences of the same species, while the scores resulting from the within-genus dataset were
filtered to keep only those representing similarities between different species of the same genus.

Approaches to identify clustering thresholds on the basis of within-species and within-genus
sequence similarities

We first examined within-species and within-genus sequence similarities to evaluate four different strategies
and determine the corresponding appropriate clustering threshold (Figure 1A) that: i ) avoid over-splitting;
ii ) avoid over-merging; iii ) find a balance between over-splitting and over-merging, with two distinct
procedures based on the intersection (iii -a) or on modes (iii -b) of the density probability distributions.
These strategies are analogous to those adopted in traditional barcoding studies to set the limit between
intra-specific and inter-specific diversity (Meyer and Paulay 2005).

Avoid over-splitting

In this case, the aim is to avoid distributing different sequences belonging to the same species in different
clusters (i.e. limiting the probability of generating additional spurious MOTUs). For this approach, we
selected as clustering threshold the 10% quantile of the distribution of similarities between sequences from
the same species (within-species dataset). With this approach, the sequences belonging to the same species
according to EMBL are gathered in the same cluster in 90% of the cases.

Avoid over-merging

In this case, the aim is to avoid gathering sequences attributed to different species of the same genus in the
same cluster (i.e. limiting the probability of merging related species in the same MOTU). For this approach,
we selected as clustering threshold the 90% quantile of the distribution of similarities between different species
belonging to the same genus. With this approach, the sequences attributed to different species belonging to
the same genus are assigned to different clusters in 90% of the cases.

Find a balance between over-splitting and over-merging

In this case, the aim was to minimize both over-splitting and over-merging. We considered two distinct
approaches. First, we obtained the probability distribution of within-species and within-genus sequence
pairwise similarities using the density function from R, with biased cross-validation (bw=“bcv”) as smoothing
bandwidth selector and a Gaussian smoothing kernel (kernel=“gaussian”; Venables and Ripley 2002). Other
possible smoothing bandwidth selectors were tested, but biased cross-validation was the approach best fitting
the score histograms for all markers and all datasets (data not shown). The balance threshold iii- a was then
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identified as the intersection between the probability distributions of the within-species and within-genus
similarities. As an alternative approach to balance over-merging and over-splitting (iii- b), we calculated the
midpoint between the modes of the within-species and within-genus probability distributions.

Rates of over-merging and over-splitting

For each marker, over-merging and over-splitting rates were evaluated at different clustering thresholds using
the within-species dataset described in the paragraph “Markers examined and construction of sequences
datasets”. This dataset contains two sequences at random, identical or not, for a number of species belonging
to the taxonomic group of interest.

For each within-species dataset, clustering was performed using thesumaclust program (Mercier et al. 2013)
with the -n option (normalization by alignment length) based on the sequence similarities first calculated
using the sumatra program (see above; Mercier et al. 2013). Threshold values (-t option) ranging from 0.90
to 1 at 0.01 steps were tested for all markers except Coll01 and Olig01 for which wider ranges ([0.70 – 1]
and [0.80 – 1], respectively) were selected based on the within-genus and within-species sequence similarity
probability distributions determined previously (see Figure 2). Clustered datasets were then explored to
calculate five different variables at each clustering threshold: 1) the number of clusters; 2) the percentage
of MOTUs containing one single species; 3) the percentage of MOTUs containing one single genus; 4) the
percentage of species gathered in one single MOTU; 5) the percentage of genera gathered in one single
MOTU. Variables 2 and 3 are indicative of appropriate MOTU merging of sequences at the species and
genus levels, respectively, while variables 4 and 5 are indicative of appropriate MOTU splitting at the species
and genus levels, respectively.

These values were also used to calculate three measures of error. We defined the over-merging rate as 1 -
the percentage of MOTUs containing one single species; and the over-splitting rate as 1 - the percentage
of species gathered in one single MOTU. The summed error rate was then calculated as the sum of the
over-merging and over-splitting rates. It should be noted that for this estimate, we assigned the same weight
to over-splitting and over-merging.

Results

Our in-silico PCRs amplified between 17,000 (Coll01) and 3,2000,000 (Bact02) sequences per marker (Table
S2). After data filtering, we retained between 510 (Coll01) and 708,000 (Bact02) sequences per marker. The
within-species dataset comprised between 118 (Coll01) and 10,000 (Bact02, Euka02, Fung02, Sper01, Inse01)
sequences, while the within-genus dataset comprised between 74 (Coll01) and 10,000 (Euka02 and Sper01)
sequences per marker.

Clustering thresholds determined from probability distributions of within-species and within-
genus sequence similarities

The probability distributions of within-species and within-genus sequence similarities showed very contrasting
patterns between the generalist and the specific markers (Figure 2). For the five markers targeting a phylum
or broader taxonomic groups (Bact02, Euka02, Fung02, Sper01, and Arth02), the distributions of within-
species and within-genus similarities were rather similar, both showing a mode at very high similarity values
(Figure 2). Fung02 showed a slightly different pattern, as the within-genus similarities had a very broad
distribution. Conversely, for the more specific markers, the distributions of sequence similarities were very
different, with two clearly distinct peaks. Within-species similarities remained very high (mostly above 0.95),
while within-genus similarities generally showed lower values (mode around 0.90 for Inse01, and below 0.80
for Olig01 and Coll01).

For all markers, criterion i (avoid over-splitting) yielded the lowest thresholds (Figure 3, Table S3), with
very low levels for Coll01 and Olig01. Conversely, criterion ii (avoid over-merging) yielded extremely high
values, except for Coll01. For all generalist markers, avoiding over-merging would require setting clustering
thresholds at 0.99 or higher. For Coll01, criterion ii resulted in a rather low threshold (0.765), because many
within-genus comparisons showed very low similarity values.
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Criteria iii -a and iii -b searching a balance between over-merging and over-splitting yielded somehow con-
trasting results across markers. For the three specific markers (Coll01, Inse01, and Olig01), the within-genus
and within-species similarities showed clearly distinct peaks (Figure 2). As a consequence, the intersection
between the two curves could effectively represent the point minimizing both over-merging and over-splitting
(see discussion), and the midpoint between the modes also identified rather similar threshold values. On the
contrary, for the generalist markers, the within-species and within-genus similarities showed very high over-
lap and similar modes, and the density distributions actually intersected at values lower than both modes.
The midpoint between the modes continued to identify threshold values intermediate between the peaks of
within-species and within-genus similarities.

Rates of over-splitting and over-merging

For all markers, whatever the clustering threshold examined (values [?] 0.70 for Coll01, [?] 0.80 for Olig01
and [?] 0.90 for the other markers), the percentage of MOTUs containing one single species was higher than
50%, and that of MOTUs containing one single genus was higher or close to 70% (Figure 4). Overall, for
the generalist and intermediate markers, these two percentages showed a regular increase with the clustering
threshold, and for the specific markers, they tended to values close to 100% for high thresholds. Unsurpris-
ingly, the two percentages tended to be lower for the generalist markers than for the specific markers at a
given threshold, indicating that the former are more sensitive to over-merging. Fung02 was a notable excep-
tion, since about 87% and 97% of MOTUs contained one single species and one single genus, respectively,
at the 0.97 threshold, which is a frequently adopted clustering threshold for fungal ITS sequences. These
values were comparable to those observed for the specific markers, for which > 85% and > 98% of MOTUs
contained one single species or one single genus, respectively, for thresholds [?] 0.95.

For all markers, the percentages of species and genera gathered in one single MOTU decrease both at a
similar rate with the clustering threshold, with generally a sharp drop at high thresholds ([?] 0.98; Figure
4). However, the pattern of MOTU splitting was less characteristic of generalist vs. specific markers. For
some markers (Euka02, Sper01, Arth02, Inse01), the percentage of species or genera gathered in a single
MOTU remained higher or close to 50% up to high thresholds (0.98). On the contrary, for Bact02, Fung02,
Coll01, Olig01, these percentages dropped quickly when the clustering threshold increased, indicating that
these markers are susceptible to over-splitting.

For all markers, the number of clusters generally increased regularly with the clustering threshold up to 0.97-
0.98 (Figure 4), followed by a sharp rise up to 1 (which was however less obvious for Euka02 and Olig01).
For example, for Bact02, the number of clusters more than doubled between 0.97 (2862 clusters) and 1 (6461
clusters).

Our results showed clear patterns for over-merging and over-splitting rates, with over-splitting quickly in-
creasing and over-merging quickly decreasing at high clustering thresholds (Figure 5). For several markers,
the summed error showed a relatively clear minimum at specific clustering thresholds (Figure 5): 0.96-0.99
for Bact02 and Euka02, 0.97-0.99 for Arth02, 0.94-0.96 for Inse01, and 0.96-0.98 for Sper01. The minimum
was much less evident for Fung02, Coll01 and Oligo01, these markers showing relatively similar summed
error rates over a broad range of clustering thresholds (Fung02: 0.91-0.98; Coll01: 0.82-0.96, with multiple
minima; Oligo01: 0.84-0.96, with multiple minima).

DISCUSSION

Sequence clustering approaches are routinely used for the identification of MOTUs in metabarcoding studies,
and they often resort to methods based on similarity values. Still, selecting a clustering threshold for a given
marker more than often relies on common practices and rules of thumb rather than on proper scientific
argument. By analyzing extensive sequence data deposited in public databases for a range of generalist and
specialist markers, we showed that different threshold values can be selected depending on the marker and on
the criterion favored by researchers. All the markers we examined are situated in non-protein coding genes
(Table S1), and this has an influence on levels of sequence intraspecific diversity. The 10% quantile of the
within-species similarity probability distribution was almost always lower than the 0.97 clustering threshold
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traditionally used in barcoding for markers targeting protein-coding genes like COI (Hebert et al. 2003), or
for microbial MOTU delimitation (Balint et al. 2016), indicating that some level of over-splitting can occur
at this threshold.

Although for all the markers the within-genus similarity values were generally lower than the within-species
similarities, the overlap between the two distributions was dependent on the generalist vs. specific nature
of the marker. For some specific markers (e.g. Coll01 and Olig01), distinct peaks were visible for the two
similarity metrics (Figure 2). Within-species similarities generally were >0.90, while within-genus values
were lower, frequently below 0.80. Such a pattern is not unexpected for markers with an excellent taxonomic
resolution and designed to identify taxa at the species level. Conversely for the generalist markers, within-
species and within-genus similarity probability distributions largely overlapped and the differences between
the peaks were minimal. Nevertheless, even for these markers, the density of within-species similarity was
consistently higher than that of within-genus similarity at high clustering thresholds, indicating that the
probability of observing the corresponding similarity value is higher within species than within genera. In
other words, at high clustering thresholds, a MOTU is more likely to represent a species than a genus. This
result is confirmed by the fact that the percentage of MOTUs containing a single species is always higher
than 50%, whatever the clustering threshold or the marker considered (Figure 4).

The sequences used as a primary source of information in this study were downloaded from EMBL, and
our results are thus highly dependent on the quality of the data deposited in this public database. Even
though broad-scale analyses suggest that these data are generally reliable (Leray et al. 2019), errors in
the sequence itself (e.g. wrong nucleotide, or more complex errors like insertions, deletions, inversions,
duplications or pseudogene sequences) and taxonomic mislabeling can occur in public sequence databases,
especially for organisms which are difficult to identify based on morphology (Bridge et al. 2003, Bidartondo
2008, Valkiūnas et al. 2008, Mioduchowska et al. 2018). While the first type of error will affect within-species
sequence similarity negatively, sometimes substantially, the effect of the second type is more diffuse. For
example, in a group like springtails where species delimitation is tricky (Porco et al. 2012), the existence
of cryptic species will decrease within-species sequence similarity while increasing over-splitting rates. In a
group like Bacteria, type strains are sometimes entered at the species level in the NCBI (EMBL) taxonomy
(Federhen 2015), leading to an inflation of within-genus similarity and over-merging rates. In every case
though, database errors will make within-species and within-genus similarities distributions more difficult
to distinguish and clustering thresholds trickier to identify, thus the over-splitting or over-merging rates
reported here could be artificially higher than in reality.

In this work, we came up with a global measure of the error associated with a given clustering threshold, that
we called the “summed error”. We calculate it by summing over-splitting and over-merging rates, assuming
both have the same cost for biodiversity studies. However, it is possible to assign a differential weight to
over-splitting and over-merging. For instance, if the aim is to reach conservative estimated of alpha diversity
(i.e. avoid over-splitting), more weight can be assigned to over-splitting rate. Conversely, if the aim is to
tease apart closely related species, that differ in their sensitivity to environmental stressors or in threat levels,
one may prefer to avoid over-merging, particularly when extensive reference databases are available (Roy et
al. 2019, Lopes et al. 2021).

For most of the markers we examined, the summed error approach provided relatively clear results, and
identified a range of threshold values that minimized the summed error. For instance, for Euka02, the
summed error was relatively low at thresholds between 0.96 and 0.99 (Figure 5), indicating a good trade-
off between over-merging and over-splitting. Interestingly, this range of values was also highlighted by the
analysis of probability distributions (Figure 3, Table S3). Indeed, 0.96 is the threshold minimizing over-
splitting for Euka02 while 0.99 is the balance (midpoint) threshold. The consistency of values obtained with
very different approaches supports the robustness of our conclusions.

However, for a few markers, the threshold values minimizing summed error yielded somewhat less clear
patterns. For Fung02, the summed error rate was rather constant (36-37%) at all the thresholds between
0.91 and 0.98, while it quickly increased for higher clustering thresholds. For Coll01 and Oligo01, the summed
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error rate showed multiple minima, some of which at very low clustering thresholds (Figure 5). In principle,
increasing the threshold value should determine a monotone decrease of over-merging, and a monotone
increase of over-splitting (Figure 1B). However, at low similarity values this was not always the case (Figure
5). This probably occurs because a very large number of sequences have pairwise similarities of 0.80-0.85 for
these markers (Figure 2), and this might affect the identification of clusters, with some sequences clustering
together e.g. at 0.85 but not at 0.86 similarity values. We also note that these similarity values match
the ones corresponding to the intersection between the within-genus and within-species similarities for these
markers (Figure 3). It is also possible that, at this level of sequence similarity, there is strong uncertainty
between MOTUs representing different hierarchical levels of taxonomy.

Our results provide quantitative data that can help researchers set their optimal clustering thresholds, and
understand the consequences of choosing low or high threshold values. If a clear minimum exists for the
summed error rate, it probably represents an excellent trade-off between over-merging and over-splitting.
In this sense, a threshold value ranging from 0.96 to 0.99 is probably appropriate for both Bact02 and
Euka02, while Arth02 should accommodate a slightly higher range (0.98-0.99) and a fixed threshold of 0.97
seems to be more suitable for Sper01. For Inse01, lower threshold values (0.94-0.96) are more judicious. All
these values match with those obtained on the basis of within-species and within-genus similarities (Figure
3). However, for Coll01, Oligo01 and Fung02, the summed error rate does not provide clear indications,
and within-species and within-genus similarity distributions (e.g. midpoint between modes) might be more
informative to set the threshold value (Figures 2 and 3).

The selection of clustering thresholds can have strong effect in the estimates of MOTUs richness (Figure 4),
still it is important to remember that it often does not have a tremendous effect on the ecological message
conveyed by metabarcoding data. For instance, Clare et al. (2016) examined different clustering thresholds
to analyze dietary overlap between skinks and shrews in Mauritius. Although high clustering thresholds
yielded a larger number of MOTUs, ecological conclusions remained rather consistent overall. Therefore,
provided that appropriate parameters are considered (e.g. alpha diversity measured using Hill’s numbers
with q > 0 instead of richness, beta diversity estimates), the interpretation of data can be relatively robust
(Clare et al. 2016, Roy et al. 2019, Calderón-Sanou et al. 2020, Mächler et al. 2021). Nevertheless, we
discourage the blind application of one single clustering threshold like the classical 0.97, as it can have very
different meaning across markers, and can inflate MOTU richness for fast-evolving markers. Instead, we
advocate the ad-hoc definition of the most appropriate thresholds, on the basis of research aims, on the
potential costs of over-splitting and over-merging, and on the features of the studied markers.
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Table 1. Target groups and taxonomic resolution of the eight studied markers.

Marker Target group Taxonomic level Taxonomic resolution * Taxonomic resolution * Taxonomic resolution * Taxonomic resolution * Reference(s)

Species level Genus level Family level Order level
Bact02 Bacteria Superkingdom 19.6% 55.7% 55.1% 60.2% Taberlet et al. (2018)
Euka02 Eukaryota Superkingdom 47.0% 59.5% 68.3% 67.1% Guardiola et al. (2015)
Fung02 Fungi Kingdom 72.5% 90.2% 87.7% 85.5% Epp et al. (2012), Taberlet et al. (2018)
Sper01 Spermatophyta Clade < kingdom 21.5% 36.9% 77.4% 89.6% Taberlet et al. (2007)
Arth02 Arthropoda Phylum 68.6% 89.6% 97.5% 100.0% Taberlet et al. (2018)
Coll01 Collembola Class 80.5% 87.2% 75.0% NA Janssen et al. (2018)
Inse01 Insecta Class 87.8% 96.8% 95.4% 79.3% Taberlet et al. (2018)
Olig01 Oligochaeta Subclass 89.3% 95.7% 100.0% 100.0% Bienert et al. (2012), Taberlet et al. (2018)

* Estimated as the percentage of discriminated taxa among amplified taxa; reported from Taberlet et al.
(2018).

Figure captions

Figure 1. Different approaches to identify the most appropriate clustering thresholds. A): approaches
based on similarities between sequences belonging to different individuals from the same species (blue curve),
and similarities between sequences belonging to different species from the same genus (red curve). One can
choose to minimize the risk that different sequences from the same species are split in different MOTUs (over-
splitting risk; e.g. 10% quantile of the distribution of within-species similarities), the risk that sequences
from different species belonging to the same genus are clustered in the same MOTU (over-merging risk; e.g.
90% quantile of within-genus similarities), or one can try to find a balance between the risks of over-splitting
and over-merging (e.g. with the intersection between probability distributions, or the midpoint between the
modes of both distributions). B) Approaches based on rates of over-splitting and over-merging. One can
compare the over-splitting (blue) and the over-merging (red) rates, and/or one can identify the thresholds
minimizing the sum of these rates (violet).

Figure 2. Density probability distributions of sequence pairwise similarities within species (blue lines)
and within genera (red lines) for the eight studied markers. For each marker, dotted lines represent the
10% quantile of the within-species probability distribution (blue; threshold limiting over-splitting), the 90%
quantile of the within-genus probability distribution (red; threshold limiting over-merging), the intersection
of the within-species and within-genus probability distributions (green, balance-a) and the midpoint between
modes (black, balance-b)

Figure 3. Different possible clustering thresholds for the eight studied markers, depending on the selected
criterion.
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Figure 4. Evolution of over-splitting and over-merging rates for a range of clustering thresholds, for the
eight studied markers. The left y-axes report percentage values; the right y-axes indicate the number of
obtained clusters.

Figure 5. Over-splitting (blue) and over-merging (red) rates, as well as the summed error rate (i.e. over-
splitting rate + over-merging rate; violet), for the eight studied markers across a range of clustering thresh-
olds.
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