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Abstract

Alpine basins are essential to the conservation of water resources. However, they are typically poorly gauged and inaccessible,

owing to the harsh prevailing environment and complex terrain. To investigate the influences of different precipitation inputs

on hydrological modeling in alpine basins, two representative satellite precipitation products [Tropical Rainfall Measuring

Mission (TRMM) and Integrated Multi-Satellite Retrievals for GPM (IMERG)] and two reanalysis precipitation products

[China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) and Climate Forecast System Reanalysis

(CFSR)] in the Yellow River Source Region (YRSR) were selected for evaluation and hydrological verification against gauge-

observed data (GO). Results indicates that the accuracy of these precipitation products in the warm season is higher than

that in the cold season, and IMERG has the best performance, followed by CMADS, CFSR, and TRMM. TRMM seriously

overestimates high rainfall of greater than 10 mm/day. CFSR overestimates moderate precipitation events of 1–10 mm/d, while

CMADS underestimates the effects of precipitation events of 1–20 mm/d. Models using the GO as input yielded satisfactory

performance during 2008–2013, and precipitation products have poor simulation results. Although the model using IMERG as

input yielded unsatisfactory performance during 2014–2016, this did not affect the use of IMERG as a potential data source

for YRSR. After bias correction, the quality of CFSR improves significantly with R2 and NSE increasing by 0.25 and 0.31 at

Tangnaihai station, respectively. Model driven by the combination of GO and CMADS precipitation performed the best in all

scenarios (R2 = 0.77, NSE = 0.72 at Tangnaihai station; R2 = 0.53, NSE = 0.48 at Jimai station). These results can provide

reference data, and research ideas, for improved hydrological modeling of alpine basins.

Introduction

Accurate precipitation data are key for the hydrological modeling (Duanet al ., 2019a; Monteiro et al ., 2016;
Strauch et al ., 2012; Villarán, 2014). However, due to the sparsity of many gauge networks and the large
spatio-temporal variabilities of precipitation events (Lu et al ., 2018; Zhu et al ., 2016), obtaining accurate
precipitation data has always been challenging for scientists especially in alpine basins (Bhatta et al ., 2019;
Hao et al ., 2016; Yuan et al ., 2018), which greatly hindered the research into hydrological simulation thereof
(Tuo et al ., 2016). Satellite and reanalysis precipitation products provide an unprecedented opportunity to
obtain precipitation data with high spatio-temporal resolution.

To date, many satellite and reanalysis precipitation products have been developed and released to the
public, such as Global Precipitation Measurement (GPM) (Hou et al ., 2013), Tropical Rainfall Measuring
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. Mission (TRMM) (Huffman et al ., 2010a), Climate Hazards Group Infrared Precipitation with Station
data (CHIRPS) (Funk et al ., 2015), China Meteorological Assimilation Driving Datasets for SWAT model
(CMADS) (Meng et al ., 2019), Climate Forecast System Reanalysis (CFSR) (Saha et al ., 2010), etc .
These products have the advantages of extensive coverage, high spatio-temporal resolution, and continuity of
measurement (Bajracharya et al ., 2015; Prakashet al ., 2016): these have been widely applied in hydrological
studies across many regions (Auerbach et al ., 2016; Awangeet al ., 2019; Cao et al ., 2018; De Almeida
Bressianiet al ., 2015; Duan et al ., 2019a; Fuka et al ., 2014; Roth and Lemann, 2016). The research on
satellite and reanalysis precipitation products in hydrological model can be divided into two categories: one
such that these products directly drive hydrological models to study and discuss the influence of precipitation
data quality on the accuracy of hydrological simulations (Duan et al ., 2019b; Nhi et al ., 2018; Strauch et
al ., 2012; Tuo et al ., 2016; Zhu et al ., 2016); the other aims at satellite and reanalysis precipitation data
which are not performing well in hydrological modeling terms. The improvement of satellite and reanalysis
precipitation data by different correction methods was studied and discussed (Deng et al ., 2019; Sheng et al
., 2017; Wanget al ., 2020). However, most of these literatures focus on low-altitude basins with dense in-situ
gauge observation, because the satellite and reanalysis precipitation products in such areas are less affected
by topography, making it is easier to evaluate and correct satellite and reanalysis precipitation data based on
a large number of gauge-observed data (GO). Alpine basin areas are important in the conservation of water
resources (Immerzeel et al ., 2009; Viviroli and Weingartner, 2004) and are sentinel outpost responding to
climate change (Immerzeel et al ., 2010; Shakil et al ., 2015), such as on the Tibetan Plateau, known as
”Asian Water Tower” (Immerzeelet al ., 2010). It is more meaningful to evaluate the quality of satellite
and reanalysis precipitation products in an alpine basin and to mine precipitation products suitable for
hydrological-runoff simulations thereof.

In recent years, many scholars (Deng et al ., 2019; Duan et al ., 2019a; Yuan et al ., 2018; Yw et al ., 2019)
have discussed the hydrological application of satellite and reanalysis precipitation products in alpine basin.
However, most of studies focus on the influence of precipitation product quality on hydrological simulation
accuracy. Unfortunately, these research results show that the performance of precipitation data from sparse
in-situ gauge observation stations in hydrological models is better than that of satellite and reanalysis
precipitation products with high spatio-temporal resolution. Yuan et al . (2018) evaluated the quality of the
TRMM Multi-satellite Precipitation Analysis 3B42V7 and the Integrated Multi-satellite Retrievals for GPM
(IMERG) Final Run Version 05 precipitation products and their hydrological utilities in the Yellow River
source region (YRSR), and found that the performance of GO is better than that of IMERG and TRMM
precipitation data. In the Upper Gilge Abay basin, Duan et al . (2019a) evaluated the applicability of
CHIRPS, TRMM, and CFSR in hydrological models by using the Soil and Water Assessment Tool (SWAT),
still finding that the GO performed best. Use of ground-based rain gauge data is generally considered to
be a more accurate method as this entails direct measurement of precipitation (Qinet al ., 2014). However,
ground-based rain gauges are considered as point measurements within the common problem of the uneven
distribution thereof (Chappell et al ., 2013), which may not effectively reflect the spatio-temporal variability
of precipitation systems (Anagnostou et al ., 2009). Satellite and reanalysis precipitation products have the
advantage of large coverage (Bajracharyaet al ., 2015; Prakash et al ., 2016), which can supplement that
precipitation information in areas without stations. How to coordinate the advantages of GO, satellite and
reanalysis of precipitation data is the key to hydrological-runoff simulation in alpine basins.

The YRSR, with high solar radiation and a low temperature, is selected as a case study in the present
research. Combined with the distributed hydrological model SWAT, two types of satellite precipitation
products (TRMM and IMERG) and two types of reanalysis precipitation products (CMADS and CFSR)
were statistically and hydrologically verified. This entailed: (1) Using GO to evaluate the quality of TRMM,
IMERG, CMADS, and CFSR at grid and basin-scales; (2) The hydrological model is driven by precipitation
data pre- and post-correction; (3) The hydrological model is driven by the combination of GO and satellite
or reanalysis precipitation products, namely, for that area with GO we adopted GO, and in areas without
GO we adopted satellite or reanalysis precipitation products. To the best of our knowledge, the hydrological
evaluation of the combination of GO and satellite or reanalysis precipitation products in the YRSR has not
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. yet been reported. The results of this study have implications for improving water supply, flood forecasting,
and ecosystem protection for alpine basins and their downstream regions.

Study area and data

2.1 Study area

The YRSR, with a drainage area of ˜122,000 km2 accounting for ˜15% of the area of the Yellow River basin,
is located in the north-east of the Qinghai-Tibetan Plateau (roughly ranging between 95°30’103deg30’ E and
32deg30’36deg20 N). With elevations ranging from 2675 to 6253 m that decreases from the south-west to
the north-east (Fig. 1 ). The YRSR belongs to a typical alpine climate (Xu and He, 2006), with intense
sunshine and diurnal temperature changes. The rainfall predominately concentrates in the flood season
(JuneOctober), accounting for ˜75% of the annual precipitation, and the snowfall is primarily concentrated
from September to May (Hu et al ., 2011). Precipitation runoff is the predominate runoff pattern in the
YRSR, accounting for ˜96% of the total runoff (Liu and Chang, 2005).

The YRSR has been selected as the study area duo to three reasons: (1) the YRSR provides fresh water to
hundreds of millions of people downstream; (2) less impact of human activities with a total of approximately
half a million inhabitants (Yuan et al ., 2015); (3) the YRSR is a sensitive zone in response to climate change
(Junlianget al ., 2013).

2.2 Data

2.2.1 Precipitation dataset

Five types of precipitation datasets, namely, the GO, IMERG Final Run V6, TRMM 3B42RTV7, CMADS,
and CFSR, were selected for this study (Table 2 ).

The GO was derived from the daily surface meteorological data of the China Meteorological Data Network.
There are only 11 in-situ gauged observation stations in the YRSR, and most of them are distributed
downstream, and there is only one Maduo station upstream [Fig. 1(c) ].

The TRMM was launched in 1979 by the National Aeronautics and Space Administration (NASA) and the
Japanese Aerospace Exploration Agency (JAXA) to provide satellite monitoring of global precipitation. In
2015, the TRMM mission ended, the instruments were shut down, and the spacecraft re-entered the Earth’s
atmosphere. In this study, the TRMM 3B42RTV7 daily precipitation product from 1 January 2008 to
31 December 2013 was used. The TRMM 3B42RTV7 precipitation products were generated by using the
TRMM TMPA Version 7 algorithm (Huffman et al ., 2010b). To the best of our knowledge, the hydrological
evaluation of TRMM 3B42RTV7 daily precipitation product in the YRSR has not yet been reported.

The Global Precipitation Measurement (GPM) was launched in February 2014 as the successor to TRMM
providing the next generation of global precipitation products. The IMERG precipitation products were
GPM’s level-3 products produced by the IMERG algorithm. According to the timeliness of the various
products, they can be divided into three levels: Early-Run, Late-Run, and Final-Run. The Final-Run product
was generally considered to be more accurate in terms of its results than the quasi-real-time products (Early
and Late Run) (Yang et al ., 2020). In this study, the IMERG Final-Run V6 daily precipitation product
from 1 January 2008 to 31 December 2016 was selected, of which the precipitation data from January 2008
to February 2014 were calculated from the original remote sensing image of TMPA by IMERG algorithm.
TRMM and IMERG precipitation products are currently two satellite precipitation products that were widely
used in hydrological simulations (Duan et al ., 2019a; Nhi et al ., 2018; Yuan et al ., 2018).

The CMADS is a reanalysis dataset established using the China Meteorological Administration atmospheric
assimilation system technology and multiple other scientific methods (Meng et al ., 2019). The CMADS was

3
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. completed over nine years (1 January 2008 to 31 December 2016). The application potential of CMADS in
hydrological modeling has been verified in many watersheds in China (Li et al ., 2019; Menget al ., 2019;
Zhang et al ., 2020).

The CFSR is a reanalysis dataset developed by the National Centers for Environmental Prediction (NCEP)
which was completed over 36 years (1 January 1974 to 31 December 2014) (Sorrel, 2010). CFSR in hy-
drological modeling is currently one of the most widely used reanalysis datasets with worldwide application
(Ruan et al ., 2017; Yang et al ., 2020; Zhu et al ., 2015), owing to advantages such as its large time-scale,
high-resolution spatial scale, and convenient data acquisition. CMADS and CFSR were both included on
the ArcSWAT official website.

2.2.2 Other data

In addition to precipitation data, the following data are needed for model construction and verification:

(1) Digital Elevation Model (DEM): derived from SRTM DEM data with a spatial resolution of 90 m provided
by Geospatial Data Cloud (http://www.gscloud.cn/ );

(2) Land use data: derived from the Chinese Academy of Sciences Resource and Environmental Science Data
Center (http://www.resdc.cn/ ), Land-use data for China in 2015 (1980-2015), with a resolution of 1 km;

(3) Soil data: derived from the Harmonized World Soil Database (HWSD) constructed by Food and Agri-
culture Organization of the United Nations (FAO) and International Institute for Applied Systems Analysis
(IIASA), with a resolution of 1 km (http://westdc.westgis.ac.cn/ );

(4) Meteorological data: derived from the daily surface meteorological data of the China Meteorological Data
Network (Version 3.0) (http://data.cma.cn/ ), including precipitation, maximum/minimum temperature,
relative humidity, wind speed, and hours of sunshine. The solar radiation was calculated by use of the
Angtrom-Prescott equation as detailed in Wu et al . (2012);

(5) Streamflow data: observed daily streamflow data at the Tangnaihai station (TNH) and Jimai station (JM)
from 1 January 2008 to 31 December 2015 were collected from the Nanjing Hydraulic Research Institute,
China.

Fig. 1(c) displays the spatial distribution of meteorological and hydrological stations. We set the projection
coordinate system of the DEM, land use, and soil map to that of WGS 1984 Albers, with a central longitude
of 100deg E and standard latitude (north latitude) of∅1=33.5deg, ∅2=38deg.

Methodology

This study consists of two parts: in the first (precipitation product evaluation) we aimed to evaluate the
quality of TRMM, IMERG, CMADS, and CFSR precipitation products at grid and watershed-scales based
on GO; in the second (streamflow simulation evaluation), 12 precipitation scenarios were created to drive
the hydrological model (Table 2 ). Scenarios S1 to S7 were used to study the runoff simulation effect
of each precipitation dataset; Scenarios S8 and S9 were SWAT models driven by corrected precipitation
data to study the influence of precipitation data correction on runoff simulation (Section 4.2.2 describes
the reasons for correcting only CMADS and CFSR precipitation data). Scenarios S10, S11, and S12 cover
CMADS precipitation data combined with GO1, corrected CFSR precipitation data combined with GO1,
and IMERG precipitation data combined with GO2, respectively: these were designed to study the effects
of precipitation data combination on runoff simulation (Section 4.2.3 describes the reasons for choosing
these three combinations). The analysis process used herein is shown in Fig. 2 .

4
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. 3.1 Precipitation data evaluation

To quantitatively evaluate the accuracy of the TRMM, IMERG, CFSR, and CMADS precipitation products
in the YRHR, the precipitation derived from the four precipitation products is directly compared with GO.
Six statistical metrics, including the root mean square error (RMSE), percent bias (PBIAS), correlation
coefficient (CC), probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI),
were utilized to evaluate the agreement between the GO and the four precipitation products. The calculation
equations, units, ranges, and optimal values of the evaluation indicators are listed in Table 3 .

3.2 SWAT model and model setting

The SWAT is a semi-distributed, physics-based eco-hydrological model, which runs in daily, monthly, or
annual time steps (Arnold et al ., 1998), and has been widely used in hydrological processes (Grussonet al
., 2015), soil erosion (Song et al ., 2011), and nutrient transportation (Wang et al ., 2018). Previous studies
have proven that dividing the YRSR into 25 (Liu et al ., 2018), 29 (Hao et al ., 2013), and 97 (Mengyaun
et al ., 2019) sub-basins would yield reliable simulation results. Therefore, the YRSR was divided into 26
sub-basins to reduce unnecessary calculation. SWAT was originally developed to evaluate water resources
in large agricultural basins, and was not designed to model heterogeneous mountain basins typical of the
western United States (Fontaine et al ., 2002). Ten elevation zones (each covering an change in elevation of
500 m) were established in the present work, to divide each sub-basin to reduce the influence of topography
on precipitation. According to previous research (Fontaine et al ., 2002; Zhenchun et al ., 2013), the snowfall
temperature (SFTMP), snow melt base temperature (SMTMP), maximum melt rate for snow during year
(SMFMX), minimum melt rate for snow during the year (SMFMN), snow pack temperature lag factor
(TIMP), and minimum snow water content that corresponds to 100% snow cover (SNOCOVMX) in the
snowmelt module have been adjusted to reduce the influence of snowmelt on the model (Table 4 ).

3.3 Parameter calibration and model evaluation

Calibration and uncertainty analyses of the simulation results from the model were performed using Sequen-
tial Uncertainty Fitting Version 2 (SUFI2 ) in the SWAT calibration and uncertainty program (SWAT-CUP)
(Abbaspour et al ., 2015). According to previous studies on hydrological modeling in alpine basins (Bhatta
et al ., 2019; Mengyaun et al , 2019; Shuai et al ., 2019; Zhenchunet al ., 2013), 30 sensitive parameters
were initially selected. Sixteen parameters with the highest sensitivity were then selected using the Latin
hypercube and one-factor-at-a-time sampling (LH-OAT) method for calibration (Table 5 ). Due to lim-
itations of space, we do not present any analysis of the calibration parameters. According to Abbaspour
(2015), the model was calibrated using three iterations with 400 simulations (necessitating a total of 1200
simulations during calibration) using the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) and
coefficient of determination (R 2) as the objective function. The range of each parameter was modified after
each iteration, according to both new parameters suggested by SWAT-CUP and their reasonable physical
ranges. The criteria proposed by Moriasi et al (2015) was adopted to classify model performance into the
respective categories, “very good” (NSE > 0.80; PBIAS < +-5%), “good” (0.70 < NSE [?] 0.80; +-5% [?]
PBIAS < +-10%), “satisfactory” (0.50 < NSE [?] 0.70; +-10% [?] PBIAS < +-15%), and “unsatisfactory”
(NSE [?] 0.50; PBIAS [?] +-15%).

3.4 Precipitation data pre-processing

Before modeling, we preprocessed the precipitation data:

(1) The numbers of grids or stations with precipitation products of TRMM, IMERG, CMADS, and CFSR
located in the YRSR are 200, 1027, 198, and 122, respectively. Considering that SWAT only uses data from
the one weather station closest to the centroid of the sub-basin (Masih et al ., 2011; Villaran, 2014). It is
impractical to divide the watershed into 1027 sub-watersheds and correspond thereto on a one-by-one basis.
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. Therefore, virtual weather stations were constructed for each sub-basin (Ruan et al ., 2017; Tuoet al ., 2016).
The specific methods are as follows:

• Based on the ArcGIS platform, satellite raster or reanalysis station precipitation data falling in each
sub-basin were extracted;

• The arithmetic average method was used to calculate the areal rainfall of each sub-basin, giving pre-
cipitation data pertaining to each virtual precipitation station;

• The centroid of each sub-basin is the location of the virtual precipitation station [Fig. 1 (c) ].

(2) Considering that the starting period of SWAT-CUP calibration must be a whole year, the periods of
coincidence of CMADS (1 January 2008 to 31 December 2016) and CFSR (1 January 1974 to 31 December
2014) data are only six years (1 January 2008 to 31 December 2013), deducting the warm-up period of the
SWAT model (12 years), the final simulation time will be shorter (45 years), which does not reflect the
quality of the data. Therefore, we added meteorological data from 1 January 2008 to 31 December 2010 and
1 January 2006 to 31 December 2007 for the warm-up of the SWAT model, so that the data time-span used
for the simulation becomes six years (1 January 2008 to 31 December 2013).

Results

4.1 Evaluation of multi-precipitation products

4.1.1 Evaluation at basin-scale

According to Fig. 5 , except TRMM, the data from other precipitation products show a decreasing trend
from south-east to north-west, which is consistent with the results of Hu et al(2011). Compared with GO,
the precipitation data of IMERG and IMERG T are the closest, while the precipitation data of TRMM and
CFSR are significantly overestimated, and the precipitation data of CMADS are significantly underestimated.
Several literatures (Ghodichore et al ., 2018; Graham et al ., 2019; Saha et al ., 2014) found that reanalysis
precipitation products obviously overestimated or underestimated observed precipitation.

The further to reflect the difference between the precipitation products and the GO, the PBIAS, CC, and
RMES of the precipitation products and the GO were counted on a monthly time-scale. Based on Fig. 4
, the PBIAS values of TRMM, IMERG T, IMERG, CMADS, and CFSR were characterized by low warm
season precipitation and high cold season precipitation. TRMM precipitation data were underestimated in
January and February, and overestimated at other times, especially from October to December. IMERG T
precipitation data were underestimated in the rainy season (MayNovember) and overestimated in the dry
season (DecemberApril). IMERG precipitation data were underestimated in the dry season (DecemberApril),
but IMERG performed best in observing precipitation in the rainy season (average PBIAS = -2.26%).
CMADS precipitation data were underestimated in other months except December. The precipitation data
of CFSR overestimated the precipitation in all months. Except IMERG, the CC values of other precipitation
products also show characteristics of being lower in the warm season and higher in the cold season, among
which CFSR has the best correlation with GO (average CC = 0.73), while CMADS, TRMM, IMERG T,
and IMERG perform poorly, with mean CC values of 0.23, 0.01, -0.01, and -0.28, respectively. However,
the RMSE values of five types of precipitation products show seasonal characteristics related to the greater
precipitation in the warm season and lower precipitation in the cold season in the YRSR (Hu et al ., 2011).
IMERG precipitation products have the smallest deviation, with RMSE average of 13.71 mm, followed by
CMADS (17.35 mm), CFSR (21.32 mm), IMERG T (32.42 mm), and TRMM (47.89 mm).

To reveal whether different precipitation products can capture precipitation events within various precipi-
tation intensity groups, we use the probability density function approach to evaluate the daily precipitation
intensity (PI), divided PI into nine bins (0 [?] PI < 0.1, 0.1 [?] PI < 1, 1 [?] PI < 5, 5 [?] PI < 10, 10 [?] PI
< 15, 15 [?] PI < 20, 20 [?] PI < 30, 30 [?] PI < 40, and PI [?] 40). Based onFig. 5 , IMERG, IMERG T,
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. CMADS, and CFSR can correctly capture precipitation classifications, but TRMM overestimates high rain-
fall of > 10 mm/day. IMERG and CFSR overestimate the intensity of all precipitation events, especially
CFSR, which significantly overestimates moderate precipitation events of 110 mm/d. The precipitation un-
derestimation by CMADS is mainly concentrated within the range of 120 mm/d, while events within the
range of 0.11 mm/d are overestimated.

4.1.2 Evaluation at grid-scale

According to Fig. 6 , the qualities of the TRMM, IMERG T, IMERG, CMADS, and CFSR were generally
better in the south-east than in the north-west. The north-western areas are covered with snow all year
round, owing to their high altitude and higher latitude. This leads to poor-quality precipitation observations
in this area (Mark et al ., 2016; Noh et al ., 2009). The overestimation of TRMM is the largest with PBIAS
of 33.11% to 59.74%, and this gradually increases from downstream to upstream. The precipitation data of
CFSR were overestimated except for the station at Dari, while CMADS precipitation data were underesti-
mated except for the station at Maqu. IMERG precipitation data were overestimated in the downstream
area and underestimated upstream. Compared with satellite precipitation products (CC of 0.090.40), the
reanalysis precipitation products (CC of 0.340.58) have a better correlation with GO. The RMSE values
of five precipitation products were large in the south-east and small in the north-west. According to the
statistical indicators pertaining to various precipitation products, the overall performance of CMADS pre-
cipitation products is the best, with PBIAS of 27.22%2.48%, CC of 0.430.58, and RMSE of 2.684.96 (mm/d),
followed by IMERG, CFSR, IMERG T, and TRMM.

IMERG T and TRMM have the same detection index value [Figs. 7(a) and (b) ], and the specific
reason for this is given inSection 2.2.1 , so here we only analyzed TRMM. According toFig. 7 , the
four precipitation products have high detection rates (POD [?] 0.60), of which CFSR performs best (POD
[?] 0.90), followed by IMERG (0.67 [?] POD [?] 0.82), CMADS (0.63 [?] POD) [?] 0.84), and TRMM
(0.60 [?] POD [?] 0.70). FAR values of four precipitation products increase with latitude. Among the four
precipitation products, TRMM shows the highest false alarm ratio (0.40 [?] FAR [?] 0.57), followed by
IMERG (0.40 [?] FAR [?] 0.57), CFSR (0.29 [?] FAR [?] 0.57) and CMADS (0.30 [?] FAR [?] 0.48). CFSR
has the highest comprehensive forecasting ability, with a CSI of 0.480.69, followed by CMADS and IMERG,
and TRMM exhibits the worst comprehensive forecasting ability. According to the detection indicators of
various precipitation products, the overall performance of CFSR precipitation products is the best, with a
POD of 0.900.98, FAR of 0.290.51, and CSI of 0.48-0.69, followed by CMADS, IMERG, and TRMM.

4.2 Evaluation of hydrological simulations

4.2.1 Results of streamflow simulation using different precipitation datasets

According to Fig. 8 , the runoff simulation results of Scenario S1 are the best overall, with R 2 and NSE
values of 0.85/0.75, 0.84/0.51 in the calibration/validation periods at TNH and 0.81/0.57, 0.80/0.39 in the
calibration/validation periods at JM. Scenario S6 performed second best, and in the validation periods (R
2 = 0.78, NSE = 0.53 at TNH;R 2 = 0.64, NSE = 0.53 at JM) yielded the satisfactory performance and
outperformed Scenario S1, but it performed poorly in the calibration periods. Scenario S6 underestimates
the runoff during the dry season, owing to the CMADS precipitation data being underestimated (Fig. 4 ).
The runoff simulation results of Scenarios S3 and S7 were significantly overestimated, and neither TNH nor
JM reached a satisfactory performance, especially with respect to Scenario S3 at JM. The reason for this is
that the precipitation data of TRMM and CFSR were overestimated (Fig. 4 ), and the precipitation data
of TRMM overestimate the upstream precipitation [Figs 3(c) and 6(b) ].

Based on Figs 8 and 9 , the runoff simulation results of Scenario S5 were significantly better than those of
Scenario S3, but slightly worse than in Scenario S2. In calibration periods, scenario S2 (R 2 = 0.76, NSE =
0.75 at TNH;R 2 = 0.77, NSE = 0.70 at JM) and S5 (R 2 = 0.70, NSE = 0.65 at TNH;R 2 = 0.66, NSE
= 0.66 at JM), the runoff simulation results yielded a satisfactory performance, but the performance of the
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. two in the validation periods was extremely poor (NSE [?] 0.26). This may be due to the short time-series
of precipitation data in Scenarios S2 and S5, and the limited number of calibration times of parameters,
which leads to significant differences in the performance of simulation results in the calibration and validation
periods. In summary, the runoff simulation results based on GO performed best overall, followed by IMERG,
CMADS, CFSR, IMERG T, and TRMM. IMERG and CMADS precipitation products can be used in this
data-scarce alpine region.

4.2.2 Results of streamflow simulation using corrected precipitation datasets

As mentioned in Section 4.1 , the GO and the reanalyzed precipitation products have a high correlation
at basin and grid-scales, but the correlation with the satellite precipitation products is poor (Figs 4 and
6 ). Therefore, we only corrected the precipitation data of CMADS and CFSR. We used GO to perform
daily-scale regression analysis on CMADS and CFSR precipitation data at basin-scale, owing to scarcity of
data in the YRSR. Comparing the fitting effects of different functions, it is found that R 2 of the resulting
cubic polynomial is the highest. According to cubic polynomial fitting,R 2 of CMADS is 0.827, andR 2 of
CFSR is 0.934 (Fig. 10 ).

Fig. 11 shows that the corrected CFSR precipitation data has improved the simulation results at TNH.
The simulation results have changed from unsatisfactory to satisfactory, and theR 2 (NSE) value during the
calibration and validation periods increased (increased) by 0.28 (0.34) and 0.22 (0.27), respectively. However,
the overall performance of CMADS after correction remains unsatisfactory because the correlation between
GO and CFSR precipitation data is better than that of CMADS (Fig. 4 ). Compared with TNH, the
corrected CMADS and CFSR precipitation data generate no improvements in runoff model results of JM,
and the simulated results remain unsatisfactory.

4.2.3 Results of streamflow simulation using combined precipitation datasets

By using R 2 and NSE indicators, it is found that the simulated results of IMERG and CMADS precipitation
data are close to, or even better than, the GO in calibration or validation periods (Figs 8 and 9 ). The
performance of CFSR precipitation data after correction is better (Fig. 11 ). Therefore, we choose the
combination of CMADS, CFSR C, and IMERG precipitation data and GO, corresponding to Scenarios S10,
S11, and S12. The spatial distribution of precipitation stations is shown in Fig. 1(b) .

According to Table 2 , the overall performance of Scenario S10 combining GO and CMADS is the best, and
the simulation results at TNH resulted in good performance (R 2 = 0.77, NSE = 0.72), which is superior to
Scenario S1 (R 2 = 0.80, NSE = 0.68) and Scenario S8 (R 2 = 0.59, NSE = 0.50). Although the simulation
results at JM yielded unsatisfactory performance, they were close to being deemed satisfactory (calibration
periods: R 2 = 0.50, NSE = 0.48; validation periods: R 2 = 0.55, NSE = 0.47). The runoff simulation results
of Scenarios S11 and S12 are not as good as those of Scenarios S1 and S2, but slightly better than those of
Scenarios S5 and S9.

5. Discussion

Precipitation is the key variable input for hydrological modeling and the main source of error in simulation
results (Duan et al ., 2019a; Ruan et al ., 2017). Currently, many satellite and reanalysis precipitation
products have been widely used in hydrological simulation in areas lacking observation (Bhatta et al .,
2019; Bitew and Gebremichael, 2010; Tang et al ., 2019). However, the quality of precipitation products
is obviously different in different zones, owing to different climatic regions, seasonal cycles, and land types
(Wang et al ., 2020). Before further use of satellite and reanalysis of precipitation products, it is necessary to
evaluate the quality of these precipitation products. The error in satellite precipitation products usually stems
from the weak relationship between precipitation rate and remote sensing signals (Bitew and Gebremichael,
2010), satellite revisit time (B et al ., 2013), and retrieval algorithm (Yan et al ., 2020). For reanalysis of
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. precipitation products, the uncertainties and errors mainly come from data sources, interpolation algorithms,
and data assimilation systems (Zhu et al ., 2015).

According to the results, the accuracy of TRMM, IMERG, CMADS, and CFSR in the warm season is
higher than that in the cold season, and IMERG has the best performance, followed by CMADS, CFSR,
and TRMM. This is mainly because snowfall is the main precipitation in winter in the YRSR (Huet al .,
2011). Although most satellite retrieval algorithms perform quite well in rainfall estimation, the accuracy of
snowfall estimation is still not high, especially on snow-covered or frozen land surfaces (Cai et al ., 2015; Noh
et al ., 2009; Villariniet al ., 2009). Alijanian et al . (2017) and Condom et al . (2011) reported that TRMM
precipitation products cannot express the spatio-temporal variability of precipitation over high-altitude,
complex terrain. IMERG, as a newer generation of TRMM precipitation products, are more sensitive to
the capture of solid precipitation events (Yanget al ., 2020), due to the more advanced GPM microwave
Imager sensor and the Dual-frequency Precipitation Radar onboard the GPM satellites. Most scientific
literatures reported that IMERG has a better performance in alpine basin (Mou and Santo, 2018; Yuan et al
., 2015). In addition, high-latitude regions respond strongly to climate change, which poses a huge challenge
to satellite precipitation observations (Mark et al ., 2016). Tian and Peters-Lidard (2010) reported that
the satellite precipitation products have large uncertainty in high latitudes (beyond +- 40deg). By contrast,
the reanalysis precipitation products is less affected by high-latitude and high-altitude (Beck et al ., 2017;
Serreze et al ., 2005; Yong et al ., 2014). At the grid scale, among the four precipitation products, CMADS
has the best performance for precipitation observation (Fig. 6 ), and CFSR has the best performance for
precipitation events (Fig. 7 ).

Due to the scarcity of in-situ gauged observation stations in the alpine basin, it is not comprehensive to
evaluate the performance of precipitation products based on statistical methods. Hydrological simulation
verification is a supplementary method for the evaluation of precipitation products (Deng et al ., 2019;
Guoqiang et al ., 2015). Using GO from even sparse in-situ gauged observation stations resulted in better
performance in runoff simulation than using all four precipitation products, which is consistent with the
previous research results (Yuan et al ., 2015). Among the four precipitation products, IMERG has the best
performance in runoff simulation, followed by CMADS, CFSR, and TRMM. TRMM seriously overestimated
runoff simulation with NSE values of -1.86 and -11.93 at TNH and JM, respectively. This is mainly due
to the poor quality of precipitation products in near real time (Tekeli and Fouli, 2016). In general, the
simulation results of runoff at TNH are better than those at JM. There are two main reasons: one is
the high altitude in the basin above JM and the large snow-covered, which will increase the microwave
reflectivity on the land surface, thereby mask the drop in microwave signal due to scattering (Harpold et al
., 2017; Yong et al ., 2014); Second, in-situ gauged observation stations in the YRSR are mostly distributed
downstream, and there are only two precipitation stations in the basin above JM (Fig. 1 ). Compared with
the model driven by a single precipitation dataset, the model driven by the combination of GO and satellite
or reanalysis precipitation products has better performance, especially Scenario S10 performed the best in
all scenarios (R 2 = 0.77, NSE = 0.72 at TNH;R 2 = 0.53, NSE = 0.48 at JM). This is probably because
CMADS precipitation products consider more gauge-based precipitation than CFSR and IMERG (Meng et
al ., 2016). These results can provide reference data, and research ideas, for improved hydrological modeling
of alpine basins.

6. Conclusions

The overall objective of this study was to evaluate the hydrological application potential of TRMM, IMERG,
CMADS, and CFSR in the YRSR. The major findings of this study are summarized as follows.

(1) At the basin-scale, the TRMM, IMERG, CMADS, and CFSR have higher detection accuracy in the warm
season, and the PBIAS and CC values of each precipitation product are characterized by small warm season
and large cold season values. Among the four precipitation products, IMERG had the smallest deviation
(average RMSE = 13.71 mm), while CFSR had the best correlation (average CC = 0.73)
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. (2) At the grid scale, among the four precipitation products, CMADS has the best performance for precipi-
tation observation, with PBIAS of -27.22%2.48 %, CC of 0.430.58, and RMSE of 2.684.96 (mm/d), followed
by IMERG, CFSR, and TRMM. CFSR has the best performance for precipitation events, with POD of
0.900.98, FAR of 0.290.51, and CSI of 0.480.69, followed by CMADS, IMERG and TRMM.

(3) Taken together, IMERG has the best performance, followed by CMADS, CFSR, and TRMM. TRMM
severely overestimated high rainfall of > 10 mm/day. CFSR obviously overestimated moderate precipitation
events of 110 mm/d, while CMADS underestimated the precipitation events of 120 mm/d.

(4) Models using the GO as input resulted in satisfactory performance during 20082013, and precipitation
products have poor simulation results. The results of simulation using CMADS significantly underestimated
the runoff during the dry season, but the performance in the validation periods (R 2 = 0.78, NSE = 0.53 at
TNH; R 2 = 0.64, NSE = 0.53 at JM) was best among those scenarios analyzed. The runoff simulated using
TRMM and CFSR is significantly overestimated, especially when using TRMM. Although the model using
IMERG as input yielded unsatisfactory performance during 20142016, it did not affect the use of IMERG
as a potential data source for YRSR.

(5) After bias correction, the quality of CFSR improves significantly with increases to R 2 and NSE of 0.25
and 0.31 at TNH, respectively. SWAT model driven by the combination of GO and CMADS precipitation
was the best across all scenarios. The simulation results at TNH yielded satisfactory performance (R 2 =
0.77, NSE = 0.72). Although the simulation results at JM yielded an unsatisfactory performance, they were
close to being deemed satisfactory (R 2 = 0.53, NSE = 0.48).

In summary, although the satellite and reanalysis precipitation products represented by TRMM and CFSR
have been widely used in hydrological modeling, the quality of these products could be significantly improved
when applied to alpine basins. In contrast, IMERG has a better performance in observing solid precipitation
due to the more advanced GPM microwave imager sensor and the dual-frequency precipitation radar mounted
on the GPM satellites (Yang et al ., 2020). The findings of this assessment provide valuable reference and
feedback for satellite and reanalysis precipitation product development for use in alpine basins. In addition,
snowfall is the main form of precipitation in the YRSR from September to May, however, such an assessment
was not fulfilled due to the lack of snowfall observation site, a task that warrants investigation and inclusion
in future research.
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