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Abstract

This paper investigates the linear quadratic regulator(LQR) problem of linear stochastic systems with Markovian jump. Firstly,

two iterative algorithms are proposed for solving the corresponding coupled algebraic Riccati equa- tions (CAREs) based on

the general-type Lyapunov equation derived from linear stochastic systems. It is verified that the second algorithm adding

an adjustable factor converges faster than the first one without it. Secondly, a monotonic convergence theorem is established

for the proposed iterative algorithms under certain initial conditions. In the end, a numerical example is given to verify the

efficiency of the proposed algorithms.
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Abstract

This paper investigates the linear quadratic regulator(LQR) problem of linear
stochastic systems with Markovian jump. Firstly, two iterative algorithms
are proposed for solving the corresponding coupled algebraic Riccati equa-
tions (CAREs) based on the general-type Lyapunov equation, which were
derived from linear stochastic systems. It has been verified that the pro-
posed new algorithm not only provides a solution for the LQR problem of
stochastic systems, but also improves the convergence speed compared with
the existing ones. Secondly, a monotonic convergence theorem is established
for the proposed iterative algorithms under certain initial conditions. In the
end, a numerical example is given to verify the efficiency of the proposed
algorithms.

Keywords: Stochastic systems, General Lyapunov equation, Iterative
Algorithms, Markovian Jump

1. Introduction

The problem of linear regulator (LQR) problem has attracted a lot of
attention in the field of control theory and applied mathematics, and scholars
in the field of control theory have published a lot of relevant literature on this
type of problem, see [1, 2, 3, 4]. The main idea of LQR problem is to find an
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optimal control law such that the system achieves optimal performance with
low cost, which is simple to implement and easy to simulate.

As a heated research topic, systems driven by continuous-time Marko-
vian chains have drawn a lot of attention. This type of hybrid system has
been used to model many practical systems that may experience sudden
changes in structure and parameters caused by component failures or main-
tenance, changing subsystems in interconnection, and sudden environmental
interference[5]. Models with Markovian jump are usually applied to describe
economic systems, electrical power systems, robot manipulator systems, and
communication systems[6, 7, 8], therefore systems with Markovian jump are
widely considered and studied.

The LQR problem of linear systems with Markovian jump(JLQR) is dis-
cussed see [9, 10], and the optimal solution of this kind of problem can be
obtained by solving the corresponding coupled algebraic Riccati equation-
s(CAREs), which are complicated due to their nonlinear and coupled terms.
Many algorithms for solving the solution of CAREs have been presented over
the last couple of decades. For example, [11] put forward an iterative cal-
culation algorithm based on Newton’s method, which synthesized all modes
of coefficient matrices into a single matrix. Theoretically, this algorithm is
applicable for solving matrix equations of any dimension, but it may cause a
dimensional disaster due to the high dimension of the corresponding matrix.
[12] developed a Lyapunov-based iterative algorithm to decouple the CAREs
by constructing standard Lyapunov iterative equations, which greatly simpli-
fies the calculation. For better convergence performance, [13] generalized the
work of [12] to a new one combined with an initial value selection method. By
choosing an appropriate initial value, the solution sequence obtained by [13]
is monotonic. Without loss of generality, an adjustable factor can be added
to adjust the updated information to accelerate the convergence speed to a
greater extent, see [14, 15, 16].

Later, the investigation on JLQR problem is extended to stochastic sys-
tems with Markovian jump due to their wide existence in the real world, in
applications of some mathematical and financial fields, for example, control
in LQ models does not only affect the drift component of system dynamics
but also affects the diffusion component[17]. For stochastic systems, many
iterative algorithms were proposed based on the standard Lyapunov equa-
tion, which was direct copies of the deterministic systems, see [18, 19]. In
this way, only the drift term information of stochastic systems is used, while
the diffusion part information which means noise disturbance and refers to
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the random characteristic, is not fully utilized. Besides, it is not applicable
when the diffusion term also contains control input by using the standard
Lyapunov-type iterative methods.

Motivated by this point, we would like to develop two iterative algorithms
based on the general Lyapunov equation to investigate the JLQR problem
of the linear stochastic system. The main contributions are summarized as
follows:

1) The model studied in this paper has multiplicative noises on both
the state and control. To the best of our knowledge, there are no existing
mathematical approaches to solve LQR problems of this type of system with
Markovian jump. The proposed algorithms in this article provide efficient
methods to design the optimal feedback control for systems of this kind.

2) Compared with some existing methods to solve CAREs problems[19],
the algorithms in this article are based on the general Lyapunov-based iter-
ative equations, which reflects a more random characteristic of the models.
Besides, one of the proposed algorithms presented greatly accelerates the
convergence speed compared with the other one.

3)The stochastic stability and convergence of the developed algorithms
are presented and proved. Besides, the validity of the designed methods is
confirmed by a relative numerical example.

Throughout this paper, unless otherwise specified, we will use the follow-
ing notations. Let (Ω,F , {Ft}t≥t0 , P ) be a complete probability space with
a filtration {Ft}t≥t0 satisfying the usual conditions, i.e. it is right continu-
ous and Ft0 contains all P -null sets. The symbols AT and ‖A‖ denote the
transpose and matrix norm of square matrix A, respectively. ⊗ is the Kro-
necker’s tensor product and E stands for the mathematical expectation. If
A = (aij)m×n = (α1, . . . , αn), define vec(A) = (αT

1 , α
T
2 , . . . , α

T
n )T, which is a

column vector formed by stacking the columns of A on the top of one anoth-
er. The matrix relations A > 0 and A ≥ 0 imply that A is positive definite
and positive semi-definite, respectively.

The rest of the paper is organized as follows. In Section 2, we introduce
the model descriptions concerning Markovian jump linear system. Besides,
some definitions and lemmas regarding the system are given. In Section 3,
the design methods and main results of the proposed iterative algorithms are
given in the sequel, and the correspondent convergence properties are proved.
In Section 4, a simulation example is given to illustrate the theoretical anal-
ysis. And finally, a conclusion is given in Section 5.
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2. Problem formulation

2.1. Problem description

Consider the following linear stochastic system with Markovian jump
dx(t) = [A(r(t))x(t) +B(r(t))u(t)]dt

+ [C(r(t))x(t) +D(r(t))u(t)]dw(t), t ≥ 0,

x(0) = x0, r(0) = r0, t0 = 0,

(1)

where x(t) ∈ Rn is the system state with the initial value x0; u(t) ∈ Rm is the
control input; A(r(t)), C(r(t)) ∈ Rn×n and B(r(t)), D(r(t)) ∈ Rn×m are real
value matrices with compatible dimension. The existence and uniqueness of
the solution are guaranteed naturally . w(t) is a one-dimensional standard
Wiener process defined on the probability space (Ω,F , {Ft}t≥t0 , P ); r(t),
taking its values in a discrete set S = {1, 2, · · · , N} ∈ N. r0 represents the
initial mode, which is an S-valued Ft0 measurable random variable. The
solution of the equation through (0, x0, r0) is denoted by x(t0, x0, r0) simply.
Besides, the Markovian stochastic process r(t) is assumed to be independent
of the Wiener Process w(t).

For the linear stochastic systems with Markovian jump (1), the transition
probabilities of each mode satisfy:

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆), if j 6= i,
1 + γii∆ + o(∆), if j = i,

where ∆ > 0, lim
∆→∞

o(∆)/∆ = 0 and γij ≥ 0 is the transition rate from i

to t + ∆ if j 6= i and γii = −
∑N

j=1,j 6=i γij. For convenience, when r(t) =
i, A(r(t)), B(r(t)), C(r(t)), D(r(t)), Q(r(t)), R(r(t)) are denoted as Ai, Bi,
Ci, Di, Qi, Ri, respectively.

Let the initial values x0 and r0 be independent. For a given feedback
control policy u(t) = −K(r(t))x(t), we define the following cost function as:

V (x(t))

= E
{∫ +∞

t0

[xT(t)Q(r(t))x(t) + uT(t)R(r(t))u(t)]dt|t0, x(t0), r(t0)
}
,

(2)

The optimal control problem for the linear stochastic system with Marko-
vian jump (1) is to find a mode-dependent admissible feedback control policy,
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which minimizes the performance index, i.e.

V ∗(x(t)) = min
u(t)

V (x(t))

= min
u(t)

E
{∫ +∞

0

[xT(t)Q(r(t))x(t) + uT(t)R(r(t))u(t)]dt|t0 = 0, x0, r0

}
,

(3)

where Q(r(t)) ∈ Rn×n > 0, R(r(t)) ∈ Rm×m > 0. In what follows, we denote
that

Âi = Ai + 0.5γiiI, (4)

and 
Mi = Bi

TPi +Di
TPiCi,

Ni = Ri +Di
TPiDi,

Ki = −(Ri +DT
i PiDi)

−1(Bi
TPi +DT

i PiCi),
(5)

for i ∈ S, where Pi ∈ Rn×n > 0.

2.2. Preliminaries

Before the algorithms are formally proposed, it is necessary to ensure
the stability of the system, otherwise, it doesn’t make any sense under the
premise of instability. Therefore, the stability definition of the system and
the conditions needed, are given as follows.

Definition 1. [20, 21] The stochastic system with Markovian jump (1) is
called to be stabilizable in mean square, if there exists an admissible control
u(t) = K(r(t)x(t)) such that the following closed-loop system

dx(t) = (A(r(t)) +B(r(t))K(r(t)))x(t)dt

+ (C(r(t)) +D(r(t))K(r(t)))x(t)dw(t), t ≥ 0,

x(0) = x0, r(0) = r0,

(6)

is stable in mean square, i.e. lim
t→∞

E[x(t)Tx(t)] = 0, where K(r(t)) ∈ Rm×n

is a mode-dependent matrix.

Theorem 1. System (1) is stabilizable in mean square if and only if ,for each
mode i ∈ S, there exists a control law u(t) = Lix(t) such that for any given

5



positive-definite matrix Ji, the unique set of solutions Hi of the following
coupled equations

(Âi +BiLi)
THi +Hi(Âi +BiLi)

(Ci +DiLi)
THi(Ci +DiLi) +

N∑
j=1,j 6=i

γijHj = −Ji,
(7)

are positive definite.

Proof. The proof process of this Theorem is roughly the same as that of
Theorem 1 in [22], which is omitted here.

Lemma 1. [23] If the stochastic system with Markovian jump (1) with Qi >
0, Ri > 0 for any i ∈ S is stabilizable in mean square, there exists a unique
definite stabilizing solution Pi to the following CARE:

ÂT
i Pi + PiÂi + CT

i PiCi +Qi +
N∑

j=1,j 6=i

γijPj −MT
i N

−1
i Mi = 0, (8)

for each i ∈ S, where Mi, Ni are defined in (5). Then, the optimal feedback
control policy can be determined by

u(t) = −(Ri +DT
i PiDi)

−1(BT
i Pi +DT

i PiCi)x(t) (9)

when r(t) = i, and Pi is the unique positive definite solution of (8).

On the premise that system (1) is stabilizable in mean square, then the
optimization of the corresponding JLQR problem can be transformed into
finding the unique solution set of a certain type of coupled algebraic Riccati
equations, as described in Lemma 1.

The following lemma about the stability of matrix pairs is given to es-
tablish a relation with the existence of solutions of matrix equations and to
infer the stability of corresponding systems.

Lemma 2. [24] The following statement is equivalent:
(1) the matrix pair (F,G) is stabilizable in mean square;
(2) for the following Lyapunov-type equation:

FX + FTX +GTXG = −Y, (10)

if Y > 0(respectively, Y ≥ 0), then X ≥ 0(respectively, Y ≥ 0).
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Remark 1. Different from standard Lyapunov equation, i.e.

XF + FTX = −Y,

which is derived from the linear deterministic system, (10) is called the gen-
eral Lyapunov equation. Obviously, for the linear stochastic systems, due
to the influence of the diffusion term (Cxdw(t) ), the standard Lyapunov
equation is not so adaptable.

Based on the form of general Lyapunov equation (10), and with (5) ,
relation (8) can be rewritten as

(Âi +BiKi)
TPi + Pi(Âi +BiKi) + (Ci +DiKi)

TPi(Ci +DiKi)

= −Qi −
N∑

j=1,j 6=i

γijPj −KT
i RiKi,

(11)

as system(1) is stabilizable in mean square has been assumed, and Pi is the
unique positive definite solution of (11) for ∀i ∈ S, (Âi + BiKi;Ci + DiKi)
is stable in mean square according to Theorem 1 and Lemma 2. Based on
(11), two iterative algorithms are given in the next section.

3. Main result

In this section, two general Lyapunov-based iterative algorithms named
Algorithm 1 and Algorithm 2, respectively, are proposed to design the feed-
back control of system(1), which is, equivalent to solving the corresponding
CAREs. Algorithm 1 is a general Lyapunov-based iterative algorithm, while
Algorithm 2 generalizes Algorithm 1 to the one with a tunable factor added.
The convergence and monotonicity of the two algorithms have been discussed
in detail.

3.1. General Lyapunov-based algorithm

In this subsection, a general Lyapunov-based algorithm named Algorithm
1 is discussed. Notice that CARE(8) is coupled and nonlinear, it is difficult to
solve directly, especially for high dimensional cases. To tackle this problem,
through the idea of decoupling, an iterative equation is proposed as algorithm
(12). From Algorithm 1(12), the coupling terms of CARE(8) are represented

7



by information of the previous iteration, which can be treated as constant
terms.

Besides, it is observed from algorithm (12) that the estimate Pi(m+1) for
the solution Pi is updated by using the estimate at the m-step. By performing
such iteration, sequences of related solutions {Pi(m)} can be obtained, and
the limit of Pi(m) is Pi as m → +∞, then the solutions to CARE(8) are
numerically approximated. The convergence properties of Algorithm 1 will
be discussed later.

In the proposed algorithm, to ensure its convergence, the initial value
Pi(0) should satisfy

(Âi +BiKi(0))TPi(0) + Pi(0)(Âi +BiKi(0))

+ (Ci +DiKi(0))TPi(0)(Ci +DiKi(0)) +Qi

+
N∑

j=1,j 6=i

γijPj(0) +Ki(0)TRiKi(0) + ε = 0,

(15)

where ε is a arbitrary positive constant, Ki(0) = −(Ri+D
T
i Pi(0)Di)

−1(BT
i Pi(0)+

DT
i Pi(0)Ci), Pi(0) > 0, then Ki(0) stabilizes system (1) according to Lem-

ma 1. According to Theorem 1 and Lemma 2, we can be conclude that
(Âi +BiKi(0), Ci +DiKi(0)) is stable. Let (12) with m = 0, that is

(Âi +BiKi(0))TPi(1) + Pi(1)(Âi +BiKi(0))

+ (Ci +DiKi(0))TPi(1)(Ci +DiKi(0))

= −Qi −KT
i (0)RiKi(0)−

N∑
j=1,j 6=i

γijPj(0),

(16)

and subtracting (15) from (16), we can easily have

(Âi +BiKi(0))T(Pi(1)− Pi(0)) + (Pi(1)− Pi(0))(Âi +BiKi(0))

+ (Ci +DiKi(0))T(Pi(1)− Pi(0))(Ci +DiKi(0))

= ε,

(17)

as ε > 0, according to Lemma 2 Pi(1)− Pi(0) < 0, i.e. Pi(0) > Pi(1) can be

8



Algorithm 1

Step 1: Given the proper initial values Pi(0), i ∈ S such that Ki(0) stabi-
lizes system (1), and let m = 0;
Step 2: Solving the following N decoupled general Lyapunov equations for
Pi(m+ 1), i ∈ S:

(Âi +BiKi(m))TPi(m+ 1) + Pi(m+ 1)(Âi +BiKi(m))

+ (Ci +DiKi(m))TPi(m+ 1)(Ci +DiKi(m))

= −Qi −KT
i (m)RiKi(m)−

N∑
j=1,j 6=i

γijPj(m),

(12)

where

Ki(m) = −(Ri +DT
i Pi(m)Di)

−1 × (BT
i Pi(m) +DT

i Pi(m)Ci);

Step 3: Let m = m+ 1 and compute

δ(m) =

√√√√ 1

N

N∑
i=1

‖f(Pi)‖, (13)

where

f(Pi(m)) = ÂT
i Pi(m) + Pi(m)Âi + CT

i Pi(m)Ci +Qi

+
N∑

j=1,j 6=i

γijPj(m)−MT
i (m)N−1

i (m)Mi(m);
(14)

and {
Mi(m) = Bi

TPi(m) +Di
TPi(m)Ci,

Ni(m) = Ri +Di
TPi(m)Di,

Step 4: If δ(m) ≤ ε (ε is a given small nonnegative constant), then stop and
output {Pi(m+1), i ∈ S} as the solution {Pi, i ∈ S} of (8). Else, go to Step 2.

9



concluded. Subtracting (8) from (15), we have

(Âi +BiKi(0))T(Pi(0)− Pi) + (Pi(0)− Pi)(Âi +BiKi(0))

+ (Ci +DiKi(0))T(Pi(0)− Pi)(Ci +DiKi(0)) +
N∑

j=0,j 6=i

γij(Pj(0)− Pj)

= −ε− (Ki −Ki(0))TNi(Ki −Ki(0)),

(18)

According to Theorem 1, the solution of (18) is positive definition, i.e. Pi(0)−
Pi > 0.

3.2. Improved general Lyapunov-based algorithm

As mentioned above, when estimating the value of Pi(m + 1), only the
information in the m-th step, i.e. Pi(m), is used to represent the coupling
term. In fact, in the (m+1)-th step of the iteration, estimations Pj(m+1), j ∈
{1, 2, . . . , i − 1} have already been obtained before estimation Pi(m + 1) is
calculated. Therefore, this part of information is available to update the
estimation Pi(m + 1) in the (m + 1)-th step. To take full advantage of the
previous estimation results, an improved general Lyapunov-based iterative
algorithm named Algorithm 2 (19) is proposed. Besides, a tunable factor is
added based on Algorithm 1, which is described in detail in chart Algorithm
2.

In Algorithm 1, under proper initial value Pi(0), Ki(0) stabilizes sys-
tem (1), and then it follows that Pi(0) > Pi(1) and Pi(0) > Pi, which are
necessary conditions to determine the monotone convergence of solution se-
quences regarding to iterative equation (12). This conclusion also applies to
Algorithm 2.

For Algorithm 2, iterative step (19) for some i ∈ S, the estimation value
Pi(m + 1) is updated by the weighted average of the estimated values of
the last step and current step. Additionally, it is easily noted that (19)
can degenerate to (12) with ω = 1, which means that Algorithm 2 is a
generalization of Algorithm 1.

3.3. The convergence properties

In this subsection, the convergence property of algorithm (19) will be
analyzed. For this reason, the boundedness and monotonicity for the solution
sequences generated by (19) will be established in sequence. Since Algorithm
2 is a generalization of Algorithm 1, here only the convergence of Algorithm

10



Algorithm 2

Step 1: Given the proper initial values Pi(0), i ∈ S such that Ki(0) stabi-
lizes system (1), and let m = 0;
Step 2: Solving the following N decoupled general Lyapunov equations for
Pi(m+ 1), i ∈ S:

(Âi +BiKi(m))TPi(m+ 1) + Pi(m+ 1)(Âi +BiKi(m))

+ (Ci +DiKi(m))TPi(m)(Ci +DiKi(m))

= −Qi −KT
i (m)RiKi(m)−

N∑
j=i+1

γijPj(m)

−
i−1∑
j=0

γij[(1− ω)Pj(m+ 1) + ωPj(m)],

(19)

where

Ki(m) = −(Ri +DT
i Pi(m)Di)

−1 × (BT
i Pi(m) +DT

i Pi(m)Ci);

Step 3: Let m = m+ 1 and compute

δ(m) =

√√√√ 1

N

N∑
i=1

‖f(Pi)‖, (20)

where

f(Pi(m)) = ÂT
i Pi(m) + Pi(m)Âi + CT

i Pi(m)Ci +Qi

+
N∑

j=1,j 6=i

γijPj(m)−MT
i (m)N−1

i (m)Mi(m);
(21)

and {
Mi(m) = Bi

TPi(m) +Di
TPi(m)Ci,

Ni(m) = Ri +Di
TPi(m)Di,

Step 4: If δ(m) ≤ ε (ε is a given small nonnegative constant), then stop and
output {Pi(m+1), i ∈ S} as the solution {Pi, i ∈ S} of (8). Else, go to Step 2.
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2 will be proved. First, the boundedness property of the algorithm (19) is
obtained by the following Lemma.

Lemma 3. If system (1) is stabilizable in mean square and Ki(0) stabilizes
the system, then for any integer m ≥ 0, i ∈ S, the sequences {Pi(m)} gener-
ated by (19) with 0 ≤ ω ≤ 1 have the following properties:

(1) Pi(m) > Pi;
(2) (Âi +BiKi(m), Ci +DiKi(m)) is stable.

Proof. We prove the lemma by mathematical induction. By subtracting
(8) from (19), we obtain the following relation

(Âi +BiKi(m))TδPi,m+1 + δPi,m+1(Âi +BiKi(m))

+ (Ci +DiKi(m))TδPi,m+1(Ci +DiKi(m))

= Ii(m+ 1),

(22)

with

δPi,m+1 = Pi(m+ 1)− Pi,∀i ∈ S,m ≥ 0,

and

Ii(m+ 1) = −(Ki(m)−Ki)
TNi(Ki(m)−Ki)

−
i−1∑
j=1

γij[(1− ω)δPj,m+1 + ωδPj,m]−
N∑

j=i+1

γijδPj,m.

Rewriting (22), we have the following relation

(Âi +BiKi(m+ 1))TδPi,m+1 + δPi,m+1(Âi +BiKi(m+ 1))

+ (Ci +DiKi(m+ 1))TδPi,m+1(Ci +DiKi(m+ 1))

= Wi(m+ 1),

(23)

with

Wi(m+ 1)

= −(Ki(m+ 1)−Ki(m))TNi(m+ 1)(Ki(m+ 1)−Ki(m))

− (Ki(m+ 1)−Ki)
TNi(Ki(m+ 1)−Ki)

−
i−1∑
j=1

γij[(1− ω)δPj,m+1 + ωδPj,m]−
N∑

j=i+1

γijδPj,m.

12



Firstly, since the case with m = 0 is preconditioned, conditions (1), (2)
of this lemma at the starting position, namely, m = 1, need to be proved.
For the case with m = 1, in view of Ni, Ni(1) > 0 and 0 ≤ ω ≤ 1, it
can be obtained that Ii(1),Wi(1) < 0. For (22), based on Ii(1) < 0 and
(Âi + BiKi(0), Ci + DiKi(0)) is stable, δPi,1 > 0 can be derived according
to Lemma 2, that is, Pi(1) − Pi > 0. As the positive solution of (23) δPi,1

already exists as mentioned above, (Âi +BiKi(1), Ci +DiKi(1)) is stable can
be concluded from (23) according to Lemma 2. Then the conclusions (1)-(2)
of this lemma hold for m = 1.

Next, suppose the conclusions (1)-(2) of this lemma hold for m = k, that
is Pi(k) > Pi and (Âi + BiKi(k), Ci + DiKi(k)) is stable. For (22) and (23)
with m = k, in view of Pi(k) > Pi, we have Ii(k+1),Wi(k+1) < 0. For (22),
δPi,k+1 > 0 can be easily derived in view of the already obtained conclusions,

i.e. Ii(k + 1) < 0 and (Âi + BiKi(k), Ci + DiKi(k)) is stable. And then, we
can prove that (Âi+BiKi(k+1), Ci+DiKi(k+1)) is stable according to (23)
based on Lemma 2. Namely the conclusion also holds for m = k+ 1. By the
mathematical induction, our conclusion holds for arbitrary integer m ≥ 0.
The proof is complete.

Next, a lemma is given to investigate the monotonicity property of Algo-
rithm 2.

Lemma 4. If system (1) is stabilizable in mean square and Ki(0) stabilizes
system (1),then the m-th step solution Pi(m) generated by (19) with 0 ≤ ω ≤
1 has the following property:

Pi(m) > Pi(m+ 1), (24)

for any integer m ≥ 0.

Proof. Relation (19) can be rewritten as

(Âi +BiKi(m))TδPi(m+ 1) + δPi(m+ 1)(Âi +BiKi(m))

+ (Ci +DiKi(m))TδPi(m+ 1)(Ci +DiKi(m))

= Ti(m+ 1).

(25)

with

Ti(m+ 1)

= (Ki(m)−Ki(m− 1))TNi(m)(Ki(m)−Ki(m− 1))

−
i−1∑
j=1

γij[(1− ω)δPj(m+ 1) + ωδPj(m)]−
N∑

j=i+1

γijδPj(m).
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and

δPi(m+ 1) = Pi(m+ 1)− Pi(m),∀i ∈ S,m ≥ 0,

As (Âi + BiKi(m), Ci + DiKi(m)) is stable has been prove in Lemma 3, by
using (25) the conclusion of this lemma can be proved with the similar proof
procedure of Lemma 3, we omit it here.

Based on the conclusions in Lemma 3 and 4 and the convergence result in
[25], the following theorem about the convergence property of the proposed
Algorithm 2 is given.

Theorem 2. Assume that Assumption 1 is satisfied and system (1) is sta-
bilizable in meas square. Let {Pi, i ∈ S} be the unique positive definite
solution of the CARE (8), then the solution Pi(m) generated by Algorithm 2
with ω ∈ [0, 1] converges to the unique positive definite solution of the CARE
(8), that is, lim

m→∞
Pi(m) = Pi,∀i ∈ S.

Proof. Based on the the conclusions of Lemma 3 and 4, we have Pi(0) >
Pi(1) · · ·Pi(m) > Pi(m+ 1) > · · · > Pi for each i ∈ S. According to the limit
theory of the sequence, lim

m→∞
Pi(m) = Pi,∀i ∈ S. The proof is complete.

Remark 2. In Theorem 1, it is only proved theoretically that (19) is con-
vergent under the condition 0 ≤ ω ≤ 1. However, for practical applications,
two questions remain to be further investigated on the selection of parameter
ω: 1. an exact range of parameter ω which is the necessary and sufficient
condition for the convergence of Algorithm 2 is to be given; 2. an approach
for choosing a parameter ω such that Algorithm 2 converges the fastest is
to be established. We would expect to investigate these two questions in the
future.

Remark 3. Algorithm 1(12) and Algorithm 2(19) can proceed on condition
that the following conditions are satisfied:
(1) Ri+Di

TPi(m)Di,∀i ∈ S,∀m ∈ {0, 1, 2, · · · } is reversible, or Ki(m), i ∈ S
doesn’t make any sense;
(2) The unique solutions of Algorithm 1(12) and Algorithm 2(19) exist for
any iteration.

In the conclusion of Lemma 3 (1), we have already obtained that Pi(m) >
Pi > 0, i ∈ S, thus for any integer m ≥ 0, Ri +Di

TPi(m)Di is invertible.
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Besides, the condition (2) of this remark is satisfied naturally according
to that (Âi + BiKi(m), Ci + DiKi(m)) is stable for i ∈ S,∀m ≥ 0 according
to Lemma 2.

4. Illustrative Example

In this section, a numerical example is used to show the efficiency of the
proposed algorithms. In order to characterize the convergence performance
of the proposed algorithm clearly, the iterative error versus the iteration step
m is defined as log10δ(m), where δ(m) is defined in (20).

Example 1. Let n = 3, x = [x1, x2, x3]T ∈ R2. Consider the CARE (8)
with transition rate matrix

Γ =

[
−0.5 0.5
2.5 −2.5

]
, (26)

and the following system parameter matrices

A1 =

−2.9134 −1.6785 −0.9649
−0.5010 −2.5469 −1.0006
−0.0975 −0.9575 −1.9706

 , A2 =

−1.9572 0.1419 0.7922
0.4854 −1.4218 1.9595
0.8003 −0.9157 −2.6557

 ,

B1 =

−0.8357
−0.8491
−0.9340

 , B2 =

−0.6787
−0.7577
−0.7431

 ,

C1 =

−0.3922 0 0
0 −0.6555 0
0 0 −0.4712

 , C2 =

0.7060 0 0
0 −0.0318 0
0 0 0.2769

 ,

D1 =

−0.4462
−0.3971
−0.5235

 , D2 =

−0.6948
−0.3171
−0.9502

 ,
The positive definite matrices Qi and Ri related to the cost function (2), are
all chosen as identity matrices with appropriate dimension. Besides, matric
pairs(Ai, Bi), (Ci, Di) are controllable for ∀i ∈ S.
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First, Algorithm 2 is used to approach the unique positive definite solution
of the CARE (8). What calls for special attention is that the initial value
Pi(0) should chosen to satisfy (15), so here Pi(0) can be chosen as identity
matrices with appropriate dimension then the following inequality holds:

(Âi +BiKi(0))TPi(0) + Pi(0)(Âi +BiKi(0))

+ (Ci +DiKi(0))TPi(0)(Ci +DiKi(0)) +Qi

+
N∑

j=1,j 6=i

γijPj(0) +Ki(0)TRiKi(0) < 0.

When the initial value set {Pi(0)} is chosen according to (15), with a range
of specially chosen parameters, the associated convergence curves can be plot-
ted as the convergence curves are depicted as Fig.1, which Fig.1demonstrates
the convergence of Algorithm 2 in a specific range ω ∈ [0, 1]. Though not
directly proved in this paper, the real convergence region should be larg-
er the what has been proved in this paper. When ω = 0, the convergent
performance of Algorithm 2 is the best.

Fig.2 shows the comparison of Algorithm 1, Algorithm 2, and algorithm
presented in [12]. From this figure, both Algorithm 1 and Algorithm 2 have a
better convergence effect than the one in [12]. Besides, the solution sequence
{Pi(m)} generated by Algorithm 2 is monotonic, which can be viewed by
observing the eigenvalues of the differences {Pi(m+1)−Pi(m)}, where integer
m ≥ 0. For special purposes, ω is set as 1 and the result can be seen from
Table 1.

By using Algorithm 2, the unique positive definite solution of the CARE
(8) is given as

P1 =

 0.2208 −0.1272 −0.0275
−0.1272 0.4179 −0.1747
−0.0275 −0.1747 0.3816

 , P2 =

 0.3084 −0.1544 −0.0556
−0.1544 0.5010 −0.0759
−0.0556 −0.0759 0.2435

 .

5. Conclusion

In this paper, two iterative algorithms named Algorithm 1 and Algo-
rithm 2 respectively based on general Lyapunov equations, are proposed to
obtain the unique positive definite solution of the CAREs for linear stochas-
tic systems with Markovian jump. Algorithm 2 generalizes Algorithm 1 to
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Fig. 1: Comparison convergence rate for the proposed Algorithm 2 with different param-
eters.

Table 1: Monotonicity of the solutions of Algorithm 2 with ω = 1

m λ(P1(m+ 1)− P1(m)) λ(P2(m+ 1)− P2(m))

0 (−0.8209,−0.6001,−0.2837) (−0.0904,−0.4207,−0.6313)

1 (−0.0195,−0.0539,−0.0906) (−0.3216,−0.2097,−0.1418)

2 (−0.0111,−0.0459,−0.0316) (−0.0394,−0.0217,−0.0140)

3 (−0.0093,−0.0023,−0.0009) (−0.0283,−0.0034,−0.0130)

4 (−0.0049,−0.0002,−0.0023) (−0.0051,−0.0013,−0.0003)

5 (−0.0011,−0.0000,−0.0002) (−0.0030,−0.0001,−0.0010)

· · · · · · · · ·
20 10−9(−0.2064,−0.0053,−0.0938) 10−8(−0.0049,−0.0015, 0.0115)
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Fig. 2: Comparison convergence rate for the proposed algorithms and standard Lyapunov-
based algorithm.

the one with adding a tunable factor, and it has been verified that with the
appropriate initial value, the solution sequence obtained by Algorithm 2 (or
Algorithm 1) monotonically converges to the unique positive definite solu-
tion. Besides, the convergence speed of Algorithm 2 are greatly improved
compared to the standard Lyapunov-based iterative algorithm.
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