Robust estimates of cuticular conductance to water on a stomatous leaf surface

Jun Tominaga¹, Joseph Stinziano¹, and David T. Hanson¹

¹University of New Mexico Department of Biology

September 25, 2021

Abstract

In leaf gas exchange measurements, cuticular conductance to water (g_{cw}) is indistinguishable from and included in stomatal conductance to water vapor (g_{sw}) . Here we developed a simple technique to isolate g_{cw} by directly measuring leaf intercellular CO₂ concentration $(C_{i(m)})$ along with gas exchange during photosynthetic light induction. We derived stomatal conductance to CO₂ $(g_{sc(m)})$ from the $C_{i(m)}$ independently of g_{sw} . Plotting g_{sw} against $g_{sc(m)}$ during the early induction phase within ~10 min, we found a highly linear relationship with a positive intercept. Assuming negligible cuticular CO₂ transport, complete stomatal closure occurs when $g_{sc(m)}=0$. Then, we considered the residual g_{sw} (i.e., intercept) as g_{cw} . Indeed, these g_{cw} estimates succeeded in correcting the calculation. Our technique, owing to its robustness and increased throughput, will allow for more rapid screening of crops, more reliable gas exchange analysis, and more accurate prediction of plant function under natural environmental conditions.

Hosted file

MS#1-slope method_main_PCE.docx available at https://authorea.com/users/437326/articles/ 539043-robust-estimates-of-cuticular-conductance-to-water-on-a-stomatous-leaf-surface

Hosted file

MS#1-slope method_figures_PCE.docx available at https://authorea.com/users/437326/articles/ 539043-robust-estimates-of-cuticular-conductance-to-water-on-a-stomatous-leaf-surface