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Abstract

Coupled Hydrologic & Hydraulic (H&H) models have been widely applied to simulate both discharge and flood inundation due

to their complementary advantages, yet the H&H models oftentimes suffer from one-way and weak coupling and particularly

disregarded run-on infiltration or re-infiltration. This could compromise the model accuracy, such as under-prediction (over-

prediction) of subsurface water contents (surface runoff). In this study, we examine the H&H model performance differences

between the scenarios with and without re-infiltration process in extreme events¬ – 100-year design rainfall and 500-year

Hurricane Harvey event – from the perspective of flood depth, inundation extent, and timing. Results from both events underline

that re-infiltration manifests discernable impacts and non-negligible differences for better predicting flood depth and extents,

flood wave timings, and inundation durations. Saturated hydraulic conductivity and antecedent soil moisture are found to be

the prime contributors to such differences. For the Hurricane Harvey event, the model performance is verified against stream

gauges and high water marks, from which the re-infiltration scheme increases the Nash Sutcliffe Efficiency score by 140% on

average and reduces maximum depth differences by 17%. This study highlights that the re-infiltration process should not be

disregarded even in extreme flood simulations. Meanwhile, the new version of the H&H model – the Coupled Routing and

Excess STorage inundation MApping and Prediction (CREST-iMAP) Version 1.1, which incorporates such two-way coupling

and re-infiltration scheme, is released for public access.

1. INTRODUCTION

Flooding, as a natural hazard, has been increasingly threatening human lives and economies (Gourley et al.,
2017; Hirabayashi et al., 2013; Li et al., 2021a). In the United States, most billion-dollar natural hazards are
tied to either local or regional flooding, making it the major cost to human society. Unfortunately, under
a warming climate with anthropogenic pressure, flood crises are likely to continue expanding, as the flood
frequency accelerates and flood magnitude rises (Bates et al., 2021; Hirabayashi et al., 2013; Tabari, 2020;
Triet et al., 2020; Swain et al., 2020; Viero et al., 2019;). To combat flood risks, researchers have been deve-
loping hydrologic/hydraulic models to deliver accurate and timely flood information for local communities
and decision-makers (Gourley et al., 2017). In the United States, two pronounced flood forecasting systems
– the National Water Model (NWM) and FLASH – are capable of both simulating real-time floods and
forecasting floods in a short range (Cohen, Praskievicz, & Maidment, 2018; Gourley et al., 2017; Viterbo et
al., 2020; Yussouf et al., 2020).

These large-scale flood monitoring systems, although claimed to offer inundation maps and predictions, wea-
ken their hydrodynamic simulation due to computational requirements. For instance, the NWM adopts the
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Height Above Nearest Drainage (HAND) method to produce flood inundation maps along the river chan-
nels by mapping discharge to stage via rating curves (Johnson, Munasinghe, Eyelade, & Cohen, 2019). This
conceptual method, however, overlooks the physics of floodwater propagation because of no flow dynamics
being represented (Wing et al., 2017). Moreover, it cannot simulate the pluvial flood, which is a local effect
caused by intense rainfall rates and does not normally occur along river channels (Bates et al., 2021). More
recently, some emerging hydrodynamic models have been successfully deployed and evaluated at continental
or global scales (Bates et al., 2021; Grimaldi et al., 2019; Sampson et al., 2015; Wing et al., 2017; Yamazaki,
Kanae, Kim, & Oki, 2011). These models simplify the full Shallow Water Equation (SWE) to speed up the
flood simulation. Nevertheless, they normally do not represent the hydrologic process well, especially for the
infiltration process, which is proven to be critical in flood simulations (Li et al., 2021b; Ni et al., 2020).
As such, a coupled physically-based hydrologic & hydraulic (H&H) model appears to be a better choice,
which takes the complementary advantages for accurate flood modeling (Dullo et al., 2021; Felder, Zischg, &
Weingartner, 2017; Kim et al., 2012; Nguyen et al., 2016; Pontes et al., 2017; Sebastian et al., 2021). Readers
are referred to Teng et al. (2017) and Grimaldi et al. (2019) for a detailed review of coupled models. Most
of such models, however, adopt one-way and weak coupling, meaning that there is no interplay between the
hydrologic component and hydraulic component (Bravo, Allasia, Paz, & Collischonn, 2013). They normally
produce surface runoff outputs first to drive the hydraulic model. The recent development of the Coupled
Routing and Excess STorage inundation MApping and Prediction (CREST-iMAP) version 1.0 also falls into
this category, although it is online coupled (Chen et al., 2021; Li et al., 2021b).

Two-way coupling for the H&H models has not hitherto been well-recognized. The accumulated surface
water (hydraulic feature), along with excess surface runoff during a flood event in principle would alter
infiltration rates, whereby both the flood magnitudes and timings could differ. Therefore, we activate the
surface water infiltration along its way to downslope, which is called run-on infiltration or re-infiltration in
short (Smith & Hebbert, 1979; Nahar, Govindaraju, Corradini, & Morbidelli, 2004; Zhang, Lin, Gao, & Fang,
2020). Nahar et al. (2004) defined this re-infiltration as the infiltration of surface water that, as it moves
downslope, encounters areas where moisture deficit has not yet been satisfied. It is often ignored in rainfall-
runoff studies, while it can be significant when the random nature of infiltration properties is taken into
account (Corradini, Morbidelli, & Melone, 1998; Nahar et al., 2004). Smith and Hebbert (1979) simulated
the run-on process with varying saturated hydraulic conductivity and rainfall rates, and they reported that
the effect of the run-on process is to decrease the ponding time dramatically. Corradini et al. (2002) compared
models with and without re-infiltration, and they suggested that re-infiltration greatly reduces surface flow
and alters both rising and recession limbs of the hydrograph. Nahar et al. (2004) emphasized the influence of
re-infiltration in hillslope hydrograph using the Green-Ampt model with a 1D kinematic wave surface routing.
A recent study by Zhang et al. (2020) takes it one step further, in which they applied the community model
WRF-Hydro (Weather Research Forecasting model-Hydrological modeling system) to explore the influence
of rainfall rates, topography, soil types on the re-infiltration process. However, none of these studies have
considered the implication of re-infiltration to hydrodynamic studies, where the overland flow is driven by
the 2D Shallow Water Equation (SWE) instead of 1D routing. To do so, we can obtain a more realistic view
of how re-infiltration plays a role in flood simulations.

During extreme flood events, the infiltration process is often disregarded because the infiltration rates are
relatively low compared to excess rainfall rates. Yet, some studies claim that the infiltration process is
critical to determine flood wave propagation, such as arrival and dissipation, especially in flat plain or
regions with highly permeable soil media (Corradini et al., 2002; Mahapartra, et al., 2020; Nahar et al.,
2004; Li et al., 2021b; Woolhiser, Smith, & Giraldez, 1996). A hydrodynamic model without infiltration is
likely to overestimate flood depth (Kim et al., 2012; Li et al., 2021b; Ni et al., 2020). Nevertheless, it still
remains unclear, or at least not as clear as infiltration, whether re-infiltration is essential for H&H models
in extreme flood events. In other words, whether it is worth encapsulating such a scheme in modern flood
simulation frameworks. To our knowledge, few studies have attempted to answer this question under the
context of extreme flood events. Moreover, further questions can arise as to what the determining factors
are during such a process and how it interacts with both flood magnitude and dynamics. In light of these
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questions, the objectives of this study are to explore 1) the effectiveness and importance of the
re-infiltration scheme to an H&H model, 2) the contributing factors to the differences between
with and without re-infiltration, and 3) whether and to what extent the re-infiltration process
can help improve flood inundation mapping and prediction of extreme events. We first test its
effectiveness and importance on a 100-year design extreme rainfall event during a sensitivity test and then
apply it to a real case study – Hurricane Harvey – to validate the efficacy. It is anticipated to provide insightful
information for model developers and researchers to understand the importance of the re-infiltration process
to flood modeling. In this study, we also release our latest development of CREST-iMAP V1.1, which features
a two-way coupling and re-infiltration scheme on top of the previous version (Chen et al., 2021; Li et al.,
2021b).

The rest of this paper is structured as follows. Section 2 introduces the study area and necessary datasets
for the model setup, followed by experimental designs. Section 3 presents the results from the sensitivity test
and the Hurricane Harvey event. Section 4 discusses limitations of this study as well as recommendations
for input data and future model development. At last, Section 4 concludes the main findings of this study.

2. DATA AND METHODS

2.1 Forcing data

Precipitation is the major driver of local or regional flooding, and it is thus central to acquire an accurate and
high-resolution dataset. In the U.S., the Multi-Radar Multi-Sensor (MRMS) precipitation product, developed
at the National Severe Storms Laboratory (NSSL), provides 2-min and 1-km rainfall field, making it suitable
for flash flood forecasting (Yussouf et al., 2016). It integrates ˜180 WSR-88D operational radars, creating a
seamless radar mosaic across the CONUS and southern Canada. Recent studies (e.g., Chen et al., 2020; Li
et al., 2020) verified the efficacy of MRMS data when compared to gauge-based and satellite-based products
during the Hurricane Harvey event. The advantage of using radar rainfall is obvious for flood inundation
modeling, as conventional rain gauges cannot readily represent the spatially variable rainfall fields. The
MRMS data was downloaded at https://mtarchive.geol.iastate.edu/.

Besides precipitation data, potential evapotranspiration (PET) is a major input into a hydrologic
system. In this real-case study, we obtain the PET data from the USGS FEWS data port (htt-
ps://earlywarning.usgs.gov/fews) at daily temporal and 1° spatial resolution (Allen, Pereira, Raes, & Smith,
1998).

2.2 Environmental data

The modeling system requires inputs from the terrain, Land Use Land Cover (LULC), and soil type and
depth. Among these variables, terrain data arguably plays the utmost important role in hydraulic simulation
(Dullo et al., 2021; Schumann & Bates, 2018). There has been a thorough investigation of terrain data
affecting flood inundation modeling since the early development of hydrologic/hydraulic models (Kenward,
Lettenmaier, Wood, & Fielding, 2000; Sanders, 2007). Lately, with the increasing interest in deploying macro-
scale flood inundation simulations, global terrain data assessment has been again brought up (Mohanty et al.,
2020; Sampson et al., 2015). Generally, three types of data are favored and available in the U.S.: 1) airborne
light ranging and detection (LiDAR) that resolves terrain with a high degree of vertical accuracy (0.05–0.2
m) and comes with a high spatial resolution but limited areal coverage, 2) spaceborne radar interferometry
(IfSAR, e.g., Shuttle Radar Terrain Mission) that provides global coverage but poor vertical accuracy (˜10
m) and spatial resolution (˜90 m), and 3) a mixed product such as the National Elevation Dataset (NED)
from the USGS that merges LiDAR surveys and the USGS quadrangle maps, whose accuracy (˜5-7 m) and
resolution (˜5/10/30 m) sit in between the former two products. A general consensus from these studies is
that LiDAR data is the most favorable DEM owing to improved vertical accuracy in flood modeling (Mohanty
et al., 2020; Sanders, 2007; Schumann & Bates, 2018) but they have to be accompanied by surveyed channel
profile. IfSAR, however, degrades its quality because of poor vegetation penetration and speckle noise while
NED smooths some artifacts. The NED 10 m data accurately represents the river channel morphology than
high-resolution LiDAR data that cannot penetrate water surface. Therefore, in this study, we select the 10
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m DEM data from the NED dataset in the study area. To confirm the river channel bathymetry, 13 surveyed
river geometries from the Harris Country Flood Control are curated and compared to NED 10 m, shown in
Table 1. The average difference is found to be small (˜0.55 m).

The LULC and impervious area data are acquired from the National Land Cover Database (NLCD) at 30
m resolution to derive a-priori parameter sets. The soil type dataset is retrieved from the United States
Department of Agriculture.

[INSERT TABLE 1 HERE]

2.3 Study area

Greens Bayou Basin, located in the north of the Houston metropolitan region, is one of the areas that are
susceptible to regional flooding because, firstly, landfalling tropical cyclones and hurricanes bring torrential
rainfall within a short period; secondly, the urban development in the recent years have altered the local
ecosystem (e.g., replacement of soil with built-up structures). The basin is relatively flat (˜1.5%), with an
average elevation of around 23.65 meters, and the total drainage area is 457.9 km2. Three main streams
flow across this region. Reinhardt Bayou (drainage area: 86.3 km2) flows from north to south, met with
Greens Bayou to form the longest river in this area. Halls Bayou (drainage area: 225.1 km2), the second-
longest river, meets Greens Bayou at the basin outlet (Figure 1a). The five USGS stream gauges, situated
at each mainstream, monitor instantaneous streamflow at a 15-min time interval. Nearly 90% of the area
is well-developed, especially in the western portion; forests and wetlands are present downstream, close to
the basin outlet (Figure 1b). The soil types are dominated by a mixture of sand, clay, and loam (Figure
1c). The typical runoff generation mechanism in this region is infiltration excess runoff when extreme rain
rates surpass soil infiltration capacity, indicated by relatively low hydraulic conductivity values (Buchanan
et al., 2018). Meanwhile, the correlation between rainfall and streamflow is above 0.6, pointing to a flashy
hydrograph (Berghuijs, Woods, Hutton, & Sivapalan, 2016).

[INSERT FIGURE 1 HERE]

During the 500-year Hurricane Harvey event, this region is largely inundated due to record-breaking 1600
mm rainfall over a one-week storm lifespan (Chen et al., 2020; Li et al., 2020). According to the Harris
Country flood report, both Greens Bayou and Halls Bayou experienced a 500-year water level downstream
and 50-year to 100-year in between upstream. Greens Bayou broke previous water level records in 2002 and
observed flooding occurred along the entire channel.

2.4 CREST-iMAP model

Hydrologic modeling is so far a common approach to deliver timely flood information for the sake of scalability
and efficiency (Gourley et al., 2017). Yet, conventional hydrologic models bear large uncertainties in such
developed regions, which is mainly due to 1) simplified representation of terrain (Dullo et al., 2021) and 2)
one-dimensional routing that raises issues in flat regions (Flamig, Vergara, & Gourley, 2020; Getirana & Paiva,
2013; Li et al., 2021b). On the other hand, hydraulic models do not excel in representing hydrologic processes.
In light of these issues, the newly developed Coupled Routing and Excess STorage inundation MApping and
Prediction (CREST-iMAP) model is used to investigate the importance of the re-infiltration scheme in
flood inundation models. The CREST-iMAP integrates CREST V2.1 for the hydrologic part that simulates
vertical water distribution by land surface and ANUGA V2.1 for the hydraulic routing that distributes
spatial water over terrain by solving 2D shallow water equation. Its performance has been evaluated in this
region against the non-coupled hydrologic models and other popular coupled models – WRF-Hydro+HAND
and LISFLOOD FP (Chen et al., 2021; Li et al., 2021b). However, the previous version of CREST-iMAP
V1.0 does not include the re-infiltration scheme, meaning that surface running water is not allowed to
re-enter the soil. Here, we release the CREST-iMAP V1.1, an upgrade version, which considers two-way
coupling via exchanging surface water between the hydraulic and hydrologic module and re-infiltration.
Two different schemes are illustrated schematically in Figure 2, where the left panel represents the re-
infiltration scheme, and the right does not. The CREST-iMAP V 1.0 and V1.1 are openly accessible from
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https://github.com/chrimerss/CREST-iMAP.

[INSERT FIGURE 2 HERE]

CREST-iMAP inherits the previous version of the CREST model, which simulates saturation excess runoff
as the primary runoff generation process (Wang et al., 2011; Xue et al., 2013; Flamig, Vergara, & Gourley,
2020). The schematic model structure is depicted in Figure 2. The study area is discretized in variable
triangular meshes which allow higher density in river channels to resolve high-resolution river flow. Each
modeling unit receives excess rainfall (rainfall minus evaporation) from forcing data. Then surface water is
divided into overland flow and soil water according to the impervious area ratio through linear weighting.
Overland flow is generated once soil water exceeds its holding capacity; otherwise, soil water is separated
into the remaining amount and interflow based on the Variable Infiltration Curve (VIC) concept. The VIC
model is a widely recognized infiltration model that has been applied in several classic hydrologic models
(Liang, Lettenmaier, Wood, & Burges, 1994; Zhao, 1995). Overland flow, combined with the impervious area
and saturation excess flow, is eventually fed into the 2D shallow water equation solver – the Finite Volume
Scheme. It solves water depth and momentum distributed at each grid cell and propagates across boundaries.
The outputs of the model include water depth, velocity, discharge, and soil moisture at a desired time step.
In the current setting, re-infiltration, termed as water moves from subsurface to surface, is not considered
because surface flow is the dominant process in major flood events (Freeze, 1974). The flexibility of the
unstructured mesh in CREST-iMAP allows dense meshes in regions that reflect high terrain variability (e.g.,
river channel) and sparse meshes in other regions (e.g., flood plain). This study simulates the extreme flood
events at 10-m resolution using the embedded unstructured mesh generator.

There are five hydrologic parameters and one hydraulic parameter for the CREST-iMAP, which are listed
in Table 2 along with parameter ranges. It is noteworthy that all these parameters are spatially distributed
to account for the spatial heterogeneity of land cover and soil types. The mean soil saturated hydraulic
conductivity, Ksat from 0 to 20 mm/d , indicates the soil infiltration capability. Higher Ksat values imply
higher infiltration rates if soils are not saturated while reaching plateau for the saturated soils. The mean
soil water capacity, WM from 10.4 to 365.4 mm, measures the total water content the soil can hold with
lower value representing the impermeable soils. The exponent of the Variable Infiltration Curve (VIC), B,
determines soil water partitioned to saturation excess runoff or interflow, with a higher B value corresponding
to higher infiltration rates. KE is the ratio of the potential evapotranspiration to actual evapotranspiration,
similar to the concept of pan coefficient. These soil-related a-priori parameters can be approximated from a
look-up table at an individual grid cell basis (Chow, Maidment, & Mays, 1988). There are also CONUS-wide
optimized parameter sets that are configured for operational flood monitoring systems (Flamig, Vergara,
& Gourley, 2020). The impervious area ratio, IM from 0% to 100%, is obtained directly from the NLCD
dataset; the manning’s n coefficient is derived from the LULC via a look-up table. Both parameters determine
water conveyance capacity, meaning that higher values relate to faster and larger flood peaks. The hydrologic
parameters are configured at their optima based on previous study, but for the hydraulic parameter – manning
coefficient, we manually adjusted it in a preceding event to ensure generating timely and accurate possible
flood peaks.

[INSERT TABLE 2 HERE]

2.5 Experiment

2.5.1 Synthetic experiment

The importance of re-infiltration in principle is governed by (1) soil properties, (2) soil water saturation,
and (3) excess rainfall rates. To quantify the relative importance and generalize our results, we decide to
conduct a sensitivity test in this study area to mimic different environment while preserving other variables.
The sensitivity analysis addresses the following hypotheses: 1) discernable differences exist when switching
on and off re-infiltration scheme, 2) re-infiltration alters flood inundation magnitude and dynamics, and 3)
differences are amplified when increasing soil infiltration rates and drying antecedent soil saturation. Of five
hydrologic parameters, we select two soil parameters (i.e., Ksat and B) that have a direct interaction with
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infiltration rates. Increase in Ksat and B promote re-infiltration amount. Additionally, the antecedent soil
moisture (SM0), proven to be critical for flood generation (Li et al., 2021b; Yang et al., 2011), is another
term to change infiltration dynamics: higher soil water saturation results in less re-infiltration. We applied a
multiplier to each parameter of interest, ranging from 0.0 to 2.0 with 0.1 spacing except for SM0 that only
ranges from 0.0 (completely dry) to 1.0 (fully saturated) with 0.1 spacing.

For the forcing data in this experiment, we consider a 100-year extreme in the study area by looking up the
local Intensity-Duration-Frequency table. This determined rainfall rates are uniform across 2 hours without
spatial heterogeneity to eliminate the impact of rainfall spatial structure because we solely consider the
impact by soils. We run the model for 24 hours for each parameter, totaling 50 runs.

2.5.2 Real case – Hurricane Harvey

Hurricane Harvey is one of the most destructive extreme weather events happened in this study area with
damaging winds and urban flooding. The storm was stalled over the Houston region for one week with
continuous falling of extreme rains to develop pluvial and fluvial flooding, compounded by costal surges.
According to the precipitation estimates by gauges and radars, 1,539 mm maximum rainfall was observed
and most locations in the study area recorded at least 760 mm rainfall, making it the wettest tropical
cyclone on record. As a result, almost 25-30 percent of Harris Country was submerged during this event.
Owing to the socioeconomic impact, a variety of flood simulations were conducted in this region (Chen et
al., 2021; Dullo et al., 2021; Li et al., 2021b; Sebastian et al., 2021). The simulation in our study is conducted
from 2017-08-26 to 2017-09-01, during which we did not vary model parameters between scenarios with and
without re-infiltration. The parameter values are optimized from a previous study (Li et al., 2021b). The
initial soil moisture states are obtained from the operational FLASH project (flash.ou.edu/new).

2.6 Computational metrics and results interpretation

A set of computational metrics are selected for this study. The binary assessment comparing the scenarios
with and without re-infiltration is considered with True Positives (TP), False Negatives (FN), and False
Positives (FP). The rationale behind this is that flood extent observations, e.g., witness reports, watermark,
satellite-derived flood extent, and insurance claims, are still uncertain without ground truth (Bates, 2004;
Chen et al., 2021). For flood magnitude, the depth, area, and volume are calculated as a basin-integrated
ratio. For flood dynamics, we inspect the initial inundation timings and total inundation duration that are
often factored in flood risk assessments (Merz, Kreibich, Schwarze, & Thieken, 2010). The first six metrics
listed in Table 3 are calculated at the maximum flood depth across the simulation period. In the real case
study, we verify the performance of two schemes against stream gauge measurements, which is so far the
most conventional and trustworthy source. During the verification, the Nash-Sutcliffe Efficiency (NSE) and
Correlation Coefficient (CC) are the primary evaluation scores with each indicating the best value of 1. The
detailed formulas for calculating these variables are listed in Table 3, as well as their ranges.

[INSERT TABLE 3 HERE]

The RMSE can be further decomposed to reveal the systematic error and random error (Tang et al., 2020).
First, we assume an additive error model by fitting a linear regression to our simulated stage to determine
regression coefficients a and b . We assign the new variable as F . Then the residual is calculated by the
difference of observed river stage O and fitted river stage F .

F = a× S + b

RMSES = 2

√√√√ 1

n

n∑
i=1

(S − F )
2

6
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RMSER = 2

√√√√ 1

n

n∑
i=1

(F −O)
2

, where S is denoted as the simulated river stage and O is the observed.

In the results section, we present it in two parts: sensitivity analysis and real case study. The former includes
basin-wise difference in an integral to reveal general differences (Section 3.1.1) and spatiotemporal relations
to uncover the importance of re-infiltration with time and space (Section 3.1.2). In the real case study, we
focus on the efficacy of re-infiltration scheme by comparing to river stage observations (Section 3.2.1), and
the High Water Marks surveyed in the aftermath of the event (Section 3.2.2). In Section 3.2.3, we investigate
the importance of re-infiltration scheme in real case study by cross-comparing it to the synthetic results.

3. RESULTS

3.1 Sensitivity analysis

3.1.1 Basin-average statistics

The overall flood-related differences between scenarios with and without re-infiltration are shown in Figure
3, calculated as basin-integral change by averaging each metric over the whole grid cells that are wet (water
depth larger than 0.01 m). First, the differences are discernible comparing the two, especially for the surface
water volume ratio (RV), which varies from 0.7 to 1. It suggests the surface water with re-infiltration scheme
could only account for 70% of the condition without re-infiltration. There is also a 2.5-hr difference in total
inundation duration (D), meaning that ponding water retains 2.5 hours less on the surface for re-infiltration
scheme. The total inundation duration is an important factor for flood risk management (Merz et al., 2010;
Triet et al., 2020). Previous studies agree that the re-infiltration results in a substantial reduction of river
flow discharge, which can be translated to flood depth (RH) (Nahar et al., 2004; Woolhiser et al., 1996). For
different conditions, the antecedent soil moisture, as expected, exhibits the largest impact on flood inundation
dynamics when comparing the two scenarios. Lower initial soil moisture leads to greater differences in flood
depth (RH), area (RF), volume (RV), and dynamics. For instance, when the soil is completely dry, the average
flood depth (RH)/area (RF)/volume (RV) of the re-infiltration scheme only accounts for 85%/85%/67% of
that of without the re-infiltration scenario.

[INSERT FIGURE 3 HERE]

The initial inundation timing (Tinit) for re-infiltration delays around 0.5 hours, and the total inundation
duration (D) is 2.5 hours less than the scenario without re-infiltration. As soil gradually approaches satura-
tion, the differences diminish. Saturated hydraulic conductivity, Ksat, ranked as the second most sensitive
parameter during the test, exponentially reduces flood depth/area/volume by 10%/7%/20% when its mul-
tiplier increasing from 0.0 to 2.0. Furthermore, the differences of inundation duration (D) range from 1.5
hours to 3.5 hours, making Ksat the most influential parameter; however, the initial inundation timing is
relatively insensitive to it, as opposed to initial soil saturation condition. This is due to the fact that Ksat
only changes infiltration flux along the way while exerting less impact on the initial inundation timings. The
infiltration parameter B, however, has the least impact on the flood inundation dynamics among the three.
These measures exhibit the greatest changes at small B multipliers (0.1-0.3) and then level out irrespective
of increasing B multipliers. A plateau is reached because of the constrain of the maximum infiltration ca-
pacity. In summary, this sensitivity analysis tests our three main hypotheses, indicating the non-negligible
differences between the two schemes and how the soil type and condition influence the results.

3.1.2 Spatiotemporal relationships

To explore the spatiotemporal differences of scenarios with and without re-infiltration, we set three para-
meters to their default values, namely an initially dry soil condition and normal soil infiltration rates (i.e.,
a-priori setting). Figure 4 shows the difference in flood extent for the two schemes. Despite a considerable
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amount of grid cells showing positive agreements (i.e., both detect floods; TP=16.0%), there are still 1.7%
of the grid cells issuing false positives, amounting to 15.6k grid cells (˜1.56 km2) in this model configuration.
Specifically, those false positives accumulate around upstream floodplains while the downstream such as areas
near the basin outlet does not present discernable differences, as the flood depth there due to accumulation is
not sensitive to inundation thresholds for flooded cells. Moreover, Figure 5 portrays the spatial distribution
of the differences with respect to maximum depth, initial inundation timings, and total inundation duration.
Figure 5a depicts the major differences that are situated in floodplains and river channels where surface
water is accumulated via routing, and the maximum depth difference is up to 3 meters in the river channel,
especially downstream of Halls Bayou. However, the initial inundation timings and durations are scattered
sparsely over the study area, with a majority of the grid cells showing earlier and longer inundations for the
case without re-infiltration scenario. Therefore, it is likely that the flood is over-predicted by models without
the re-infiltration scenario.

[INSERT FIGURE 4 HERE]

Meanwhile, we notice that there are some samples in the opposite distribution, indicating delayed and/or
shorter inundation time. Arguably, this could be some local effects when the soil reaches earlier saturation in
the re-infiltration scenario, thereby leading to earlier flooding. A supporting material is found in Figure 5d,
in which the basin-average soil moistures of two schemes are compared. Notably, evapotranspiration is not
considered in this ideal test, so the soil moisture does not deplete with time. Within the storm lifetime, soil
moisture surges from completely dry to 85% saturation for the scenario without re-infiltration and to 95%
saturation for scenario with re-infiltration. Early saturation reduces infiltration rates later on and thus has
pronounced effects on local flooding when surface water is not routed timely. Figure 5e presents the evolution
of surface water volume by integrating surface water depth along with grid cells. Although both scenarios
similarly reach the maximum surface water volume concurrently, their recession limbs show considerable
differences. The re-infiltration scenario apparently has a steep exponential decay, as both still water and
running water infiltrates into the soil; for the scenario without re-infiltration, in contrast, there is a mild
decay and even levels out at the end of the simulation. The difference between the two increases with time,
as shown in the shaded area, up to0.4× 108 m3 volume difference, which equates to almost half of the total
surface water volume.

[INSERT FIGURE 5 HERE]

In summary, re-infiltration scheme indeed influences flood magnitude and timings via surface water-soil
interaction, and it possibly reduces flood magnitude and delays (shortens) flood timing (duration). Flood
magnitude differences are pronounced downstream or in depressions, while flood timings are scattered. Such
results are markedly tied to soil condition (wet or dry) and soil characteristics (infiltration capacity).

3.2 Case study: Hurricane Harvey

The previous sensitivity test indicates that the re-infiltration scheme is not only physically sound, but it
exerts considerable influences on model simulations. Although the CREST-iMAP tested under theoretical
scenarios, it is relevant to compare one another in a real case study against observations during Hurricane
Harvey.

3.2.1 Verification against stream gauges

Gauged water heights from five USGS stream gauges within the model domain are retrieved during model
simulations at the 15-min interval. Surface water heights from two simulation schemes are extracted at col-
located stream gauge locations. It is worth mentioning that the terrain elevation imposes great uncertainties
when comparing model simulations to observations, as the sub-grid variation cannot be resolved in the cur-
rent settings. Despite the resolution mismatch, these gauge readings are still the most widely used source to
verify the model performance. Table 4 shows the respective performance for with and without re-infiltration
scenarios with respect to observations. The re-infiltration scheme greatly improves the NSE scores (+139.9%)
and CC (+7.24%) while reducing RMSE (-18.2%). Especially for the gauge 08075900, there is more than a
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400% increase in NSE score, jumping from 0.12 to 0.69. By breaking down the RMSE into systematic error
RMSES and random error RMSER, we see the reduced error is largely attributed to minimized systematic
error (-31.2%), relative to the random error (-13.1%). The systematic bias is much alleviated by considering
the re-infiltration scheme.

The reason for such a leap comes from better characterization of its flow recession limbs, as shown in Figure
6. Both schemes are capable of simulating the peak water height values without delays, but water in the
scenario without re-infiltration falls mildly in the recession stage, resulting in much higher water height than
the observations. On the other hand, flow for the re-infiltration scenario follows the gauge readings closely,
especially after the first peak (from 2017-08-26 to 2017-08-27). Apart from this best-performing gauge,
the re-infiltration scheme improves capturing falling water across all the gauge stations, thereby leading to
significant performance gains. Consistently, previous studies also highlighted that the re-infiltration markedly
reduces recession limbs in the hydrograph (Nahar et al., 2004).

[INSERT TABLE 4 HERE]

[INSERT FIGURE 6 HERE]

3.2.2 Verification against High Water Marks

Because a direct assessment for flood inundation is not feasible, some watermarks or stains in the aftermath
of a flood event can be used as proxy data for model evaluation. The USGS team routinely publishes their
surveyed High Water Marks (HWMs) after some major flood events, which can subsequently be used for
model evaluations (Chen et al., 2021; Li et al., 2021b; Sebastian et al., 2021; Wing et al., 2017). Figure 7
shows the cell-wise maximum flood depth of the two schemes compared to the HWMs. Both schemes present
better performance upstream of Halls Bayou, with a difference smaller than 0.5 meters. However, the model
over-predicts water depth in Greens Bayou up to 1.5 meters. This is consistent with the over-prediction of in-
channel water depth, as shown in Figure 6. The distribution of the differences is shown in Figure 7c, pointing
to a generally better performance of the re-infiltration scenario than without it, as the absolute mean depth
difference of the re-infiltration (0.51 m) is 17.2% smaller than that of the scenario without re-infiltration
(0.60 m). It is worth noting that HWMs themselves come with uncertainties that are due to the data quality,
and errors could be up to 0.2 meters (Koeig et al., 2016). For instance, tranquil water represents a smooth
trend that has small uncertainties. There are also spurious errors that are related to human mistakes or
values being rounded off. This is particularly true for the recorded geographical coordinates which requires
more floating points to pin down the location exactly. In Figure 7d and e, the two HWMs are marked with
an absolute difference greater than 1 m but only several pixels away (i.e., tens of meters) from their true
values. Despite this, the re-infiltration greatly alleviates the over-prediction of the previous model.

[INSERT FIGURE 7 HERE]

3.2.3 Intercomparisons of flood magnitude and dynamics

The intercomparison of flood magnitude and dynamics helps to understand the effects of re-infiltration in a
real 500-year event. Figure 8, similar to Figure 5, depicts the basin-integrated differences. For flood dynamics,
the initial inundation timing (Tinit) and total inundation duration (D) could vary from -2 (delayed) to 4
(earlier) hours and 0 to 15 hours, respectively. For the temporal evolution of the Harvey event, it is featured
by two subsequent events. The first event from 2017-08-26 to 2017-08-27 saturates the soils immediately,
during which the large differences of surface water volume and soil moisture are present between the two
schemes. The soil moisture content for the re-infiltration scheme is about 10% more than without the re-
infiltration scheme; the surface water volume, however, is 40% less. The second event does not produce a
large difference because of the saturated soils over the domain (Figure 8d). As indicated by the sensitivity
analysis, this effect is highly dependent on soil condition, soil types, and rainfall characteristics. The extreme
rainfall from Harvey leaves less room for water to infiltrate, compared to other less intense events. It is
therefore expected to have more pronounced improvements for less intense rainfall or other regions with high
soil infiltration capacity.
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[INSERT FIGURE 8 HERE]

4. DISCUSSION

In this study, only local variations of three parameters – initial soil moisture, hydraulic conductivity, and the
exponent of the VIC model – are tested independently. However, the interactions among these parameters
are not explored herein. Global sensitivity analysis, such as the Morris method used in the previous study
(Li et al., 2021b), can measure the variation of each parameter relative to other parameters, so it provides
a clearer picture of the parameter interactions. Needless to say, initial soil saturation state is the dominant
controller for the differences between the simulations with and without re-infiltration process. When the soils
are fully saturated, the with and without re-infiltration scenarios are almost identical if other parameters
are the same. Combined with our previous study that underlies the importance of infiltration and initial
soil moisture for flood inundation modeling, we highly recommend taking into consideration the initial soil
moisture state, as it has not been well-recognized in the hydraulic model community. This can be achieved
via three ways: 1) warm up the model for a relatively long period prior to the simulation period (Chen et al.,
2020); 2) parameterize the initial soil moisture and calibrate it, similar to the way we treat initial in-channel
water depth (Xue et al., 2013); 3) approximate it using observations or other model simulations, like what
has been done in the real case study in Section 3.2 (Flamig, Vergara, & Gourley, 2020). The first approach
is ideal because it eliminates uncertainties in parameterization (such as equifinality) or error propagation
from observations/simulations to models; it is, however, the most computationally expensive approach for
hydraulic modeling compared to the other two. Approach two and three are more pragmatic, while both
inherit uncertainties or errors. We prefer the third approach if the data source is found to be trustworthy. For
instance, in our case study, we used the simulated soil moisture product from the operational CREST/EF5
model which shares the same land surface processes as the CREST-iMAP.

The results relating to different rainfall events are not factored in this study, yet different event characteri-
stics interact with soil infiltration dynamics, thereby causing differences between the two schemes (Zhang et
al., 2020). One could envision the differences increase with rainfall rates if they did not exceed the maximum
infiltration capacity and the soils are not saturated. However, once reaching the maximum infiltration rates
or soil saturation, the differences are unlikely to further enlarge. Other parameters regarding terrain charac-
teristics are also effective in re-infiltration. For instance, an increase in slope will leave less room for surface
water to re-infiltrate, which explains why re-infiltration compromises its importance in hillslope hydrology
(Corradini et al., 2002; Zhang et al., 2020).

5. CONCLUSIONS

This study focuses on the influence of the re-infiltration process for 100-year and 500-year flood events,
which has so far not been well-recognized by the hydrologic/hydraulic modeling community. The sensitivity
experiment and a 500-year Hurricane Harvey example both highlight the discernable differences between the
with and without re-infiltration scheme. The major conclusions are summarized as follows:

1. In the 100-year design rainfall event, re-infiltration is found to make discernible differences with less flood
extent (˜1.56 km2), depth (˜3 m), and dynamics (˜4-hour delayed flooding and ˜4-hour shorter inundation
duration), compared to without re-infiltration. The 500-year Hurricane Harvey event shows a magnified
difference in inundation duration up to 15 hours because of the longer event duration. However, the flood
depth difference is less in the Harvey event due to the rapid saturation of the soils.

2. The hydraulic conductivity and antecedent soil condition from the designed sensitivity test are found to
be the prime contributors to the difference between with and without re-infiltration, and comparatively, the
antecedent soil moisture condition is the most sensitive among the three tested factors.

3. For the Harvey event, the differences are verified with stream gauge observations. On average, a 139.9%
increase in NSE scores is found for re-infiltration with respect to without it. The improvements are mostly
tied to better characterization of the recession limb after peak flow while the peak flows are well-captured
by both. The proxy data – USGS High Water Marks – also indicate better performance with the inclusion
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of the re-infiltration scheme, as the re-infiltration scheme presents a 17.2% less flood depth difference than
the case without the re-infiltration. The differences are further expected to enlarge for less intensive events
and regions with a higher percentage of permeable soil media.

This study aims to raise attention to the important re-infiltration process in coupled H&H flood modeling to
provide more accurate flood information, e.g., depth and timings. For future work, we will continue improving
the current CREST-iMAP model framework by incorporating flood mitigation measures such as levees and
dams into the system. Also, it is critical to couple with the NWP model to advance flood prediction lead
time, which ensures more time for residents at risk to evacuate.
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APPENDICES (if any) to be printed

TABLES

Table 1. Digital Elevation Model and surveyed channel bottom elevation comparison

id lat lon gage (feet) gage (meter) NED 10m Difference (m)

1650 29.965025 -95.271954 52.82 16.099536 16.53 -0.430464
1630 29.933648 -95.233574 31.61 9.634728 10.51 -0.875272
1680 29.861698 -95.334883 39.21 11.951208 12.04 -0.088792
1690 29.892682 -95.396717 59.72 18.202656 18.7 -0.497344
1675 29.849306 -95.282843 18 5.4864 5.5 -0.0136
1620 29.837012 -95.233773 -2.12 -0.646176 0.29 -0.936176
1685 29.849798 -95.229007 0.51 0.155448 1.63 -1.474552
1640 29.91791 -95.306565 35.39 10.786872 11.96 -1.173128
1600 29.891907 -95.237623 17.03 5.190744 5.75 -0.559256
1670 29.948972 -95.51941 99.2 30.23616 30.33 -0.09384
1160 29.973483 -95.598483 101.14 30.827472 31.14 -0.312528
1660 29.956166 -95.416142 64 19.5072 20.06 -0.5528
1655 29.972595 -95.435011 76.91 23.442168 23.63 -0.187832

Table 1. Parameters required in CREST-iMAP framework

Parameters description Range

Ksat Soil saturated hydraulic conductivity (mm/d) 0-2827.2
WM Mean soil water capacity (mm) 80-200
B The exponent of the variable infiltration curve 0.05-1.5
IM Impervious area ratio (%) 0-100
KE The ratio of the PET to actual evapotranspiration 0.1-1.5
Manning’s n The coefficient for the use of manning’s equation in channel flow 0-1

Table 2. Computational metrics

Metrics Formula Range

True Positive (TP)
∑N

n=1 (Bn=1)∩(Sn=1)

N × 100% (0, 100) %

False Negative (FN)
∑N

n=1 (Bn=1)∩(Sn=0)

N × 100% (0, 100) %

False Positive (FP)
∑N

n=1 (Bn=0)∩(Sn=1)

N × 100% (0, 100) %
Flood area ratio (RF) RF = Areas

Areab
(0, 1)

Mean water depth ratio (RH) RH =
∑n

i=1 Hs,i∑n
i=1 Hb,i

(0, 1)

Surface water volume ratio (RV) RV =
∑n

i=1 Hs,i×Areas∑n
i=1 Hb,i×Areab

(0, 1)
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Metrics Formula Range

Initial inundation time differences (Tinit) Tinit = Ts − Tb (-T, +T)
Inundation duration differences (D) D = Ds −Db (-T, +T)

Nash- Sutcliffe Efficiency coefficient (NSE) 1−
∑N

n=1 (Sn−On)
2∑N

n=1 (Sn−O)
2 (-inf, 1)

Root Mean Square Error (RMSE)
√

1
N

∑N
n=1 (Sn −On)

2
(0, inf)

Correlation Coefficient (CC)
∑n

i=1 (oi−o)(si−s)√∑n
i=1 (si−s)

2
√∑n

i=1 (oi−o)
2

(0, 1)

Note: subscript s represents the simulation by turning on the re-infiltration scheme, and subscript b indicates
the benchmark that turns off the re-infiltration scheme. T is the total simulation time and O denotes the
observed stage.

Table 3. Model performance at stream gauge locations. The bolded values are the better ones from the
off and on re-infiltration comparison. “Off” represents scenario without re-infiltration and “On” represents
with re-infiltration scenario.

Metrics\Gauges Metrics\Gauges 08075900 08076000 08076180 08076500 08076700

NSE Off 0.12 0.20 0.47 0.34 0.921
On 0.69 0.44 0.52 0.66 0.919
Improvement (%) +475 +120 +10.6 +94.1 +0.2

RMSE (m) Off 1.89 2.24 1.85 1.61 1.14
On 1.13 1.89 1.76 1.15 1.12
Improvement (%) -40.2 -15.6 -4.86 -28.6 -1.8

RMSES (m) Off 1.64 1.39 0.44 1.02 0.96
On 1.00 1.02 0.26 0.59 0.89
Improvement (%) -39.0 -26.6 -40.9 -42.2 -7.3

RMSER (m) Off 0.94 1.77 1.80 1.25 0.61
On 0.53 1.58 1.74 0.99 0.69
Improvement (%) -43.6 -10.7 -3.33 -20.8 +13.1

CC Off 0.88 0.71 0.70 0.77 0.99
On 0.96 0.78 0.73 0.87 0.99
Improvement (%) +9.09 +9.86 +4.29 +13.0 0

FIGURE LEGENDS

Figure 1: Maps of the (a) location of the study region, (b) digital elevation model, (c) soil type, and (d)
land use land cover.

Figure 2: Schematic illustration of the re-infiltration scheme.

Figure 3. Parameter sensitivity with metrics indicated in Table 2.

Figure 4: Map of binary flood detection comparison. FP: False Positives; FN: False Negatives; TP: True
Positives.

Figure 5: Spatial distribution of differences of (a) maximum depth, (b) initial inundation timings, and (c)
inundation durations along with respective sample distributions (red line represents the mean value of the
distribution). Temporal evolution of (d) soil moisture (%) and (e) surface water volume. The difference of
surface water volume in (e) is plotted in the shaded area.

Figure 6: Simulated and observed time series of surface water height at five USGS stream gauges.
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Figure 7: Maps of maximum surface water depth for (a) on re-infiltration and (b) off re-infiltration with
differences against High Water Marks (HWMs). (c) histogram of water depth difference. Maps of two
examples, (d) and (e), with the difference larger than 1 meter between the simulation and USGS HWMs.

Figure 8: Basin aggregated distribution of (a) maximum depth differences, (b) initial inundation timing
differences, and (c) inundation duration differences. Time series of basin-average (a) soil moisture and (b)
surface water volume. The vertical dashed line indicates the mean value of all samples.

SUPPORTING INFORMATION
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