Soil multifunctionality is negatively related to microbial community stochasticity in restored grasslands

Yongyong Zhang¹, Monika Resch², Martin Schuetz³, Ziyan Liao⁴, Beat Frey⁵, and Anita Risch⁵

¹Shenyang Agricultural University ²Swiss Federal Institute for Forest, Snow and Landscape Research WSL ³Swiss Federal Institute for Forest, Snow and Landscape research ⁴WSL ⁵Swiss Federal Institute for Forest Snow and Landscape Research

September 24, 2021

Abstract

It is generally assumed that there is a relationship between microbial diversity and multiple ecosystem functions. Although it is indisputable that microbial diversity is controlled by stochastic and deterministic ecological assembly processes, the relationship between these processes and soil multifunctionality (SMF) remains less clear. In this study, we examined how different grassland restoration treatments, namely harvest only, topsoil removal and topsoil removal plus propagule addition, affected i) soil bacterial and fungal community stochasticity, ii) SMF, and iii) the relationship between community stochasticity and SMF. Results showed that soil microbial community stochasticity decreased in all the three restoration treatments, while SMF increased. Soil multifunctionality was found to be significantly and negatively correlated with soil microbial community stochasticity. Plant diversity and plant C/N indirectly influenced SMF by regulating the microbial community stochasticity. Our findings provide empirical evidence that when deterministic community assembly processes dominate in soils, then higher microbial functioning is expected.

Hosted file

SMF MANUSCRIPT FOR ECOLOGY LETTERS.pdf available at https://authorea.com/users/435408/ articles/538452-soil-multifunctionality-is-negatively-related-to-microbial-communitystochasticity-in-restored-grasslands