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Abstract

Climate change is affecting how energy and matter flow within ecosystems, altering global carbon and nutrient cycles. Mi-

croorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and

climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections

within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be

challenging—if not impossible—without accounting for the direct and indirect effects of viral infections on different microbes

(bacteria, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising tempera-

tures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet severely understudied.

In this perspective, we 1) synthesize existing knowledge about virus-microbe-temperature interactions and 2) identify important

gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem func-

tioning. To provide real-world context, we consider how these processes may operate in peatlands—globally significant carbon

sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any

ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs.
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ABSTRACT 41 

Climate change is affecting how energy and matter flow within ecosystems, altering global 42 

carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient 43 

cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major 44 

black box hindering our ability to anticipate ecosystem climate responses: viral infections within 45 

complex microbial food webs. We show how understanding and predicting ecosystem responses 46 

to warming could be challenging—if not impossible—without accounting for the direct and 47 

indirect effects of viral infections on different microbes (bacteria, fungi, protists) that together 48 

perform diverse ecosystem functions. Importantly, understanding how rising temperatures 49 

associated with climate change influence viruses and virus-host dynamics is crucial to this task, 50 

yet severely understudied. In this perspective, we 1) synthesize existing knowledge about virus-51 

microbe-temperature interactions and 2) identify important gaps to guide future investigations 52 

regarding how climate change might alter microbial food web effects on ecosystem functioning. 53 

To provide real-world context, we consider how these processes may operate in peatlands—54 

globally significant carbon sinks that are threatened by climate change. We stress that 55 

understanding how warming affects biogeochemical cycles in any ecosystem hinges on 56 

disentangling complex interactions and temperature responses within microbial food webs. 57 

 58 

 59 

 60 

 61 

 62 

 63 
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INTRODUCTION  64 

Climate change is warming terrestrial carbon (C) reserves, making them increasingly vulnerable 65 

to microbial respiration (Dorrepaal et al. 2009; Jassey et al. 2015; Page and Baird 2016; Masson-66 

Delmotte et al. In Press). Because microbial respiration increases with temperature (Zhou et al. 67 

2012; Bradford et al. 2019; Smith et al. 2019; Wieczynski et al. 2021), microbes will likely 68 

accelerate carbon release at ever increasing rates as Earth warms, creating a positive atmospheric 69 

feedback loop not currently represented in predictive models of future climate (Cavicchioli et al. 70 

2019). However, warming is expected to restructure microbial food webs through changes in 71 

species composition (Petchey et al. 1999) (but see (Thakur et al. 2021)) and species interactions 72 

(Lurgi, López and Montoya 2012; Barbour and Gibert 2021). Additionally, microbial impacts on 73 

carbon cycling are likely mediated by viral infections of both microbes and their predators 74 

(Wilhelm and Suttle 1999; Weitz et al. 2015; Fischhoff et al. 2020). Despite the increasing 75 

recognition that infectious agents like viruses are integral components of food webs (Lafferty et 76 

al. 2008), the role they play in microbial food webs and their associated temperature 77 

dependencies remain poorly understood. Identifying and understanding the temperature-78 

dependence of these biotic controls on microbial respiration is paramount to properly forecast 79 

current and future ecosystem-climate feedbacks.  80 

  81 

Autotrophic and heterotrophic bacteria, archaea, fungi, and micro-eukaryotes play functionally 82 

unique roles in microbial communities as primary producers, nitrogen (N2)-fixers (diazotrophs), 83 

and organic biomass decomposers. For example, microbial autotrophs provide about half of 84 

global primary production (Field et al. 1998; Litchman et al. 2015). Decomposers recycle carbon 85 

and nutrients from dead organic matter and act as major carbon emitters by respiring carbon 86 
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(CO2 and CH4) into the atmosphere (Falkowski et al. 2000; Canadell et al. 2021). The matter 87 

recycled by decomposers reaches higher trophic levels through microbial predation—a process 88 

known as the “the microbial loop” (Azam et al. 1983; Fenchel 2008). Predation by protists is a 89 

major source of mortality among microbial primary producers (Geisen et al. 2020) and 90 

decomposers (Sherr and Sherr 1988; Gao et al. 2019) (Fig. 1), that can drastically impact carbon 91 

and nutrient cycling by reducing microbial biomass, increasing nutrient turnover, and altering 92 

microbial respiration rates (Trap et al. 2016; Geisen et al. 2018, 2021; Gao et al. 2019; Rocca et 93 

al. 2021). Because of these effects, protists have been called the “puppet masters'' of the 94 

microbiome (Gao et al. 2019). Due to changes in underlying physiological processes, protist 95 

predation rates are expected to change with warming (DeLong and Lyon 2020), altering species 96 

interactions within microbial food webs (DeLong and Lyon 2020; Thakur et al. 2021) and 97 

influencing microbial biomass and respiration rates (O’Connor et al. 2009; Yvon-Durocher and 98 

Allen 2012; Geisen et al. 2021). This complexity emphasizes the need for a food web 99 

perspective to understand microbial responses to changing environmental conditions (Thakur and 100 

Geisen 2019). 101 

 102 

Perhaps our biggest oversight in understanding microbial food web responses to global change is 103 

the neglected role of viruses, who have also recently been described as “puppet masters” in the 104 

microbiome (Breitbart et al. 2018). All microbes are potential hosts for viruses, which may affect 105 

microbial food web composition and functioning by increasing microbial mortality and, in turn, 106 

nutrient cycling (via the Viral Shunt) (Fuhrman 1999; Wilhelm and Suttle 1999; Weinbauer 107 

2004; Suttle 2005). Viruses are the most abundant biological entities on Earth (Weinbauer 2004; 108 

Suttle 2005); therefore, viral mediation of carbon and nutrient flux within microbial food webs is 109 
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likely widespread, having important consequences for ecosystem functioning at both local and 110 

global scales (Fuhrman 1999; Wilhelm and Suttle 1999; Weinbauer 2004; Suttle 2005; Weitz et 111 

al. 2015). Several aspects of the viral infection cycle and virus-host dynamics could potentially 112 

be affected by warming (Table 1), yet the effects of temperature on these processes is unclear 113 

and severely understudied (Fig. 2), undermining our ability to predict how microbial food webs 114 

will respond to global change.  115 

 116 

Although the individual effects of microbes and viruses on ecosystem functioning have been 117 

discussed (Azam et al. 1983; Fenchel 2008; Quaiser et al. 2015; Ballaud et al. 2016; Stough et 118 

al. 2017; Gao et al. 2019; Geisen et al. 2021), we lack a baseline understanding about how these 119 

top-down controls jointly influence ecosystem processes within broader microbial food webs and 120 

in response to novel climates. Here, we outline the current state of understanding regarding 121 

temperature effects on infections within microbial food webs and propose ways to conceptualize 122 

and address existing knowledge gaps, with a focus on potential effects of warming on carbon and 123 

nutrient cycling. First, we present the current state of kno0wledge regarding the effects of 124 

temperature on viruses and viral infections. Next, we integrate viruses into microbial food webs 125 

to discuss how viruses might mediate the effects of warming on food web dynamics and 126 

functioning. Finally, to provide real-world context for the potential effects of warming on viral 127 

infections within microbial food webs, we conclude by exploring how virus-microbe responses 128 

to warming may alter ecosystem processes in Sphagnum moss-dominated peatlands, which are 129 

particularly vulnerable to future climate change (Page and Baird 2016) and, despite occupying 130 

less than 3% of the Earth’s surface, store ~25–30% of the world’s soil carbon (Yu et al. 2010) 131 

and produce 5–10% of global atmospheric methane (Blodau 2002). 132 
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 133 

1. TEMPERATURE EFFECTS ON VIRUSES AND VIRAL INFECTIONS 134 

All components of microbial food webs can be infected by viruses. While it is recognized that 135 

rising temperatures influence the ecology and physiology of microorganisms across 136 

environments (Labbate et al. 2016), it is still unclear how the direct and indirect effects of 137 

warming will influence viruses, their infection cycles, and how that will ultimately cascade to 138 

influence microbial food web functioning. Viral infection occurs in a sequence of steps (Cann 139 

2008) (Fig. 2) including 1) host cell encounter, 2) adsorption, 3) introduction of virus or genetic 140 

material into the cell, 4) synthesis of viral particles, and 5) assembly and release of viral progeny. 141 

Any one, and likely all, of these steps could be temperature dependent (Fig. 2, Table 1, Table 142 

S2), but much research is still needed to evaluate the extent and nature of these temperature 143 

dependencies. Furthermore, temperature may affect viral production directly by affecting the 144 

particle itself (Nagasaki and Yamaguchi 1998) or indirectly by altering host physiology 145 

(Kendrick et al. 2014). Understanding each of these temperature effects is paramount to 146 

determine how warming might impact carbon and nutrient cycling within microbial food webs. 147 

 148 

Increasing temperature can cause a decrease in latent period (time from infection until release of 149 

viral progeny) and an increase in burst size (number of viral progeny released) (Hadas et al. 150 

1997; Nagasaki and Yamaguchi 1998; Demory et al. 2017; Maat et al. 2017; Piedade et al. 2018) 151 

(Fig. 2), followed by a reversal of these trends past a virus-specific thermal optimum (Topt) 152 

(Kimura et al. 2008; Demory et al. 2017). Temperature effects on burst size and latent period are 153 

likely the result of host metabolism and virus synthesis kinetics, but direct evidence is lacking. 154 

Based on these findings, we hypothesize that future warming may increase infection and viral 155 
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production in systems in which current in situ temperatures are below Topt, while systems already 156 

near or at Topt may produce fewer viruses or undergo complete shutdown of viral propagation.  157 

 158 

Encounter rates between viruses and hosts depend on virus and host densities (Murray and 159 

Jackson 1992), host cell size, and host motility (Wilhelm et al. 1998). Host cell sizes (Atkinson, 160 

Ciotti and Montagnes 2003; Daufresne, Lengfellner and Sommer 2009; Martin et al. 2020) and 161 

population densities (Savage et al. 2004; Bernhardt, Sunday and O’Connor 2018) often decrease 162 

while motility increases (Crozier and Federighi 1924; Maeda et al. 1976; Dell, Pawar and Savage 163 

2011, 2014; Gibert et al. 2016) with temperature. Consequently, warming could have positive or 164 

negative effects on virus-host encounter rates, although more studies are needed (Table 1, Fig. 165 

2). Evidence suggests that the effect of temperature on adsorption are dependent on the host-166 

virus pair, in some cases increasing (Seeley and Primrose 1980; Hadas et al. 1997), decreasing 167 

(Kendrick et al. 2014), or remaining unchanged (Seeley and Primrose 1980) with increases in 168 

temperature (Table 1, Fig. 2). While cell membranes are more fluid and permeable at higher 169 

temperatures (Marr and Ingraham 1962; Sinensky 1974), it is unknown whether this alters viral 170 

infection. We are also unaware of studies that directly link temperature and virus synthesis rates 171 

(Fig. 2). Seasonal changes in viral abundances (Nakayama et al. 2007; Payet and Suttle 2007; 172 

Colombet et al. 2009) and community composition (Lymer et al. 2008), as well as climatic 173 

differences in viral lysis rates (Mojica et al. 2016), have been observed, but confounding factors 174 

such as nutrient availability and predation obscure the direct effects of temperature on viral 175 

infection cycles. Variation in viral life strategies (i.e., lysis vs. lysogeny in prokaryotes and/or 176 

latency in multicellular eukaryotes (Correa et al. 2021)) is ecologically important (Stough et al. 177 

2017) and these strategies likely exhibit unique trends with temperature that are currently 178 
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unresolved (e.g., increasing temperatures may or may not induce lysis (Shan et al. 2014)), 179 

exposing a crucial gap in our understanding of the temperature-dependencies of viral infection. 180 

 181 

Viral production is linked to host cell physiology (Tomaru, Kimura and Yamaguchi 2014; 182 

Demory et al. 2017; Maat et al. 2017; Piedade et al. 2018) because viruses depend on and rewire 183 

the metabolism of host cells (Hurwitz, Hallam and Sullivan 2013). However, viral temperature 184 

ranges can be independent of, and often surpass, those of their hosts (Seeley and Primrose 1980; 185 

Mojica and Brussaard 2014; Tomaru, Kimura and Yamaguchi 2014). Additionally, multiple 186 

viruses that infect the same host can have different temperature optima (Tomaru, Kimura and 187 

Yamaguchi 2014), potentially promoting niche differentiation and a shift in dominant viral taxa 188 

with warming. This suggests that viruses could be less susceptible to extinction under warming 189 

than their hosts, but more research is needed to determine the extent of this phenomenon and the 190 

resulting impacts on nutrient and carbon cycling.  191 

 192 

Finally, the potential consequences of viral temperature dependencies for microbial food web 193 

dynamics and functioning may be complex, context-dependent, and variable across systems. For 194 

example, Frenken et al. (2020) used aquatic mesocosm experiments to show that, although 195 

warming advanced the seasonal timing of viral infection, it did not increase viral abundance or 196 

strengthen viral control over host populations. In addition, Danovaro et al. (2011) predicted that 197 

the effects of warming on viral abundance will vary by oceanic region and that a consistent 198 

response to rising temperatures across environments is unlikely. These examples illustrate that 199 

the temperature-dependent effects of viruses can manifest in different aspects of viral 200 

infection/virus-host interactions and may vary by region. We argue that controlled studies (e.g., 201 
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mesocosms, synthetic communities) and in situ monitoring across diverse environments can aid 202 

in identifying and predicting complex viral responses to temperature in different environmental 203 

contexts. Moreover, the vast majority of data available for temperature effects on viral dynamics 204 

comes from marine environments or a select few model host-virus systems (Table 1), 205 

highlighting the need to expand studies to different environments and new systems to better 206 

comprehend the influences of virus-microbe interactions on ecosystem processes under warming 207 

conditions. 208 

 209 

2. INTEGRATING VIRAL INFECTIONS WITHIN MICROBIAL FOOD WEBS UNDER 210 

WARMING 211 

Although viruses are known to impact carbon and nutrient cycling directly, namely via the viral 212 

shunt (Wilhelm and Suttle 1999; Sullivan, Weitz and Wilhelm 2017), how viruses might mediate 213 

microbial responses to warming is poorly understood. Microbes account for a substantial fraction 214 

of the biomass on Earth (Bar-On, Phillips and Milo 2018) and place major controls on carbon 215 

and nutrient cycling in terrestrial (Schimel and Schaeffer 2012), freshwater (Kayranli et al. 216 

2010), and marine (Zhang et al. 2018) ecosystems worldwide. Microbial communities are 217 

complex, functionally-diverse, multi-trophic food webs (Bengtsson, Setälä and Zheng 1996; 218 

Petchey et al. 1999; Gao et al. 2019; Thakur and Geisen 2019) in which energy and matter flow 219 

between organisms that occupy different trophic positions and play a variety of functional roles 220 

(Fenchel 2008; Steinberg and Landry 2017). Ecosystem responses to climate change are thus 221 

likely regulated by changes in overall microbial food web dynamics and organization (Thakur 222 

and Geisen 2019; Kuppardt-Kirmse and Chatzinotas 2020). Viruses could play important roles in 223 

these changes that depend on i) the relative infection rates of hosts in different functional groups, 224 
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ii) the temperature dependencies of the viral infection cycle, iii) thermal matching between virus-225 

host pairs, and iv) changes in host physiology, population dynamics, and species interactions 226 

associated with viral infection. 227 

 228 

Broadly speaking, how viruses mediate microbial controls on ecosystem responses to warming 229 

hinges on how they impact the overall balance of carbon and nutrient uptake (via photosynthesis 230 

and decomposition), storage in biomass, sequestration in sediment, and release (via respiration) 231 

(Box 1, Figs. 2, 3). Respiration and decomposition rates are expected to increase with warming 232 

(Petchey et al. 1999; Kirschbaum 2000; Smith et al. 2019) and may be more sensitive to 233 

temperature change than photosynthetic rates (Allen, Gillooly and Brown 2005) (although a 234 

great deal of variation exists in temperature sensitivities among different microbial groups 235 

(Smith et al. 2019)). This suggests that warming could tip ecosystems from productivity-236 

dominant carbon sinks (storing carbon in biomass and sediment) to respiration-dominant carbon 237 

sources (releasing carbon into the atmosphere) (Yvon-Durocher and Allen 2012). However, 238 

increases in microbial primary productivity should at least partially offset this uneven increase in 239 

carbon release (Zhou et al. 2012; Wyatt et al. 2021). Furthermore, warming is expected to alter 240 

the biomass and composition of microbial food webs, affecting ecosystem processes like CO2 241 

release via respiration (Geisen et al. 2021; Rocca et al. 2022). How viruses mediate this balance 242 

between carbon uptake and release under warming is poorly understood, but will likely involve 243 

complex and differential impacts on the dynamics and mortality of hosts that perform different 244 

ecosystem functions (Sarmento et al. 2010; Danovaro et al. 2011; Vaqué et al. 2019). Based on 245 

preliminary model results, we hypothesize that warming could strengthen viral controls on 246 

decomposers, N-fixers, and protists, leading to reduced microbial biomass, increased nutrient 247 



 

10 

cycling and respiration, shorter mean residence time of carbon in microbial food web 248 

compartments, and shifts in the balance of carbon sequestration and release into the atmosphere 249 

(Box 1, Fig. B2d). However, the generality of these effects is very difficult to judge given how 250 

much uncertainty remains about the effects of temperature on viral infection, virus-host 251 

dynamics, and the impacts of viruses on microbial food web structure.   252 

 253 

3. PEATLANDS AS A MODEL SYSTEM TO STUDY HOW VIRAL INFECTIONS 254 

MEDIATE MICROBIAL FOOD WEB RESPONSES TO WARMING 255 

We use peatland microbial food webs as a real-world case study to explore how viral infections 256 

may influence the effects of microbial activity on carbon and nutrient cycling in a warming 257 

world. Peatlands are typically dominated by Sphagnum peat mosses, storing more carbon (in 258 

both living biomass and peat)—and therefore arguably having a greater influence on global 259 

carbon cycling and climate—than any other single genus of plants (Clymo and Hayward 1982; 260 

Gorham 1991). While Sphagnum plays a primary role in carbon dynamics (Slate, Sullivan and 261 

Callaway 2019), it serves a secondary role by insulating permafrost, thus dampening the impacts 262 

of rising temperatures on vast amounts of carbon stored in the arctic tundra (Camill and Clark 263 

1998). Peatland microbial food webs are uniquely well-suited systems for studying ecosystem 264 

responses to global change due to 1) their net impact on the global carbon cycle (Gorham 1991; 265 

Dorrepaal et al. 2009; Yu et al. 2010; Bu et al. 2011), 2) the functional diversity of their 266 

constituent microbial taxa (Gilbert et al. 1998; Trap et al. 2016; Geisen et al. 2018; Thakur and 267 

Geisen 2019), 3) their vulnerability to changes in temperature (Richardson et al. 2018; Norby et 268 

al. 2019; Smith et al. 2019; Geisen et al. 2021), and 4) the ability to grow and study Sphagnum 269 

moss and associated microbial communities in the laboratory (Altermatt et al. 2015; Geisen et al. 270 
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2018; Carrell et al. 2019, 2022b) Doing so, however, will require a multifaceted approach—271 

including characterization of microbial communities in the field, microbial experiments in the 272 

laboratory, -omics approaches, and mathematical modeling (Singh et al. 2010; Geisen et al. 273 

2017), all of which can benefit from cross-scale integration.  274 

 275 

We propose that the response of Sphagnum-dominated peatlands to warming is regulated by 276 

poorly understood controls on carbon and nutrient cycling from microbes and viral infections 277 

(Fig. 1, Box 1). Microbes play diverse functional roles in peatlands (Gilbert et al. 1998; Gilbert 278 

and Mitchell 2006; Lara et al. 2011; Kostka et al. 2016; Carrell et al. 2022a) (Fig. 3). For 279 

example, bacterial and fungal decomposers are primarily responsible for breaking down dead 280 

organic material stored within peatlands (Gilbert et al. 1998; Gilbert and Mitchell 2006), a 281 

process being accelerated by warming (Dorrepaal et al. 2009). Additionally, Sphagnum’s ability 282 

to persist in harsh peatland habitats with extremely low mineral nitrogen availability depends on 283 

symbiotic interactions with microbial associates (Lindo, Nilsson and Gundale 2013; Kostka et al. 284 

2016; Carrell et al. 2022a)—including diazotrophs that colonize the cell surface and water-filled 285 

hyaline cells in host plants (Kostka et al. 2016) (Fig. 3). Bacterial methanotrophs are also 286 

prevalent in boreal peat bogs (Liebner and Svenning 2013; Vile et al. 2014) and not only fix N2, 287 

but supply 5%–20% of CO2 necessary for Sphagnum photosynthesis via methane oxidation 288 

(Larmola et al. 2014). Sphagnum’s microbial community composition varies widely with climate 289 

(Singer et al. 2019) and is expected to shift considerably under warming (Carrell et al. 2019; 290 

Basińska et al. 2020), likely altering associated microbial food webs (Bengtsson, Setälä and 291 

Zheng 1996; Petchey et al. 1999; Geisen et al. 2018; Gao et al. 2019; Thakur and Geisen 2019).  292 

  293 
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Peatland ecosystems also harbor a diverse group of viruses that infect prokaryotes and 294 

eukaryotes (Ballaud et al. 2016; Emerson et al. 2018; Stough et al. 2018) and are correlated with 295 

overall concentrations of both CO2 and CH4 (ter Horst et al. 2021). Surprisingly, the inferred 296 

frequency of protist infections in the Sphagnum microbiome was found to be higher than that of 297 

bacterial infection by phages (Stough et al. 2018), although the functional role of protist 298 

infection in this system remains unclear. Fungal viruses can have considerable downstream 299 

ecological consequences by lysing or altering the phenotypes of fungal decomposers, symbionts, 300 

or pathogens in Sphagnum (Sutela, Poimala and Vainio 2019). In peatlands, viral community 301 

composition, abundance, and lifestyle strategies are influenced by environmental factors, 302 

including temperature (Ballaud et al. 2016; Emerson et al. 2018). However, how warming might 303 

modify the direct (lytic release of elements) and indirect (altered host phenotype/dynamics and 304 

food web processes) effects of viral infections on Sphagnum-associated microbial food webs—305 

and carbon and nitrogen cycling in peatlands—is not well understood. Our simple model 306 

suggests that viral infections and microbial activity may jointly accelerate the positive effects of 307 

warming on C sequestration in peatlands (Box 1, Fig. B2). However, this simple conceptual 308 

model is intended as a first attempt to generate hypotheses about the potential impacts of 309 

warming, rather than predict future scenarios. Indeed, the mechanisms and parameters governing 310 

such interactions between temperature, viruses, protists, and prokaryotes in this model—and the 311 

magnitude and direction of resulting changes in carbon cycling—have little empirical 312 

verification and will require much more experimental investigation to resolve, thus highlighting 313 

the importance of these missing data. A deeper understanding about how these ecological 314 

interactions occur in nature and how they are influenced by warming is direly needed, but 315 

peatland microbial food webs provide a promising system to begin to develop this understanding.  316 
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 317 

CONCLUSIONS 318 

Microbial food webs play a central role in the global carbon cycle by processing and storing vast 319 

amounts of carbon. We suggest that viral infections within microbial food web components that 320 

play distinct functional roles, and their associated temperature-dependencies, could control 321 

changes in carbon cycling and storage in response to global warming. We highlight the 322 

importance of studying the complex dynamics of microbial food webs to better understand and 323 

predict whether rising temperatures will lead to net carbon sequestration or release in globally 324 

important ecosystems like Sphagnum-dominated peatlands. But we also stress that these 325 

ecological interactions and their temperature-dependencies are poorly understood, highlighting 326 

several gaps for future research. We propose the following list of questions to serve as a guide 327 

moving forward: 328 

1) How will warming influence different aspects of the viral infection cycle, including both 329 

host-dependent and host-independent processes? (Section 1) 330 

2) How will virus-host interactions be affected by warming, including virus and host 331 

temperature sensitivities, niches, and matching? (Section 1)  332 

3) How will warming affect virus life strategies? (Section 1) 333 

4) How will viral infections mediate the rewiring of functionally- and trophically-diverse 334 

microbial food webs under warming? (Section 2) 335 

5) How do viral infections alter host physiology, population dynamics and species 336 

interactions? (Section 2) 337 

6) Will viral infections of functionally distinct microbial groups affect how warming shifts 338 

the balance of carbon uptake, storage, and release? (Section 2) 339 

7) What are the relative viral abundances and infection rates across microbial hosts in real 340 

ecosystems like peatlands? (Section 3) 341 

8) How can we leverage empirical data and models to study the coordinated impacts of 342 

warming and viral infection on microbial carbon and nutrient cycling? (Section 3) 343 

 344 

Resolving these uncertainties will require a combination of empirical and theoretical analyses 345 

that specifically evaluate temperature-dependencies and virus-host interactions within microbial 346 



 

14 

food webs. The effects of these important processes on microbial population dynamics and 347 

carbon flow may then shed light on the broader impacts of warming on carbon cycling and 348 

storage within and across whole ecosystems. 349 
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Box 1. 

Climate-driven shifts in nutrient and carbon cycling can be studied using mathematical models 

that track the collective responses of several essential organisms within microbial food webs 

(Fig. B1). Each organism plays a unique role in carbon and nutrient cycling depending on its 

metabolic requirements, trophic mode (autotroph, heterotroph), trophic position, stoichiometry, 

temperature sensitivity, etc. The fate of carbon—storage in biomass, storage in sediment, or 

respiration into the atmosphere—is therefore controlled by the composition and organization 

of microbial food webs. Here we develop a conceptual model describing a simplified, example 

microbial food web from the Sphagnum-dominated peatland system and examine potential 

impacts of warming on ecosystem functioning. 

 

Organisms 

● Decomposers like heterotrophic bacteria and fungi recycle dead organic matter 

produced primarily by plants (C uptake) and are major contributors to microbial 

respiration (C release) and soil organic carbon via mortality (C sequestration). 

● Nitrogen-fixers like cyanobacteria, methanogenic archaea, and some heterotrophic 

bacteria transform atmospheric nitrogen (N2) into biologically usable forms that are 

metabolically required by all organisms and photosynthetic nitrogen-fixers also require 

carbon dioxide for photosynthesis (C uptake). 

● Predators include protists such as heterotrophic flagellates, ciliates, and mixotrophs 

that consume both decomposers and nitrogen-fixers, altering elemental flows by 

reducing prey biomass and potentially increasing respiration (C release) and storing 

recycled carbon and nutrients in predator biomass (C uptake). We use the term 

“predators” here to differentiate these protists from those that also eat other protists 

(termed “top predators” below). 

● Eukaryotic algae include protists that use carbon dioxide for photosynthesis (C 

uptake) and may represent a significant offset to microbial respiration. 

● Top predators constitute a subnetwork within the overall food web and include larger 

protists (e.g., testate amoebae) that consume recycled carbon via predation on all 

trophic levels, altering biomass and elemental flows throughout (C uptake or release). 

● Viruses impact elemental flows directly through lysis (C release) and indirectly by 

altering host biochemistry and population dynamics (C uptake or release) 

 

Essential elements 

● Inorganic carbon from the atmosphere (CO2) is fixed and stored in biomass during 

photosynthesis and is released through respiration. 

● Organic carbon is produced by mortality and viral lysis/decay and is transferred 

between organisms through decomposition and predation. 

● Essential nutrients like nitrogen and phosphorus are required by all organisms and can 

affect competitive and trophic dynamics depending on the stoichiometric requirements 
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of organisms. For example, inorganic nitrogen is required for growth by both nitrogen-

fixing and heterotrophic bacteria and converted into organic forms that are then 

transferred to higher trophic levels through predation.  

 

Figure B1. Hypothetical microbial food web in Sphagnum peatlands including organisms and nitrogen and 

carbon flow. Arrows represent flow between components. Each type of organism consumes elements or other 

organisms based on its unique stoichiometric requirements and is also subject to infection by viruses (V). Unused 

elements are released into the atmosphere or stored in the lithosphere. 

 

The impacts of global warming on the carbon cycle will ultimately depend on the temperature 

dependencies of several different processes within microbial food webs, including 

photosynthesis, respiration, predation, viral infection, and mortality (Fig. 1), many of which 

are poorly understood for most of these organisms (Figs. 1&4). However, photosynthesis is 

generally less sensitive to increases in temperature (activation energy of ~0.32eV (Allen, 

Gillooly and Brown 2005; López-Urrutia et al. 2006; O’Connor et al. 2009; Yvon-Durocher 

and Allen 2012)) than respiration and predation (~0.65eV (Brown et al. 2004; Dell, Pawar and 

Savage 2011, 2014)), while mortality lies somewhere in between (~0.45eV (Brown et al. 2004; 

Savage et al. 2004)).  

 

Accounting for these temperature dependencies in our hypothetical food web suggests that 

warming will have little effect on the balance of carbon storage and release in systems 

composed of only decomposers, fungi, and protists—where carbon released into the 

atmosphere (CInorganic) is expected to exceed carbon stored in the sediment (COrganic) (Fig. B2 

a&c). Protists significantly increase the amount of carbon stored but also reduce the amount of 
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bioavailable nitrogen (NInorganic) (Fig. B2c). However, in a system with prokaryotes, protists, 

and viruses, warming is expected to increase the amount of carbon both released and stored, 

but stored carbon is expected to surpass released carbon with a margin that increases with 

temperature (Fig. B2d), suggesting one possible way that viral infections may weaken the 

negative effects of warming on the global carbon cycle.  

 

 

Figure B2. The effects of warming on equilibrium concentrations of nitrogen and carbon in the model microbial 

food web from Fig. B1. Four scenarios are shown to assess the influences of different food web components: (a) 

non-protists only (N + D), (b) non-protists + viruses (N + D + V), (c) non-protists + protists (N + D + A + P + T), 

and (d) all organisms and viruses. 

 

These results are merely suggestions based on limited knowledge of parameter space and many 

simplifying assumptions. True temperature responses will depend on changes in the 

composition and structure of specific microbial food webs, several temperature-dependencies 

that are poorly understood across organisms (Figs. 1&4), possible changes in size across taxa 
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that could change predation rates (Brose et al. 2012), and temperature-dependence at all stages 

of viral infection (Table 1). We stress that all of the parameters, interactions among organisms, 

and temperature dependencies outlined in this model are poorly understood and should be the 

subject of much-needed future investigation. Hence, the primary role of this model is to 

provide a roadmap that identifies the components of microbial food webs that could have 

important impacts on carbon flux. We advocate that investigating these unknowns is a critical 

step towards more accurately predicting ecosystem responses to climate change. 

 

 370 
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TABLES 386 

Table 1. Select published studies of temperature effects on viruses. A more detailed description 387 

of each study, including summarized results, can be found in Table S2. 388 

Process Temperature Effects Location or Host-Virus System 

Viral decay Increases with temperature 

- Backwater system of Danube River (Field) 

(Mathias, Kirschner and Velimirov 1995)1 

- Heterosigma akashiwo (H93616, NM96) / Hav 

(HaV01, HaV08) (Lab) (Nagasaki and Yamaguchi 

1998)2 

- Bacteriophage 9A isolated from Arctic seawater 

(Lab) (Wells and Deming 2006)3 

- Samples from Western Pacific Ocean (Lab) (Wei et 

al. 2018)4 

Adsorption 

Increases with temperature 

- Escherichia coli / coliphage isolates from the River 

Swift (Lab) (Seeley and Primrose 1980)5 

- Escherichia coli / T4 (Lab) (Hadas et al. 1997)6 

- Chaetoceros tenuissimus / Cten DNAV and Cten 

RNAV (Lab) (Tomaru, Kimura and Yamaguchi 

2014)7 

Decreases with temperature 

- Chaetoceros tenuissimus / Cten DNAV and Cten 

RNAV (Lab) (Tomaru, Kimura and Yamaguchi 

2014)7 

- Emiliana huyxleyi CCMP374 / EhV86 (Lab) 

(Kendrick et al. 2014)8 

No effect of temperature - Escherichia coli / coliphage isolates from the River 

Swift (Lab) (Seeley and Primrose 1980)5 

Burst size 

Increases with temperature 

- Backwater system of Danube River (Field) 

(Mathias, Kirschner and Velimirov 1995)1 

- Escherichia coli / T4 (Lab) (Hadas et al. 1997)6 

- Micromonas sp. MicA, MicB, MicC / MicVA, 

MicVB, MicVC (Lab) (Demory et al. 2017)9 

- Micromonas polaris / MpoV (Lab) (Maat et al. 

2017)10 

- Micromonas polaris strain RCC2257, strain 

RCC2258 / Mpov-45T (Lab) (Piedade et al. 2018)11 

Decreases with temperature 

- Backwater system of Danube River (Field) 

(Mathias, Kirschner and Velimirov 1995)1 

- Micromonas sp. MicA, MicB, MicC / MicVA, 

MicVB, MicVC (Lab) (Demory et al. 2017)9 

Latency period 

Increases with temperature 

- Micromonas sp. MicA, MicB, MicC / MicVA, 

MicVB, MicVC (Lab) (Demory et al. 2017)9 

- Escherichia coli / coliphage (Lab) (Ellis and 

Delbrück 1939)12 

Decreases with temperature 

- Heterosigma akashiwo (H93616, NM96) / Hav 

(HaV01, HaV08) (Lab) (Nagasaki and Yamaguchi 

1998)2 

- Escherichia coli / T4 (Lab) (Hadas et al. 1997)6 

- Micromonas sp. MicA, MicB, MicC / MicVA, 

MicVB, MicVC (Lab) (Demory et al. 2017)9 

- Micromonas polaris / MpoV (Lab) (Maat et al. 
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2017)10 

- Micromonas polaris strain RCC2257, strain 

RCC2258 / Mpov-45T (Lab) (Piedade et al. 2018)11 

- Escherichia coli / coliphage (Lab) (Ellis and 

Delbrück 1939)12 

- Staphylococcus aureus / S. aureus phage (Lab) 

(Krueger and Fong 1937)13 

Virus abundance Temperature effects unclear 

- Backwater system of Danube River (Field) 

(Mathias, Kirschner and Velimirov 1995)1 

- Southern Beaufort Sea and Amundsen Gulf (Field) 

(Payet and Suttle 2007)14 

- Lake Pavin (Field) (Colombet et al. 2009)15 

- Japanese paddy field (Field) (Nakayama et al. 

2006)16 

- Michigan agricultural soils (Field) (Roy et al. 

2020)17 

- Metadata (Danovaro et al. 201118; Williamson et al. 

201719) 

Lysis thermal range 
Temperature effects are host-

dependent 

- Heterosigma akashiwo (H93616, NM96) / Hav 

(HaV01, HaV08) (Lab) (Nagasaki and Yamaguchi 

1998)2 

- Bacteriophage 9A isolated from Arctic seawater 

(Lab) (Wells and Deming 2006)3 

- Escherichia coli / coliphage isolates from the River 

Swift (Lab) (Seeley and Primrose 1980)5 

- Metadata (Mojica and Brussaard 2014) 

Virus-induced host mortality Increases with temperature - North Atlantic Ocean (Field) (Mojica et al. 2016) 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 
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FIGURES 401 

 402 

Figure 1. Conceptual diagram outlining the documented and hypothesized temperature effects 403 

on processes influencing global carbon cycling, including the impacts of decomposers 404 

(heterotrophic bacteria, archaea, and fungi), autotrophs (cyanobacteria and eukaryotic algae), 405 

heterotrophic protists that consume all organisms, and viruses that infect all organisms. Note that 406 

some organisms (prokaryotes and eukaryotes) can occupy both autotrophic and heterotrophic 407 

compartments (mixotrophs).  408 

 409 

 410 

 411 

 412 
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 413 

Figure 2. Stages of the viral lytic infection cycle and published temperature effects. Orange 414 

arrows indicate a positive effect, purple arrows indicate a negative effect, and interdictory 415 

symbols indicate no effect with warming. Gray thermometers indicate stages of the viral 416 

infection cycle that either have no published experimental data or published effects are 417 

confounded by other environmental/biological factors (e.g. abundances from field studies). 418 

Numbers correspond to references in Table 1. More details from these studies can be found in 419 

Table S2. 420 

 421 

 422 

 423 

 424 

 425 
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 426 

Figure 3. Sphagnum moss and associated microbial food web. Microbial species inhabit both 427 

water-filled hyaline cells of Sphagnum tissue and the external aquatic habitat. First inset shows 428 

cyanobacteria (in red) living inside Sphagnum tissue (in green, image taken using a Zeiss LSM 429 

710 laser scanning confocal microscope, image credit: Andrea Timm and Collin Timm). 430 

  431 

  432 
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 434 

 435 

 436 

 437 
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SUPPORTING INFORMATION 

Supplementary methods 

Microbial food web model 

To illustrate the potential impacts of temperature, microbial food web structure, and viral 

infection on the carbon and nutrient cycling, we developed a mathematical model to study the 

dynamics of an assortment of organisms that exist at different trophic levels and play distinct 

functional roles within microbial food webs—including N-fixers (NF), decomposers (D), 

eukaryotic algae (A), protist grazers (G), protist top predators (P), and viruses (Vi) that 

exclusively infect each organism (Box 1, Figure B1). The model also includes pools (external to 

organisms) of relevant essential elements—including, inorganic nitrogen (NI; converted from N2 

by N-fixers), inorganic carbon (CI; i.e., carbon fraction of CO2), and organic carbon (CO; carbon 

fraction of dead organic matter). These pools of essential elements are available for use by 

organisms and their concentrations are influenced by biological processes (e.g., photosynthesis, 

respiration, and mortality). Biological populations and elemental pools are referred to in terms of 

mass concentrations standardized by units of peat mass (units of μg / g of peat). The dynamics of 

all components are governed by a system of ordinary differential equations (Eqns. S1-S13). 

Variable and parameter definitions, units, and values used for analysis are given in Table S2. 

Parameter values were chosen such that all organisms exhibited non-zero equilibrium densities 

using the same parameter values across all biological scenarios shown in Figure B2, allowing for 

more direct comparison of biological scenarios. 

 

In this model, all basal organisms (i.e., organisms that do not consume other organisms; NF, D, 

A) grow logistically and consume elements from external pools (NI, CI, CO) according to their 

modes of energy acquisition: autotrophs (NF and A) use CI, non-N-fixers (D and A) use NI, and 

decomposers (D) use CO. Element uptake rates follow Michaelis-Menten kinetics. Biomass 

production rates in all organisms is reduced by inefficient conversion of resources (εi). 

Conversion efficiency in consumers is also reduced according to the lowest stoichiometric ratio 

(carbon or nitrogen) between a given resource organism and its consumer (qelement,resource / 

qelement,consumer; i.e., Leipig’s law of the minimum). All organisms are infected by viruses that are 

specific to each host. All elemental pools operate as chemostats with an inflow rate (αk) and an 

outflow rate (δk). Inorganic nitrogen (NI) increases with respiration and decreases with growth of 

decomposers (D) and eukaryotic algae (A). Inorganic carbon (CI) increases with respiration and 

decreases with growth of N-fixers (NF) and eukaryotic algae (A). Organic carbon increases with 

mortality (m, organisms and viruses) and viral lysis (ϕ) and decreases with growth of 

decomposers (D). All temperature dependencies follow Sharpe-Schoolfield functional forms 

(Schoolfield et al. 1981) (Eqn. S14) with activation energies that are specific to each rate: 

respiration (0.65eV (Brown et al. 2004)), photosynthesis (0.32eV (Allen et al. 2005)), mortality 

(0.45eV (Savage et al. 2004)), and consumption (0.65eV (Brown et al. 2004; Dell et al. 2011a)).  

Viral lysis rates and burst sizes were assumed to follow established activation energies of 

consumption (0.65eV). Although we assume these temperature sensitivities here for simplicity, 

we note that a great deal of variation exists in the activation energies of various metabolic 

processes and across taxa (Dell et al. 2011b; Smith et al. 2019) and that this variation could 
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affect overall food web responses to warming. More specific temperature responses could easily 

be incorporated in future models by replaced those used here. 

 

Nitrogen-fixer:  𝑁𝐹̇ = 𝑁𝐹 (𝜀𝑁𝜇𝑁𝐹(𝑇)
𝐶𝐼

ℎ𝐶𝐼 ,𝑁𝐹 + 𝐶𝐼

(1 −
𝑁𝐹

𝐾𝑁𝐹

) − 𝑎𝑁𝐹,𝐺(𝑇)𝐺 − 𝑎𝑁𝐹,𝑃(𝑇)𝑃 − 𝜙𝑁𝐹(𝑇)𝑉𝑁𝐹 − 𝑟𝑁𝐹(𝑇) − 𝑚𝑁𝐹(𝑇)) (S1) 

Decomposer: 𝐷̇ = 𝐷 (𝜀𝐷𝜇𝐷(𝑇)
𝑁𝐼

ℎ𝑁𝐼,𝐷 + 𝑁𝐼

𝐶𝑂

ℎ𝐶𝑂 ,𝐷 + 𝐶𝑂

(1 −
𝐷

𝐾𝐷

) − 𝑎𝐷,𝐺 (𝑇)𝐺 − 𝑎𝐷,𝑃(𝑇)𝑃 − 𝜙𝐷(𝑇)𝑉𝐷 − 𝑟𝐷(𝑇) − 𝑚𝐷(𝑇)) (S2) 

Eukaryotic Algae: 𝐴̇ = 𝐴 (𝜀𝐴𝜇𝐴 (𝑇)
𝑁𝐼

ℎ𝑁𝐼,𝐴 + 𝑁𝐼

𝐶𝐼

ℎ𝐶𝐼,𝐴 + 𝐶𝐼

(1 −
𝐴

𝐾𝐴

) − 𝑎𝐴,𝑃(𝑇)𝑃 − 𝜙𝐴(𝑇)𝑉𝐴 − 𝑟𝐴(𝑇) − 𝑚𝐴(𝑇)) (S3) 

Grazer: 𝐺̇ = 𝐺 (𝜀𝐺𝑚𝑖𝑛 (
𝑞𝑁,𝑁𝐹

𝑞𝑁,𝐺

,
𝑞𝐶,𝑁𝐹

𝑞𝐶,𝐺

) 𝑎𝑁𝐹,𝐺(𝑇)𝑁𝐹 + 𝜀𝐺𝑚𝑖𝑛 (
𝑞𝑁,𝐷

𝑞𝑁,𝐺

,
𝑞𝐶,𝐷

𝑞𝐶,𝐺

) 𝑎𝐷,𝐺(𝑇)𝐷 − 𝑎𝐺,𝑃(𝑇)𝑃 − 𝜙𝐺 (𝑇)𝑉𝐺 − 𝑟𝐺(𝑇) − 𝑚𝐺 (𝑇)) (S4) 

Predator: 

𝑃̇ = 𝑃 (𝜀𝑃𝑚𝑖𝑛 (
𝑞𝑁,𝑁𝐹

𝑞𝑁,𝑃

,
𝑞𝐶,𝑁𝐹

𝑞𝐶,𝑃

) 𝑎𝑁𝐹,𝑃(𝑇)𝑁𝐹 + 𝜀𝑃𝑚𝑖𝑛 (
𝑞𝑁,𝐷

𝑞𝑁,𝑃

,
𝑞𝐶,𝐷

𝑞𝐶,𝑃

) 𝑎𝐷,𝑃(𝑇)𝐷 + 𝜀𝑃𝑚𝑖𝑛 (
𝑞𝑁,𝐴

𝑞𝑁,𝑃

,
𝑞𝐶,𝐴

𝑞𝐶,𝑃

) 𝑎𝐴,𝑃(𝑇)𝐴

+ 𝜀𝑃𝑚𝑖𝑛 (
𝑞𝑁,𝐺

𝑞𝑁,𝑃

,
𝑞𝐶,𝐺

𝑞𝐶,𝑃

) 𝑎𝐺,𝑃(𝑇)𝐺 − 𝜙𝑃(𝑇)𝑉𝑃 − 𝑟𝑃(𝑇) − 𝑚𝑃(𝑇)) 

(S5) 

Virus (N-fixer): 𝑉̇𝑁𝐹 = 𝑉𝑁𝐹(𝛽𝑁𝐹(𝑇)𝜙𝑁𝐹(𝑇)𝑁𝐹 − 𝑚𝑉(𝑇)) (S6) 

Virus (Decomposer): 𝑉̇𝐷 = 𝑉𝐷(𝛽𝐷(𝑇)𝜙𝐷 (𝑇)𝐷 − 𝑚𝑉(𝑇)) (S7) 

Virus (Algae): 𝑉̇𝐴 = 𝑉𝐴(𝛽𝐴(𝑇)𝜙𝐴(𝑇)𝐴 − 𝑚𝑉(𝑇)) (S8) 

Virus (Grazer): 𝑉̇𝐺 = 𝑉𝐺(𝛽𝐺(𝑇)𝜙𝐺 (𝑇)𝐺 − 𝑚𝑉 (𝑇)) (S9) 

Virus (Predator): 𝑉̇𝑃 = 𝑉𝑃(𝛽𝑃(𝑇)𝜙𝑃(𝑇)𝑃 − 𝑚𝑉(𝑇)) (S10) 

Inorganic  
Nitrogen (NI): 

𝑁̇𝐼 = 𝛼𝑁𝐼
+ 𝑟𝑁𝐹(𝑇)𝑞𝑁,𝑁𝐹𝑁𝐹 + 𝑟𝐷(𝑇)𝑞𝑁,𝐷𝐷 + 𝑟𝐴(𝑇)𝑞𝑁,𝐴𝐴 + 𝑟𝐺(𝑇)𝑞𝑁,𝐺𝐺 + 𝑟𝑃(𝑇)𝑞𝑁,𝑃𝑃

− 𝑞𝑁,𝐷𝜇𝐷(𝑇)
𝑁𝐼

ℎ𝑁𝐼 ,𝐷 + 𝑁𝐼

𝐶𝑂

ℎ𝐶𝑂,𝐷 + 𝐶𝑂

𝐷 − 𝑞𝑁,𝐴𝜇𝐴 (𝑇)
𝑁𝐼

ℎ𝑁𝐼,𝐴 + 𝑁𝐼

𝐶𝐼

ℎ𝐶𝐼,𝐴 + 𝐶𝐼

𝐴 − 𝛿𝑁𝐼
𝑁𝐼 

(S11) 

Inorganic  
Carbon (CI): 

𝐶̇𝐼 = 𝛼𝐶𝐼
+ 𝑟𝑁𝐹(𝑇)𝑞𝐶,𝑁𝐹𝑁𝐹 + 𝑟𝐷(𝑇)𝑞𝐶,𝐷𝐷 + 𝑟𝐴(𝑇)𝑞𝐶,𝐴𝐴 + 𝑟𝐺(𝑇)𝑞𝐶,𝐺𝐺 + 𝑟𝑃(𝑇)𝑞𝐶,𝑃𝑃 − 𝑞𝐶,𝑁𝐹𝜇𝑁𝐹(𝑇)

𝐶𝐼

ℎ𝐶𝐼 ,𝑁𝐹 + 𝐶𝐼

𝑁𝐹

− 𝑞𝐶,𝐴𝜇𝐴 (𝑇)
𝑁𝐼

ℎ𝑁𝐼,𝐴 + 𝑁𝐼

𝐶𝐼

ℎ𝐶𝐼,𝐴 + 𝐶𝐼

𝐴 − 𝛿𝐶𝐼
𝐶𝐼 

(S12) 

Organic  

Carbon (CO): 

𝐶̇𝑂 = 𝛼𝐶𝑂
+ 𝑚𝑁𝐹(𝑇)𝑞𝐶,𝑁𝐹𝑁𝐹 + 𝑚𝐷(𝑇)𝑞𝐶,𝐷𝐷 + 𝑚𝐴(𝑇)𝑞𝐶,𝐴𝐴 + 𝑚𝐺 (𝑇)𝑞𝐶,𝐺𝐺 + 𝑚𝑃(𝑇)𝑞𝐶,𝑃𝑃

+ 𝑚𝑉(𝑇)𝑞𝐶,𝑉(𝑉𝑁𝐹 + 𝑉𝐷 + 𝑉𝐴 + 𝑉𝐺 + 𝑉𝑃) + 𝜙𝑁𝐹(𝑇)𝑉𝑁𝐹𝑞𝐶,𝑁𝐹𝑁𝐹 + 𝜙𝐷(𝑇)𝑉𝐷𝑞𝐶,𝐷𝐷

+ 𝜙𝐴(𝑇)𝑉𝐴𝑞𝐶,𝐴𝐴 + 𝜙𝐺 (𝑇)𝑉𝐺𝑞𝐶,𝐺𝐺 + 𝜙𝑃(𝑇)𝑉𝑃𝑞𝐶,𝑃𝑃 − 𝑞𝐶,𝐷𝜇𝐷(𝑇)
𝑁𝐼

ℎ𝑁𝐼,𝐷 + 𝑁𝐼

𝐶𝑂

ℎ𝐶𝑂 ,𝐷 + 𝐶𝑂

𝐷

− 𝛿𝐶𝑂
𝐶𝑂 

(S13) 
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Supplementary Tables 

Table S1. Variables and parameters used in the microbial food web model. For parameters that 

are functions of temperature (f(T)), values are given at a reference temperature of 20°C. 
Variable/Parameter Definition Units Value 

(𝑁𝐹, 𝐷, 𝐴, 𝐺, 𝑃) Biomass conc. µg gpeat
-1 na 

(𝑁𝐼 , 𝐶𝐼 , 𝐶𝑂) Nutrient conc. µg gpeat
-1 na 

𝜀𝑖  Production efficiency na 0.8 

𝜇𝑖(𝑇) Max growth rate d-1 2.5 

ℎ𝑘,𝑖  Half-saturation constant g 10 

𝐾𝑖 Carrying capacity µg gpeat
-1 

𝐾𝑁𝐹 , 𝐾𝐴  = 500 

𝐾𝐷 = 1000 

𝑎𝑖,𝑗(𝑇) Consumption rate d-1 (µg gpeat)-1 

𝑎𝑁𝐹,𝐺 , 𝑎𝐷,𝐺  = 0.01 

𝑎𝑁𝐹,𝑃 , 𝑎𝐷,𝑃  = 0.0001 

𝑎𝐴,𝑃 = 0.001 

𝑎𝐺,𝑃 = 0.08 

𝜙𝑖(𝑇) Lysis rate d-1 (µg gpeat)-1 0.01 

𝑟𝑖(𝑇) Respiration rate d-1 

𝑟𝑁𝐹 , 𝑟𝐴  = 0.05 

𝑟𝐷 = 0.09 

𝑟𝐺 = 0.2 

𝑟𝑃 = 0.3 

𝑚𝑖(𝑇) Mortality rate d-1 

𝑚𝑁𝐹 = 0.05 

𝑚𝐷 = 0.01 

𝑚𝐴 , 𝑚𝐺 , 𝑚𝑃 = 0.1 

𝑞𝑘,𝑖 Elemental content g g-1 

𝑞𝑁,𝑁𝐹 , 𝑞𝑁,𝐷 = 0.05 

𝑞𝑁,𝐴 , 𝑞𝑁,𝐺  = 0.03 

𝑞𝑁,𝑃 = 0.08 

𝑞𝐶  = 0.5 

𝛽𝑖(𝑇) Burst size d-1 (µg gpeat)-1 
𝛽𝑁𝐹 , 𝛽𝐷 = 0.05 

𝛽𝐴, 𝛽𝐺 , 𝛽𝑃   = 0.03 

𝛼𝑘 Inflow rate µg gpeat
-1 d-1 

𝛼𝑁𝐼
  = 6 

𝛼𝐶𝐼
 = 100 

𝛼𝐶𝑂
 = 30 

𝛿𝑘 Outflow rate d-1 𝛿𝑁𝐼
, 𝛿𝐶𝐼

, 𝛿𝐶𝑂
 = 0.01 
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Table S2. Detailed description and summarized results for select published studies of 

temperature effects on viruses. 

Type of Study 

Location or Host-

Virus system Observed Temperature Effects Reference 

 

Environmental 

Backwater system 

of Danube River 

·   Higher temperature induced higher viral decay rates 

·   Viral abundance was tightly correlated with seasonal 

bacterial abundance one year, but not the next 

·   The lowest percentage of bacteria infected by phage 

were observed at 23-26°C, the highest at 6-22°C, and 

between at ≤ 5°C 

·   Burst size was temperature dependent 

(Mathias et al. 

1995) 

 Laboratory  Heterosigma 

akashiwo (H93616, 

NM96) / Hav 

(HaV01, HaV08) 

·   Decay rates increased with increasing temperature 

·   Latent phase decreased with increasing temperature 

·   Thermal ranges of lysis by virus were unique for 

different host-virus pairs 

(Nagasaki & 

Yamaguchi 

1998) 

 Laboratory Bacteriophage 9A 

isolated from Arctic 

seawater 

·   The half-life of infective phages decreased with 

increasing temperature 

(Wells & 

Deming 2006) 

 Laboratory Samples from 

Western Pacific 

Ocean 

·   Increases in temperature and photosynthetic radiation 

resulted in higher virus decay rates 

·   Low fluorescence viruses were more sensitive to 

warming and increased PAR than high fluorescence viruses 

(Wei et al. 

2018) 

Metadata N/A ·   Temperatures at which most marine viruses are 

inactivated fall outside of the host temperature range 

(Mojica & 

Brussaard 

2014) 

 Laboratory Escherichia coli / 

coliphage  isolates 

from the River 

Swift 

·   Temperature range of phages were independent of host 

growth temperature 

·   Temperature was seen to affect the adsorption of 2 

phages and the multiplication of another 2 

(Seeley & 

Primrose 1980) 

 Laboratory Escherichia coli / 

T4 

·   Adsorptions rates increased with increasing growth rate 

and positively correlated with cell size 

·   The rate of phage release and burst size increased with 

growth rate, but the length of the eclipse and latent periods 

decreased with growth rate 

·   Burst size was dependent on both growth rate and time 

until lysis 

(Hadas et al. 

1997) 

 Laboratory Emiliana huyxleyi 

CCMP374 / EhV86 

·   3°C increase in temperature induces a viral resistant host 

phenotype 

(Kendrick et al. 

2014) 

 Laboratory Chaetoceros 

tenuissimus / Cten 

DNAV and Cten 

RNAV 

·   Susceptibility of all strains to Cten DNAV increased 

with temperature up to Topt 

·   Temperature range and degree of susceptibility to Cten 

RNAV was strain dependent 

·   Maximum burst size of Cten DNAV and minimum burst 

size of Cten RNAV were both observed between 15-20°C 

(Tomaru et al. 

2014) 



4 

Laboratory Staphylococcus 

aureus / S. aureus 

phage 

·   The rate of phage production is related to the growth rate 

of the host. Higher growth rates up to T(opt) result in 

shorter latency periods, though T > T(opt) result in longer 

latency periods 

(Krueger & 

Fong 1937) 

Laboratory Escherichia coli / 

coliphage 

·   Latency period decreases with increasing temperature 

and is directly inversely proportional to the division rate of 

bacteria 

(Ellis & 

Delbrück 1939) 

 Laboratory Micromonas sp. 

MicA, MicB, MicC 

/ MicVA, MicVB, 

MicVC 

·   At temperatures < Topt, latent periods were increased, 

host cell lysis was delayed, and viral yield was reduced 

·   Cell lysis did not usually occur at temperatures > Topt 

·   At temperatures slightly above Topt, chronic infection 

(viral production with no cell lysis) was observed 

·   At temperatures much above Topt, no viral progeny were 

produced 

(Demory et al. 

2017) 

Laboratory Micromonas polaris 

/ MpoV 

·   Higher temperatures resulted in shorter latent periods 

and increased burst sizes 

(Maat et al. 

2017) 

 Laboratory Micromonas polaris 

strain RCC2257, 

strain RCC2258 / 

Mpov-45T 

·   Higher temperature (7°C vs. 3°C) caused earlier cell 

lysis and increased burst size, except in low light conditions 

(Piedade et al. 

2018) 

 

Environmental 

Southern Beaufort 

Sea and Amundsen 

Gulf 

·   Seasonal and spatial variation in virus concentrations 

were correlated with Chl-a concentration, bacterial 

abundance and composition, temperature, salinity, and 

depth 

·   Percentage of variance explained by temperature was 

inconsistent between seasons 

(Payet & Suttle 

2007) 

 

Environmental 

Lake Pavin ·   Virus abundances correlated most closely with host 

abundance 

·   Surface bacterial abundances were largely influenced by 

temperature while monimolimnion bacterial abundances 

likely influenced by organic matter export during surface 

blooms 

(Colombet et al. 

2009) 

 Metadata N/A ·   Positive relationships were observed between viral 

abundance and temperature within all distinct oceanic 

regions examined, however a global decreasing trend was 

seen across these regions when all data was assessed 

together 

·   Water column viral production increased with 

temperature in polar and cold temperate regions, but 

decreased with temperature in warm temperate systems 

(Danovaro et al. 

2011) 

 

Environmental 

Japanese paddy 

field flood waters 

·   Viral abundance changed seasonally, but was highly 

correlated with bacterial abundance 

(Nakayama et 

al. 2007) 

Environmental North Atlantic 

Ocean 

·   Shift from virus-induced to grazing-induced 

phytoplankton mortality with increased latitude (decreased 

temperature) 

(Mojica et al. 

2016) 
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Environmental Michigan 

agricultural soils 

-Viral abundance changed seasonally; abundance was 

highly correlated to bacterial abundance, organic carbon 

content and total nitrogen 

(Roy et al. 

2020) 

Metadata Global -Viral abundances are several orders of magnitude higher in 

cold deserts compared to hot deserts 

(Williamson et 

al. 2017) 
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