The growth-survival and stature-recruitment trade-offs structure the majority of tropical forests.

Stephan Kambach¹, Richard Condit², Salomón Aguilar³, Helge Bruelheide⁴, Sarayudh Bunyavejchewin⁵, Chia-Hao Chang-Yang⁶, Yu-Yun Chen⁷, George Chuyong⁸, Stuart Davies³, Sisira Ediriweera⁹, Corneille Ewango¹⁰, Edwino Fernando¹¹, Savitri Gunatilleke¹², Nimal Gunatilleke¹², Stephen Hubbell¹³, Akira Itoh¹⁴, David Kenfack¹⁵, Somboon Kiratiprayoon¹⁶, Yiching Lin¹⁷, Jean-Remy Makana¹⁸, Mohizah Mohamad¹⁹, Nantachai Pongpattananurak²⁰, Rolando Perez²¹, Lilian Rodriguez²², Ifang Sun²³, Sylvester Tan²⁴, Duncan Thomas²⁵, Jill Thompson²⁶, Maria Uriarte²⁷, Renato Valencia²⁸, Christian Wirth²⁹, S. Joseph Wright³, Shu-Hui Wu⁶, Takuo Yamakura¹⁴, Tzeleong Yao³⁰, Jess Zimmerman³¹, and Nadja Rüger³²

¹Martin-Luther-University Halle-Wittenberg ²Field Museum of Natural History ³Smithsonian Tropical Research Institute ⁴Martin Luther University Halle Wittenberg ⁵Department of National Parks, Wildlife and Plant Conservation ⁶National Sun Yat-sen University ⁷National Dong Hwa University ⁸University of Buea ⁹Uva Wellassa University ¹⁰Wildlife Conservation Society ¹¹University of the Philippines Los Baños College of Agriculture ¹²University of Peradeniya ¹³University of California ¹⁴Osaka City University ¹⁵Harvard University ¹⁶Thammasat University ¹⁷Tunghai University ¹⁸University of Kisangani ¹⁹Forest Department Sarawak ²⁰Kasetsart University ²¹Smithsonian Tropical Research institute ²²University of the Philippines Diliman ²³National Dong Hwa University College of Science and Engineering ²⁴Smithsonian Tropical Research Institute Washington DC Offices ²⁵Oregon State University ²⁶Centre for Ecology and Hydrology -Edinburgh, ²⁷Columbia University ²⁸Pontifical Catholic University of Ecuador

²⁹Leipzig University Faculty of Life Sciences
³⁰Forest Research Institute Malaysia
³¹University of Puerto Rico
³²Universität Leipzig

November 1, 2021

Abstract

All species must balance their allocation to growth, survival and recruitment. Among trees, evolution has resulted in different strategies of partitioning resources to these key demographic processes, i.e. demographic trade-offs. It is unclear whether the same demographic trade-offs structure tropical forests worldwide. Here, we used data from 13 large-scale and long-term tropical forest plots to estimate the principal trade-offs in growth, survival, recruitment, and tree stature at each site. For ten sites, two trade-offs appeared repeatedly. One trade-off showed a negative relationship between growth and survival, i.e. the well-known fast-slow continuum. The second trade-off distinguished between tall-statured species and species with high recruitment rates, i.e. a stature-recruitment trade-off. Thus, the fast-slow continuum and tree stature are two independent dimensions structuring most tropical tree communities. Our discovery of the consistency of demographic trade-offs and strategies across forest types in three continents substantially improves our ability to predict tropical forest dynamics worldwide.

Hosted file

Kambach et al - manuscript.docx available at https://authorea.com/users/352839/articles/ 538718-the-growth-survival-and-stature-recruitment-trade-offs-structure-the-majority-oftropical-forests