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Abstract

Understanding drivers of disease vectors’ population dynamics is a pressing challenge for human health, however, for short-lived

organisms like mosquitoes, landscape-scale models must account for the highly local and rapid scale of their life cycle. Aedes

aegypti, a vector of multiple emerging diseases, has been increasing in abundance in desert population centers, where water

from precipitation could be a limiting factor. To explain this apparent paradox, we examined daily precipitation and Ae.

aegypti abundances at >660 trapping locations per year for 3 years in the urbanized Maricopa County (metropolitan Phoenix),

Arizona, USA. Through kriging of weather station data, we connected daily precipitation to subsequent trapped abundances

of mosquitoes, and determined the timing and amount of precipitation that result in thresholds of interference with mosquito

abundance. Large rainfall events resulted in no trapped mosquitoes 6-8 and 13-14 days later, while 10% of all mosquitoes were

trapped in long, precipitation-free periods.

Introduction

Predicting disease vector dynamics is of considerable importance for human and wildlife health globally, and
is becoming increasingly imperative with global climate and land use changes (Lafferty 2009a, b; Alexander
et al. 2018). Understanding the drivers of disease vectors’ abundances and range expansions, as well as their
life cycles, population structures, and interaction with human-modified environments will have immediate
applications for prediction of disease exposure and transmission (Valenzuela-Sánchez et al. 2021), public
health, and intervention efforts (Robbins & Miller 2013; Cable et al. 2017; Little et al. 2017; Wimberly et
al. 2020). However, one of the major challenges in predicting population-level dynamics of disease vectors is
shared with that of global change ecology generally, that is, defining and incorporating the correct data to
represent the relevant spatial and temporal extent of complex processes and ecological interactions (Wu &
David 2002; Anand et al. 2010; Newman et al. 2019).

In disease ecology, the mechanisms relating climate and weather to their effects on organisms at the appro-
priate scales are often poorly studied, and rely on lab-based studies rather than field-based ones (Caldwell
et al. 2021). Relevant environmental conditions are often short-term, variable, and highly localized, and
appropriate statistical approaches to connect local-scale weather information to organisms’ life cycles may
be lacking (Pascual & Bouma 2009). Although laboratory experiments (Baker et al. 2000; Mordecai et al.
2019) can help define the causal relationships between weather variables and organismal biology, they do not
translate directly to landscape-level or regional predictions. Many predictions of disease vector establishment
and spread therefore rely on coarse-resolution climate predictors over broad extents, such as recent attempts
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employing climate envelope models (Khatchikian et al. 2011; Khormi & Kumar 2014). These studies de-
monstrate that broad distributional patterns may be predictable with high error, as climate envelope models
applied over large extents fail to match the resolution of fine-scale processes including weather changes,
microclimates, and environmental variability related to structure, weather, and species interactions (Davis
et al. 1998; Juliano 2009; Lembrechts et al. 2019; Caldwell et al. 2021), as well as reproductive success
(Iwamura et al. 2020). Climate envelope approaches may be inappropriate for modeling emerging diseases
when system-specific knowledge is ignored (Carlson et al. 2020; Valenzuela-Sánchez et al. 2021) or the goal
is to predict population densities (Warren et al. 2020). Fine-scale environmental data is therefore necessa-
ry for testing hypotheses linking spatially- and temporally- structured population dynamics to underlying
ecological variation (Albery et al. 2022).

The peridomestic mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of several major
diseases, including the arboviruses dengue, Zika, chikungunya, and yellow fever. A highly invasive species
originating from Africa, Ae. aegypti is now established throughout tropical and semitropical regions of the
world (Christophers 1960; Tabachnick & Powell 1979; Kraemer et al. 2015), and is expanding into the United
States (Eisen & Moore 2013; Ryan et al. 2019; Iwamura et al. 2020). As the species is strongly anthropophilic,
its distribution is linked to urban environments and clustered human dwellings in rural areas (Soper 1967).

Although temperature responses and survival limits have been extensively studied for Ae. aegypti (e.g. Bar-
Zeev 1958; Reinhold et al. 2018), there may be other limits on the abundance of mosquitoes that depend
on water availability. Less is known about the effects of environmental factors other than temperature on
Ae. aegypti (Mordecai et al. 2019), such as seasonal and cumulative precipitation, and the importance of
individual rainfall events on their choices of oviposition sites, larval development, and subsequent emergence.
Precipitation is known to be an important factor at global, regional, and local scales, e.g., (Hopp & Foley 2001;
Wang et al. 2016; Benitez et al. 2021). However, it is still unknown if lack of precipitation can limit population
density and overall abundance of Aedes mosquitoes, in part because water from anthropogenic sources can
provide sufficient resources for container breeding mosquitoes (Trewin et al. 2013). Understanding the basic
role of precipitation in driving mosquito abundance at fine scales can reveal where and when anthropogenic
water sources become important.

Life history of Aedes aegypti

The life history and population biology of Ae. aegypti is dependent on water availability. Female mosquitoes
lay their eggs in small water containers, and do not oviposit in large, permanent water bodies, irrigation
ditches or temporary, shallow pools of water (Christophers 1960). This species has several traits that may
result from adaptation to arid environments, for example, Ae. aegypti eggs can survive desiccation for months
to years, and persistent water is not necessary (Faull & Williams 2015; Mayilsamy 2019). Hatching of eggs is
triggered by inundation by water. Progression through life stages for Ae. aegypti is temperature-dependent,
requiring temperatures between 16°C, and 34°C for successful development (Christophers 1960; Reinhold
et al. 2018), with the transition from hatching to adult emergence occuring in as few as 7 days at higher
temperatures (Couret & Benedict 2014). Adults generally do not disperse beyond 30-60 m from their hatch
site and tend to cluster around homes, but will rarely disperse as far as 500 m for oviposition sites (David
et al. 2009; Brown et al. 2017; Marcantonio et al. 2019). The close association between Ae. aegypti and
humans has allowed the species to establish in otherwise inhospitable climates, relying on human-created
water sources such as stored drinking water for larval development (de Caires 1947; Focks et al. 1993; Barrera
et al. 2011).

In Maricopa County, Arizona, USA (including metropolitan Phoenix), urbanization has led to human uses
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of water that create favorable conditions for mosquitoes. Anthropogenic uses of water have reduced the
aridity of the local metropolitan area compared to the surrounding Sonoran Desert environment. Urban
microclimates have altered temperature, humidity, and availability of oviposition sites, which constitute
refugia for mosquito populations in desert cities. Ornamental planters in urban Arizona are known to be
important breeding sites (Walker et al. 2018). While monitoring natural rainfall events is common, there
are no comprehensive measurements of the large amounts of surface water generated by activities such as
“urban greening”: landscape maintenance, intentional flooding of lawns, and watering of ornamental plants;
as well as recreational uses, ornamental features, car washing, and flooding fields for agriculture. Based on
biological requirements, we expect that precipitation could be a limiting factor in mosquito activity. If lack of
precipitation does not limit mosquito activity at trapping locations, we can conclude that mosquito breeding
habitat is available from the only other source of water: anthropogenic uses.

Precipitation and Aedes aegypti abundance

A useful functional relationship has recently been proposed for regions that store drinking water, which speci-
fies that increasing amounts of rainfall will have a complicated but deterministic, non-monotonic relationship
with the abundance of Ae. aegypti (Shocket et al. 2020; Caldwell et al. 2021) (SI: Supplementary Back-
ground Material). Decreases in abundance are expected with increasing precipitation and less need for
stored water (Trewin et al. 2013); increases with additional precipitation and habitat formation; and decrea-
ses with further precipitation flushing developing larvae out of containers, resulting in decreased abundance
of adults (Seidahmed & Eltahir 2016). This conceptual model provides important baseline expectations con-
sistent with the biology of the container-breeding Ae. aegypti, but does not distinguish between precipitation
amounts from individual rainfall events, and total accumulated precipitation prior to mosquito emergence.

We address how daily and cumulative precipitation affect mosquito abundance where piped water is available,
and hypothesize that Ae. aegypti abundance and activity are strongly influenced by daily precipitation. Ae.
aegypti may increase their activity (measured trap counts, and number of traps with at least one female
in them) immediately following rainfall, as females may be selecting oviposition sites in those conditions.
From 7-15 days following rainfall, counts may increase due to the development of eggs into adult mosquitoes.
Alternatively, if mosquito abundance is constant after rainfall, this would imply that available oviposition
sites are present at all times and are not a limiting factor. Ae. aegypti numbers may even decrease 5-20
days following rainfall if large amounts of rain flush away developing larvae from water-filled containers that
contained immature life stages prior to the rainfall event.

We investigate these hypotheses and several other relationships between precipitation and mosquito presence
and abundance by matching daily precipitation at the trapping locations to numbers of female Ae. aegypti
captured each week by the Maricopa County Environmental Services Vector Control Division. These data
were collected from 2014-2016, from a network of over 660 weekly-sampled CO2-baited traps distributed
throughout Maricopa County, with more locations added in each year. An application of kriging algorithms
(Yang et al. 2015) to weather station data allows us to interpolate local conditions between measured points,
generate daily precipitation data layers, and match the scale of this predictor variable to the life cycle of
mosquitoes. We can then reconstruct the relationship between daily precipitation amounts and timing, and
the eventual outcomes of trapping. With increased spatial and temporal resolution available from kriging,
we can generate new insights into how mosquitoes are directly affected by precipitation at the sites where
they develop, emerge, and breed.

Materials and Methods

3
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Study area

The current range of Ae. aegypti now includes almost all populated areas in Maricopa County, overlapping
with high and increasing human population density, and land use modifications arising from increasing
urbanization and suburbanization. Maricopa County spans 9,200 square miles (˜23,830 sq. km), and contains
27 cities and towns including the metropolitan Phoenix area, and all or part of five tribal nations’ federally
designated reservation lands. Maricopa County counts 4.485 million people as residents as of the 2019 census.

Maricopa County is located in the biogeographic region of the Sonoran Desert, which has five seasons (winter,
spring, fore-summer occurring in May and June, summer monsoon in July and August, and fall), and expe-
riences two seasons of rainfall (winter and summer monsoon). Climate normals for the area from 1981-2010
include a mean minimum temperature of the coldest month (December) of 44.8°F (7.1 C); mean maximum
temperature of the warmest month (July) of 106.1°F (41.2 C); and average annual precipitation of 8.03 inches
(20.4 cm), with 25% of the rainfall occurring in July and August, and approximately half of the precipitation
arriving throughout December-March (retrieved from the NOAA National Center for Environmental Infor-
mation via the National Weather Service Forecast Office website: https://w2.weather.gov/climate). Recent
climate change (post-2010) is increasing the maximum temperatures of the warmest months, as well as the
average temperature, and the number of days over 100°F. High and low temperatures in this region are
known to exceed laboratory-derived physiological limits for Ae. aegypti (Christophers 1960; Farnesi et al.
2009; Reinhold et al. 2018).

Mosquito trapping protocols

Mosquitoes were trapped by Maricopa Environmental Services–Vector Control Division at trapping sites
established throughout the urban and suburban areas of Maricopa County. Traps were placed at a density
of one trap per square mile (˜1610 meters), while accommodating urban structures (Fig. 1). Additional
traps were placed temporarily in response to complaints about mosquito densities and in areas with reported
human arbovirus cases. Standard CO2-baited traps (Silver 2007) were established at 842 unique sites (Table
1). Trapping occurred once per week at each site throughout the year. Traps were hung ˜1 m from the
ground and left overnight to collect mosquitoes, which were then identified to species in the Maricopa
County Environmental Services Vector Control Division laboratory and sorted by sex (SI: Notes on Aedes
Trapping).

Environmental data

Daily precipitation data were downloaded from the Flood Control District of Maricopa County (FCDMC)
weather stations (n=355) (at https://www.maricopa.gov/625/Rainfall-Data). While this is a high density
of weather stations compared to other similar sized regions in the US, the weather stations are clustered
together, and geographic coverage was not complete. Values for daily precipitation for areas not directly
measured were therefore spatially interpolated between weather stations using kriging. Kriging is a standard
algorithm used to predict values in regions where data has been collected from the surrounding regions (Yang
et al. 2015), that is used to search out parameters associated with known covariance data, and apply this
information to new or unknown regions. In this study, a kriging algorithm was trained on daily precipitation
data using elevation as a covariate using R ‘automap’ package (Hiemstra & Hiemstra 2013). We adopted an
automatic kriging function where a variogram model was fit using predefined models (spherical, exponential,
Gaussian, Matern) with the default settings. The initial sill was estimated as the mean of the maximum and
median of the semi-variance. The initial range was defined as 0.1 times the diagonal of the bounding box of
the data, and the initial nugget was defined as the minimum semivariance. Elevation data were downloaded
from the USGS National Elevation Dataset (http://ned.usgs.gov) and resampled to the resolution of 309 by
371 meters.
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Kriging was carried out on daily precipitation data for all days from October 2012-September 2017, to create
spatially resolved, daily rasters for the study region (Fig. 1) (Newman & Feng 2021). A relevant subset of
these rasters were then matched to each individual trapping event, from 1 and 20 days prior to the event,
inclusive. Interpolated precipitation data was then extracted by location. Dispersal distances of Ae. aegypti
are known to be much lower than the distances between traps in the network. Therefore, information derived
from kriging should better represent the conditions relevant to life cycle events of the mosquitoes than
regional averages for precipitation.

Statistical analyses

We limited statistical analyses to female Ae. aegypti mosquitoes only, as only females transmit arboviruses.
Female abundance in each trap (“counts”) is used as the proxy metric for the activity of female Ae. aegypti.
We first investigated the spatial clustering of mosquito counts across the study area by calculating the Global
Moran’s I statistic on aggregated female counts at each trapping location over three years. Global Moran’s
I tests whether or not events are clustered, dispersed, or random in space.

We examined trap counts over months, and expected higher counts in trapping events that occur during
June-October, as average minimum monthly temperatures have historically fallen below 15oC outside this
range. Temperatures of 12-15oC and below are known to negatively affect adult female mosquito survival,
and severely limit successful oviposition (Rueda et al. 1990; Farnesi et al. 2009; Yang et al. 2009; Tesla
et al. 2018). However, microclimates in Maricopa County (Hayden et al. 2010; Larson & Perrings 2013)
can mitigate non-ideal temperature and precipitation conditions for mosquito development and lead to low
emergence numbers, and temperature normals are changing rapidly in this region. We therefore included
trapping events from all months in our analyses.

We then analyzed multiple relationships between prior precipitation, the number and proportion of traps
with at least one female in them, and the number of female Ae. aegypti in traps. Related to their life cycle,
Ae. aegypti counts from 1-6 days after rainfall events should correspond to increased activity of adult females,
whereas abundance from 7-15 days after rainfall events may additionally correspond to the emergence of new
adults (Christophers 1960; Couret & Benedict 2014). We tested the following hypotheses by matching trap
locations to spatially interpolated precipitation data at those sites for 20 days, counting backwards from the
trap collection date:

H1: Adult mosquito activity and emergence is limited by accumulated precipitation prior to and after the
egg-laying period in the vicinity of the trapping location. Cumulative precipitation was calculated as the sum
of the spatially interpolated precipitation at the trapping location over 20 days.

H2: Adult mosquito activity and emergence is limited by prior single rainfall events. To assess this, we
associated all trapping events with daily precipitation data at the trapping location on each previous day
leading up to the trap collection date.

A distinct functional relationship that emerges from the empirical relationships would support the hypothesis
being tested, even if that relationship is complicated or multimodal. On the other hand, we would interpret
no significant correlation and explanatory power of predictor variables with female counts as a lack of control

5
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on mosquito abundance resulting from precipitation (the alternative hypotheses in each case). We would then
conclude that anthropogenic sources of water are releasing the mosquito species from the constraints of water
available from precipitation in urban contexts. Background levels of mosquito emergence with little or no
measurable precipitation in the preceding 20 days were used to quantify the importance of anthropogenic
water sources in driving mosquito abundance (SI: Supplementary Methods). Traps will catch mosquitoes
from newly emerged to long-lived adult females. These may live slightly longer than 20 days in the wet tropics
(Hugo et al. 2010), but their lifespan in the Sonoran Desert is expected to be shorter due to drier conditions,
and dependent on anthropogenic water for survival as well as breeding.

To test the correlation between cumulative precipitation and female counts, we calculated Pearson’s r on
repeatedly subsampled data (10 samples of n =1000 observations, performed with replacement), with female
counts transformed on the log10 scale. This test was then followed by a fit to a simple linear model to
assess explanatory power of cumulative precipitation on logarithmically transformed trap counts. For daily
precipitation, trap outcomes and their associated prior precipitation data were used to test the probability
that the observed pattern is significantly different than the random baseline (see SI: Supplementary
Methods).

Data were cleaned and analyzed in the R programming language (v.4.0) (R Core Team 2020) with the
packages ‘dplyr’ (Wickham et al. 2021) and ‘raster’ (Hijmans & van Etten 2016), and Global Moran’s I was
calculated using package ‘ape’ (v5.0) (Paradis & Schliep 2019). Mapping of data was carried out with the
package ‘ggmap’ (Kahle & Wickham 2013).

Results

Mosquito trapping

Maricopa County Environmental Services Vector Control Division collected mosquitoes from CO2-baited
traps weekly and BG Sentinel traps at a total of 842 unique locations from January 2014-December 2016.
Median distances between traps were determined to be 0.825 mi (1328 m) (using R package ‘raster’; (Hij-
mans & van Etten 2016)). There were a total of 100,757 discrete trapping events, and 122,257 Ae. aegypti
mosquitoes were collected. The majority of traps did not contain Ae. aegypti, but there were 15,882 unique
trapping events with 1 or more females (Table 1).

Of the trapped Ae. aegypti mosquitoes, 68.5% or 83,749 were female. Female counts, a proxy measure for
total Ae. aegypti activity, varied with seasons. The monsoon season July-September coincides with high
temperatures, reducing the generation time for the Ae. aegypti mosquitoes and providing additional water
sources for breeding and survival. Based on historical data, we expected higher trapped abundance counts in
June-October, but found high mosquito abundance both within the monsoon season, and in the surrounding
months (Fig. 2) including March-November.

Statistical analyses

Our first analyses focused on the spatial distribution of female counts at each trapping location, aggregated
over 3 years. Across all locations, 25 traps collected greater than 500 females in total over that time period.
We calculated the Global Moran’s I statistic to understand the clustering of events over the extent of the
study area (Fig. 3). We found Global Moran’s I obs = 0.040 (sd = 0.007; p = 2.7x10-8), with an expected
value of I exp = -0.001. High-count Ae. aegypti trapping events are significantly highly clustered in space
compared to a baseline of a random distribution.

6
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Our next analyses were aimed at gaining insight into how the life cycle of the mosquito is affected by
availability of water from precipitation, through application of kriging to daily precipitation data (Yang et
al. 2015), and by matching trap locations to spatially interpolated precipitation data for 20 days preceding
trap collection. For hypothesis H1, which tests whether or not adult mosquito emergence is limited by
cumulative precipitation both before and after the egg-laying period in the vicinity of the trapping location,
we calculated accumulated precipitation at each trapping location (Fig. 4; counts including zeros in SI: Fig.
S1.). Pearson’s r calculated on logarithmically transformed trap counts against cumulative precipitation
reveals a weak positive correlation (r(df>500)=0.22) that is nevertheless statistically significant (p<0.001),
because the relationship is approximately linear. However, a linear model fitted to the data (intercept =
0.340; slope = 0.123; p <10-15 in each case, artificially significant due to large sample size) has extremely
low explanatory power (adjusted R2 = 0.05).

With hypothesis H2, we tested whether or not adult mosquito emergence is limited by prior single rainfall
events. For this, we reconstructed daily precipitation at each location on days preceding trap collection.
With a priori knowledge of the life cycle of Ae. aegypti at higher environmental temperatures, we expected
increases in counts on days 7-15 days, and decreases 5-20 days following single rainfall events, with female
counts at 1-6 days after rainfall events corresponding to increased activity of adult females, and counts
from 7-15 days after rainfall additionally corresponding to the emergence of new adults. We instead found a
surprisingly highly structured, multimodal relationship with daily precipitation and positive traps (Fig. 5a;
also see Fig. S2), that we analyzed against a randomized draw from precipitation values in the data set for
significance (below). In contrast, average precipitation calculated at each location for 20 days did not vary
greatly across days (Fig. 5b) (variance = 6x10-6 inches).

High amounts of precipitation (>2.5 inches) could occur at any time leading up to trap collection because
trap data was pooled across calendar dates, but no traps contained female Ae. aegypti when >2.5 inches
of precipitation occurred on days 2, 6-8, and 13-14, and day 20 prior to trap collection. We calculated the
probability of obtaining the observed precipitation associated with positive trap counts by random chance
(SI: Supplementary Methods). For a single day with this threshold, the probability of observing this
pattern randomly is P(no observations [?] 2.5 in)= 2.4x10-6. For six days (without ordering), the upper
limit of the probability of this distribution occurring from random chance is P(no observations [?] 2.5 in)6

= 2.1x10-34. We conclude that it is statistically extremely unlikely that the observed pattern is consistent
with a random distribution.

To assess the potential importance of anthropogenic water sources on driving patterns of mosquito abun-
dance and activity, we examined all traps with at least one positive female count (“positive traps”; 15,882
observations) and sorted outcomes to examine which of these were associated with little to no measurable
precipitation prior to collection (likely lower than the inundation requirements for developing eggs in con-
tainers), and for which more precipitation did not affect the maximum count in the trap: <0.01 in. (26.9%;
max count = 175), and <0.02 inches precipitation (27.6%; max count = 175). These traps contain 8-10% of
total trapped females. We therefore estimate a background population of 10% of Ae. aegypti that are not
tied to precipitation patterns. The largest count events (1200 and 2200 females), in contrast, were associated
with 0.4 and 0.5 inches of precipitation in single rainfall events.

Discussion

Understanding conditions that lead to greater presence and abundances of Ae. aegypti is critical to control-
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ling the spread of arboviruses to humans. We examined how the amount of preceding precipitation interacts
with the Ae. aegypti life cycle to affect the abundance of trapped female mosquitoes. We found that the
active season of Ae. aegypti in urban Maricopa County, Arizona is increasing in duration compared to histor-
ical norms. Summer temperatures exceed laboratory survival tolerances for Ae. aegypti, and their increased
abundance during these periods may point to dispersal to suitable microhabitats (Hayden et al. 2010). We
also examined the clustering of the most trapped females over three years (>500 females at a single trap
location), and found these were highly clustered, indicating where it could be productive to search for larval
development sites and target control efforts. Here, the specific locations of large outbreaks might be asso-
ciated with clogged drains of Homeowner Association (HOA) planned communities (K. Walker, unpublished
data) serving as breeding habitat. The interaction between precipitation and human-built structures may
indeed be driving the emergence of a major disease vector in this region (Dieguez Fernandez 2010).

We hypothesized, following (Shocket et al. 2020) and (Caldwell et al. 2021), that cumulative rainfall over
the period of 20 days prior to trap collection should influence the abundance of trapped mosquitoes, and also
tested whether or not daily precipitation leading up to trapping had any influence on trap outcomes. We
examined precipitation data leading up to a positive trap event (and also graphed the influence of precipi-
tation on the counts in those traps SI: Fig. S2-Fig. S3). We found that neither average nor cumulative
precipitation over 20 days is highly explanatory of trapped abundances and positive traps, however, we did
find a highly structured and non-random pattern of daily precipitation thresholds above 2.5 inches.

Where no counts were recorded when there were single events of above 2.5 inches of precipitation between
6-8 days preceding trap collection day, we conclude precipitation strongly interferes with oviposition and
larval survival. We note that no emergence after >2.5 inches at days 13-14 and at 20 days corresponds to
two and three complete development periods for Ae. aegypti. It is possible that the flushing away of larvae
for a previous generation is still detectable by its effects on the abundance of the next generation. No counts
were observed when precipitation exceeded 2.5-3 inches at 1 and 2 days before trap collection; this could be
interference with adult eclosure and emergence, suppressed mosquito movement, or counting errors due to
wet specimens (SI: Notes on Aedes Trapping).

Precipitation is not a good predictor for mosquito activity and trapped abundance at every scale. While
Ae. aegypti numbers overall increase with cumulative precipitation, the correlation is weak, the explanatory
power of a best-fit linear model is low, and the predicted mosquito counts range from about 3-4 mosquitoes
over the range of precipitation values. Similarly, there is no strong and unidirectional association between
individual rainfall event amounts and the number of trapped individuals that could predict mosquito counts
at landscape scales. However, kriging reveals a strong influence of both the timing and amount of daily
precipitation. Although we expected to find that low precipitation limits Ae. aegypti numbers, we instead
found a clear pattern of suppression of abundance following large rainfall events at certain times in the
life cycle of the mosquito. We measure hard thresholds of 2.5 inches precipitation on several of the days
before emergence, beyond which all mosquito counts are suppressed, although not all of the mechanisms
are apparent. Where patterns of Ae. aegypti emergence and capture are not affected by low precipitation
(as is true for between 27-28% of positive traps and ˜10% of the total number of trapped females in this
study), we conclude that anthropogenic water sources provide the only breeding habitat for Ae. aegypti
populations (David et al. 2009; Hayden et al. 2010; Barrera et al. 2011; Walker et al. 2018). However,
the true dependency of the population on anthropogenic water for all reasons (microclimate modification,
survival, breeding, etc.) is likely much higher than 10%.

Along with precipitation, it is well established that both temperature and relative humidity affect larval
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development rate, adult survival and activity. We looked uniquely at precipitation and trap data that were
pooled across all trapping dates, which blurs the effect of varying levels of temperature and humidity, while
allowing the patterns of trapped abundance that result from precipitation to become more apparent. With
respect to the patterns shown in Fig. 5a, we observe several “troughs,” where mosquito activity is not
seen in correspondence with high levels of precipitation. We would expect these troughs to shift to the right
with increasing temperatures and faster development times (Farnesi et al. 2009; Couret & Benedict 2014).
Relative humidity might show similar trends due to increased movement and survival among eggs and adults
(Rowley & Graham 1968; Faull & Williams 2015; Schmidt et al. 2018), but this relationship may be more
complicated because of the interaction with mosquito fecundity (Costa et al. 2010).

If kriging methods were also applied to local-scale variations in temperature and humidity, along with their
interaction with precipitation in the environment, we might gain new insight into what makes up the micro-
climates that drive establishment patterns and abundance of Aedes mosquitoes across very different climates
(Lembrechts et al. 2019). In this way, the search for commonalities among regions from a “microclimate
perspective” might resolve some of the issues surrounding how to accurately predict Aedes invasions into
new regions including humid, tropical regions, and the urbanized Sonoran Desert. We have provided a
proof-of-concept that kriging with weather station precipitation data can resolve certain questions about
precipitation and the Ae. aegypti life cycle in the presence of anthropogenic water sources, and outside of a
laboratory setting. Kriging with multiple variables could bring “big data” science (and the computational
storage and power required) to bear on questions of disease vector expansion, which has extreme significance
to global human health. Broader applications of kriging with multiple variables could serve as a useful
decision support tool for disease vector control in urban settings, as microclimates can be modified, unlike
climate normals.

Beyond understanding the dynamics of disease vector populations and disease ecology applications, the ap-
plication of kriging in conjunction with organismal life cycles will be useful in the context of conservation
planning (Kusch & Davy 2022). The ability to examine highly localized and variable conditions that precede
ecological events and the distributions of seasonal phenological phenomena (Newman et al. 2021; Park et al.
2021) will have broad applicability across ecological questions and ecosystems. Kriging may become a valu-
able planning tool for many organismal-environment problems, including predicting outbreaks of tree-killing
beetles (Gougherty & Davies 2021), understanding drivers of arthropod declines (Dornelas & Daskalova
2020), anticipating changes to water bodies after precipitation (Haines 1981; Lipp et al. 2001); and making
more granular predictions of effects of global change on organisms such as amphibians (Walls et al. 2013;
Catenazzi 2015), those dependent on specialized interaction partners (Kearns et al. 1998; Kiers et al. 2010),
and rare and biogeographically limited species (Lyons et al. 2005; Enquist et al. 2019).
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Figures and Table

113 W

33 N

50 km

(a) (b)

Figure 1: Example of daily precipitation (rainfall) data with spatial interpolation between 355 weather
stations at the resolution of 10 arc-seconds (˜300 meters). 842 traps were given spatially explicit, daily
precipitation data from multiple rasters of interpolated precipitation. This allowed us to examine how the
amount of precipitation received prior to trapping events interact to affect Ae. aegypti developmental period
(i.e. the time from egg laying to emergence of the adult mosquito) and therefore the abundance of trapped
adult mosquitoes. (a) A map of Arizona, USA is shown with Maricopa County highlighted. (b) In the map
of Maricopa County, locations of weather stations are shown as black crosses, and trap locations are in light
green; the kriged precipitation tile does not cover the entire extent of the county.
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Figure 2: The number of trapped Ae. aegypti females is shown on a log10 scale by month for 2014-2016
(non-zero counts only). The yellow highlighted region represents the active season (March-November),
and the “high activity” season (June-November) is shown in orange. These include all of the monsoon
months (July-September). Historically, average minimum monthly temperatures are below the larval survival
threshold for Ae. aegypti (12oC/54oF) in December-April (Farnesi et al. 2009), and exceed the laboratory-
derived physiological limit for maximum temperature (35oC/95oF) in May-September (Reinhold et al. 2018),
however, monthly temperature normals have been increasing in recent years. The activity period is therefore
determined empirically.
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Figure 3: Spatial distribution of female Ae. aegypti counts recorded from 100,743 discrete trapping events at
842 locations from January 2014-December 2016 in Maricopa County, Arizona, USA. The observed Global
Moran’s I obs = 0.040 (sd = 0.007; p < 0.001; expected value of I exp = -0.001) for aggregated trapped
female Ae. aegypti over three years (25 locations with >500 individual females) indicates that the locations
with the highest number of are highly clustered in space compared to a random distribution baseline. A
color ramp is provided to better visually distinguish between point sizes.
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Fig. 4 All positive female counts from 15,882 unique trapping events plotted against cumulative precipitation
received on days prior to trapping events. Female counts are shown on a log10 scale, and binned precipitation
data represents cumulative precipitation (obtained from spatial interpolation) at each trapping location
during the 20 days prior to the trap collection event. The blue line connects the median points of the boxplots.
Pearson’s correlation coefficient calculated on repeatedly subsampled data reveals a weak positive correlation
between logarithmically transformed female counts and unbinned precipitation data (r(df>500)=0.22;) that
is nevertheless statistically significant (p<0.001), because the relationship is approximately linear. However,
a linear model fitted to the data reveals the extremely low explanatory power of cumulative prediction on
female counts (adjusted R2 = 0.05). No distinct functional relationship is apparent.
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Figure 4: Figure 5 [formatting error ]. Precipitation data on each day preceding trap collection. (a) All
traps with positive counts of female Ae. aegypti are represented on each day (n = 15,822) as a blue point,
mapping out the relationship between positive counts and 20 days of preceding precipitation data. High
amounts of precipitation (>2.5 inches) could occur at any time leading up to trap collection, but no traps
contained female Ae. aegypti when >2.5 inches of precipitation occurred on days 2, 6-8, and 13-14 prior
to trap collection. Another threshold of ˜3 inches of maximum precipitation is apparent for days 1 and
15 before trap collection. The calculated probability that this distribution is consistent with a random
draw from available precipitation values is <10-34. Precipitation data on days preceding trap collection is
spatially interpolated from kriged rasters, and may overestimate actual precipitation. Dark lines are violin
plots plotted over data points, with the vast majority of observations of precipitation equal to zero. (b)
Average precipitation is low and nearly constant (>0.025 in., var [?]10-5 in.) across all observations at the
trap locations.

Table 1. Summary of trapping effort, number of Aedes aegypti mosquitoes trapped, and number of and
percentage of Ae. aegypti females from Maricopa County, Arizona, USA for 2014-2016. The number of
traps with non-zero abundance are those that contained at least 1 male or female Ae. aegypti mosquito;
those that only contained positive female counts are 15,882 traps, or 15.8% of total trap events.

Year/Data Trap type Traps Number of surveys Number of traps with non-zero abundance (percentage) Aedes aegypti mosquitoes trapped Number of females (percentage)
2014 CO2-baited 666 28,131 3951 (14.1%) 39,915 27,208 (68.2%)
2015 CO2-baited 785 34,447 6051 (17.6%) 37,746 24,155 (64.0%)
2016 CO2-baited 794 37,901 6560 (17.3%) 44,219 32,132 (72.7%)

BG Sentinel 19 278 105 (37.8%) 377 254 (67.4%)
Totals Unique traps: 842 100,757 16,667 (16.5%) 122,257 83,749 (68.5%)
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